Supplementation Strategies to Reduce Muscle Damage and Improve Recovery Following Exercise in Females: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Review and Study Selection
2.2. Inclusion/Exclusion Criteria
3. Results and Discussion
3.1. Study Characteristics
3.2. Effects of the Supplementation Intervention on Indicators of Muscle Damage and Inflammation
3.2.1. Perceptions of Muscle Damage
3.2.2. Strength Testing
3.2.3. Markers of Muscle Damage and Inflammation
3.2.4. Oxidative Stress and Anti-Oxidative Markers
3.3. Sex-Related Differences with Supplementation Interventions
4. Limitations
5. Conclusions and Recommendations
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kirby, T.J.; Triplett, N.T.; Haines, T.L.; Skinner, J.W.; Fairbrother, K.R.; McBride, J.M. Effect of leucine supplementation on indices of muscle damage following drop jumps and resistance exercise. Amino Acids 2011, 42, 1987–1996. [Google Scholar] [CrossRef] [PubMed]
- Knitter, A.E.; Panton, L.B.; Rathmacher, J.A.; Petersen, A.; Sharp, R. Effects of β-hydroxy-β-methylbutyrate on muscle damage after a prolonged run. J. Appl. Physiol. 2000, 89, 1340–1344. [Google Scholar] [PubMed]
- McArdle, W.D.; Katch, F.I.; Katch, V.L. Exercise Physiology: Energy, Nutrition, and Human Performance, 5th ed.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2001. [Google Scholar]
- Rahbek, S.K.; Farup, J.; de Paoli, F.; Vissing, K. No differential effects of divergent isocaloric supplements on signaling for muscle protein turnover during recovery from muscle-damaging eccentric exercise. Amino Acids 2015, 47, 767–778. [Google Scholar] [CrossRef] [PubMed]
- Rankin, P.; Stevenson, E.; Cockburn, E. The effect of milk on the attenuation of exercise-induced muscle damage in males and females. Eur. J. Appl. Physiol. 2015, 115, 1245–1261. [Google Scholar] [CrossRef] [PubMed]
- Enns, D.L.; Tiidus, P.M. Estrogen influences satellite cell activation and proliferation following downhill running in rats. J. Appl. Physiol. 2008, 104, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.; Hume, P.A.; Maxwell, L. Delayed onset muscle soreness: Treatment strategies and performance factors. Sports Med. 2003, 33, 145–164. [Google Scholar] [CrossRef] [PubMed]
- Kendall, B.; Eston, R. Exercise-induced muscle damage and the potential protective role of estrogen. Sports Med. 2002, 32, 103–123. [Google Scholar] [CrossRef] [PubMed]
- Allen, D.G.; Whitehead, N.P.; Yeung, E.W. Mechanisms of stretch-induced muscle damage in normal and dystrophic muscle: Role of ionic changes. J. Physiol. 2005, 567, 723–735. [Google Scholar] [CrossRef] [PubMed]
- Cooke, M.B.; Rybalka, E.; Stathis, C.G.; Cribb, P.J.; Hayes, A. Whey protein isolate attenuates strength decline after eccentrically-induced muscle damage in healthy individuals. J. Int. Soc. Sports Nutr. 2010, 7, 30–38. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Atherton, P.J.; Smith, K. Muscle protein synthesis in response to nutrition and exercise. J. Physiol. 2012, 590, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Conceição, M.S.; Libardi, C.A.; Nogueira, F.R.D.; Bonganha, V.; Gáspari, A.F.; Chacon-Mikahil, M.P.T.; Cavaglieri, C.R.; Madruga, V.A. Effects of eccentric exercise on systemic concentrations of pro- and anti-inflammatory cytokines and prostaglandin (E2): Comparison between young and postmenopausal women. Eur. J. Appl. Physiol. 2012, 112, 3205–3213. [Google Scholar] [CrossRef] [PubMed]
- Sousa, M.; Teixeira, V.H.; Soares, J. Dietary strategies to recover from exercise-induced muscle damage. Int. J. Food Sci. Nutr. 2014, 65, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Tipton, K.D. Nutritional support for exercise-induced injuries. Sports Med. 2015, 45, S93–S104. [Google Scholar] [CrossRef] [PubMed]
- Howatson, G.; van Someren, K.A. The prevention and treatment of exercise-induced muscle damage. Sports Med. 2008, 38, 483–503. [Google Scholar] [CrossRef] [PubMed]
- Torres, R.; Ribeiro, F.; Duarte, J.A.; Cabri, J.M.H. Evidence of the physiotherapeutic interventions used currently after exercise-induced muscle damage: Systematic review and meta-analysis. Phys. Ther. Sport 2012, 13, 101–114. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.C.; Huang, W.C.; Chiu, C.C.; Chang, Y.K.; Huang, C.C. Whey protein improves exercise performance and biochemical profiles in trained mice. Med. Sci. Sports Exerc. 2014, 46, 1517–1524. [Google Scholar] [CrossRef] [PubMed]
- Jackman, S.R.; Witard, O.C.; Jeukendrup, A.E.; Tipton, K.D. Branched-chain amino acide ingestion can ameliorate soreness from eccentric exercise. Med. Sci. Sports Exerc. 2010, 42, 962–970. [Google Scholar] [CrossRef] [PubMed]
- Nicastro, H.; Carnauba, R.A.; Massunaga, N.D.; da Fonseca, A.B.B.; Paschoal, V.; Naves, A.; Marques, N. Are the bcaas/leucine supplementation effects on exercise-induced muscle damage related immunity response or to Hmβ? J. Nutr. Health Food Sci. 2014, 2, 1–3. [Google Scholar] [CrossRef]
- Wilson, J.M.; Kim, J.; Lee, S.; Rathmacher, J.A.; Dalmau, B.; Kingsley, J.D.; Koch, H.; Manninen, A.H.; Saadat, R.; Panton, L.B. Acute and timing effects of beta-hydroxy-beta-methylbutyrate (HMB) on indirect markers of skeletal muscle damage. Nutr. Metab. 2009, 6. [Google Scholar] [CrossRef] [PubMed]
- Dale, M.J.; Thomson, R.L.; Coates, A.M.; Howe, P.R.C.; Brown, A.; Buckley, J.D. Protein hydrolysates and recovery of muscle damage following eccentric exercise. Funct. Foods Health Dis. 2015, 5, 34–43. [Google Scholar]
- Rawson, E.S.; Gunn, B.; Clarkson, P.M. The effects of creatine supplementation on exercise-induced muscle damage. J. Strength Cond. Res. 2001, 15, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Howatson, G.; McHugh, M.P.; Hill, J.A.; Brouner, J.; Jewell, A.P.; van Someren, K.A.; Shave, R.E.; Howatson, S.A. Influence of tart cherry juice on indices of recovery following marathon running. Scand. J. Med. Sci. Sports 2010, 20, 843–852. [Google Scholar] [CrossRef] [PubMed]
- Kuehl, K.S.; Perrier, E.T.; Elliot, D.L.; Chesnutt, J.C. Efficacy of tart cherry juice in reducing muscle pain during running: A randomized controlled trial. J. Int. Soc. Sports Nutr. 2010, 7, 1–6. [Google Scholar] [CrossRef] [PubMed]
- McLeay, Y.; Barnes, M.J.; Mundel, T.; Hurst, S.M.; Hurst, R.D.; Stannard, S.R. Effect of New Zealand blueberry consumption on recovery from eccentric exercise-induced muscle damage. J. Int. Soc. Sports Nutr. 2012, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ferguson-Stegall, L.; McCleave, E.; Ding, Z.; Doerner, P.G., III; Liu, Y.; Wang, B.; Healy, M.; Kleinert, M.; Dessard, B.; Lassiter, D.G.; et al. Aerobic exercise training adaptations are increased by postexercise carbohydrate-protein supplementation. J. Nutr. Metab. 2011, 2011, 623182. [Google Scholar] [CrossRef] [PubMed]
- Karp, J.R.; Johnston, J.D.; Tecklenburg, S.; Mickleborough, T.D.; Fly, A.D.; Stager, J.M. Chocolate milk as a post-exercise recovery aid. Int. J. Sport Nutr. Exerc. Metab. 2006, 16, 78–91. [Google Scholar] [CrossRef] [PubMed]
- Ormsbee, M.J.; Mandler, W.K.; Thomas, D.D.; Ward, E.G.; Kinsey, A.W.; Simonavice, E.; Panton, L.B.; Kim, J. The effects of six weeks of supplementation with multi-ingredient performance suplements and resistance training on anabolic hormones, body composition, strength, and power in resistance-trained men. J. Int. Soc. Sports Nutr. 2012, 9, 49. [Google Scholar] [CrossRef] [PubMed]
- Flores, D.F.; Gentil, P.; Brown, L.E.; Pinto, R.S.; Carregaro, R.L.; Bottaro, M. Dissociated time course of recovery between genders after resistance exercise. J. Strength Cond. Res. 2011, 25, 3039–3044. [Google Scholar] [CrossRef] [PubMed]
- Keane, K.; Salicki, R.; Goodall, S.; Thomas, K.; Howatson, G. The muscle damage response in female collegiate athletes following repeated sprint activity. J. Strength Cond. Res. 2015, 29, 2802–2807. [Google Scholar] [CrossRef] [PubMed]
- Stupka, N.; Lowther, S.; Chorneyko, K.; Bourgeois, J.M.; Hogben, C.; Tarnopolsky, M.A. Gender differences in muscle inflammation after eccentric exercise. J. Appl. Physiol. 2000, 89, 2325–2332. [Google Scholar] [PubMed]
- Rinard, J.; Clarkson, P.M.; Smith, L.L.; Grossman, M. Response of males and females to high force eccentric exercise. J. Sports Sci. 2000, 18, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Kerksick, C.; Taylor, L., IV; Harvey, A.; Willoughby, D. Gender-related differences in muscle injuy, oxidative stress, and apoptosis. Med. Sci. Sports Exerc. 2008, 40, 1172–1780. [Google Scholar] [CrossRef] [PubMed]
- Tiidus, P.M. (Ed.) Estrogen and gender effects. In Skeletal Muscle Damage and Repair; Thomson-Shore, Inc.: Dexter, MI, USA, 2008; pp. 125–134.
- Bell, D.R.; Blackburn, J.T.; Norcorss, M.F.; Ondrak, K.S.; Hudson, J.D.; Hackney, A.C.; Padua, D.A. Estrogen and muscle stiffness have a negative relationship in females. Knee Surg. Sports Traumatol. Arthrosc. 2012, 20, 361–367. [Google Scholar] [CrossRef] [PubMed]
- D′eon, T.M.; Sharoff, C.; Chipkin, S.R.; Grow, D.; Ruby, B.C.; Braun, B. Regulation of exercise carbohydrate metabolism by estrogen and progesterone in women. Am. J. Physiol. 2000, 283, E1046–E1055. [Google Scholar] [CrossRef] [PubMed]
- Connolly, D.A.J.; Sayers, S.P.; McHugh, M.P. Treatment and prevention of delayed onset muscle soreness. J. Strength Cond. Res. 2003, 17, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Stupka, N.; Tiidus, P.M. Effects of ovariectomy and estrogen on ischemia-reperfusion injury in hindlimbs of female rats. J. Appl. Physiol. 2001, 91, 1828–1835. [Google Scholar] [PubMed]
- Sotiriadou, S.; Kyparos, A.; Mougios, V.; Trontzos, C.; Sidiras, G.; Matziari, C. Estorgen effect on some enzymes in female rats after downhill running. Physiol. Res. 2003, 52, 743–748. [Google Scholar] [PubMed]
- Feng, X.; Li, G.; Wand, S. Effects of estrogen on gastrocnemius muscle strain injury and regeneration in female rats. Acta Pharm. Sin. 2004, 25, 1489–1494. [Google Scholar]
- Brown, M.A.; Howatson, G.; Keane, K.; Stevenson, E. Exercise-induced muscle damage following dance and sprint specific exercise in females. J. Sports Med. Phys. Fit. 2015, in press. [Google Scholar]
- Nissen, S.L.; Panton, L.B.; Wilhelm, R.; Fuller, J.C. Effect of beta-hydroxy-beta-methylbutyrate (HMB) supplementation on strength and body composition of trained and untrained males undergoing intense resistance training. J. Fed. Am. Soc. Exp. Biol. 1996, 10, 287. [Google Scholar]
- Byrd, P.L.; Mehta, P.M.; DeVita, P.; Dyck, D.; Heckner, R.C. Changes in muscle soreness and strength following downhill running: Effects of creatine, HMB, and betagen supplementation. Med. Sci. Sports Exerc. 1999, 31, 263. [Google Scholar] [CrossRef]
- White, J.P.; Wilson, J.M.; Austin, K.G.; Greer, B.K.; St John, N.; Panton, L.B. Effect of carbohydrate-protein supplement on acute exercise-induced muscle damage. J. Int. Soc. Sports Nutr. 2008, 5, 5. [Google Scholar] [CrossRef] [PubMed]
- Costello, J.T.; Bieuzen, F.; Bleakely, C.M. Where are all the female participants in sport and exercise medicine research? Eur. J. Sport Sci. 2014, 14, 847–851. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bar, P.R.; Amelink, G.J.; Oldenburg, B.; Blankenstein, M.A. Prevention of exercise-induced muscle membrane damage by oestradiol. Life Sci. 1988, 42, 2677–2681. [Google Scholar] [CrossRef]
- Koot, R.W.; Amelink, M.A.; Blankenstein, M.A.; Bar, P.R. Tamoxifen and estrogen both protect the rat muscle against physiological damage. J. Steroid Biochem. Mol. Biol. 1991, 40, 689–695. [Google Scholar] [CrossRef]
- Clarkson, P.M.; Hubal, M.J. Exercise-induced muscle damage in humans. Am. J. Phys. Med. Rehabil. 2002, 81, S52–S69. [Google Scholar] [CrossRef] [PubMed]
- Brooke, M.H.; Carroll, J.E.; Davis, J.E.; Hagberg, J.M. The prolonged exercise test. Neurology 1979, 29, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Shumate, J.B.; Brooke, M.H.; Carroll, J.E.; Davis, J.E. Increased serum creatine kinase after exercise: A sex-linked phenomenon. Neutology 1979, 29, 902–904. [Google Scholar] [CrossRef]
- Norton, J.; Clarkson, P.M.; Graves, J.E.; Litchfield, P.; Kirwan, J. Serum creatine kinase activity and body composition in males and females. Hum. Biol. 1985, 57, 591–598. [Google Scholar] [PubMed]
- Harris, E.K.; Wong, E.T.; Shaw, S.T. Statistical criteria for seperate reference intervals: Race and gender groups in creatine kinase. Clin. Chem. 1991, 37, 1580–1582. [Google Scholar] [PubMed]
- Tiidus, P.M. Estrogen and gender effects on muscle damage, inflammation, and oxidative stress. Can. J. Appl. Physiol. 2000, 25, 274–287. [Google Scholar] [CrossRef] [PubMed]
- Sorichter, S.; Mair, J.; Koller, A.; Calzolari, C.; Huonker, M.; Pau, B.; Puschendorf, B. Release of muscle proteins after downhill running in male and female subjects. Scand. J. Med. Sci. Sports 2001, 11, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Slauterbeck, J.R.; Fuzie, S.F.; Smith, M.P.; Clark, R.J.; Xu, T.; Starch, D.W.; Hardy, D.M. The menstrual cycle, sex hormones, and anterior cruciate ligament injury. J. Athl. Train. 2002, 37, 275–280. [Google Scholar] [PubMed]
- Wojtys, E.M.; Huston, L.J.; Boynton, M.D.; Splindler, K.P.; Lindenfeld, T.N. The effect of the menstrual cycle on anterior cruciate ligament injuries in women as determined by hormone levels. Am. J. Sports Med. 2002, 30, 182–188. [Google Scholar] [PubMed]
- Rawson, E.S.; Persky, A.M.; Price, T.B.; Clarkson, P.M. Effects of repeted creatine supplementation on muscle, plasma, and urine creatine levels. J. Strength Cond. Res. 2004, 18, 162–167. [Google Scholar] [PubMed]
- Wilborn, C.D.; Taylor, L.W.; Outlaw, J.; Williams, L.; Campbell, B.; Foster, C.A.; Smith-Ryan, A.; Urbina, S.; Hayward, S. The effects of pre- and post-exercise whey vs. Casein protein consumption on body composition and performance measures in collegiate female athletes. J. Sports Sci. Med. 2013, 12, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Tara, M.K.; Park, J.S.; Mathison, B.D.; Kimble, L.L.; Chew, B.P. Whey protein but not soy protein, supplementation alleviates exercise-induced lipid peroxidation in female endurance athletes. Open Nutr. J. 2013, 7, 13–19. [Google Scholar] [CrossRef]
- Green, M.S.; Corona, B.T.; Doyle, J.A.; Ingalls, C.P. Carbohydrate-protein drinks do not enhance recovery from exercise-induced muscle injury. Int. J. Sport Nutr. Exerc. Metab. 2008, 18, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Ormsbee, M.J.; Gorman, K.A.; Miller, E.A.; Baur, D.A.; Eckel, L.A.; Contreras, R.J.; Panton, L.B.; Spicer, M.T. Nighttime feeding likely alters morning metabolism but not exercise performance in female athletes. Appl. Physiol. Nutr. Metab. 2016, 41, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Taylor, L.W.; Wilborn, C.; Roberts, M.D.; White, A.; Dugan, K. Eight weeks of pre- and postexercise whey protein supplementation increases lean body mass and improves performance in division III collegiate female basketball players. Appl. Physiol. Nutr. Metab. 2016, 41, 294–254. [Google Scholar] [CrossRef] [PubMed]
- Betteridge, D.J. What is oxidative stress? Metabolism 2000, 49, 3–8. [Google Scholar] [CrossRef]
- Timmons, B.W.; Hamadeh, M.J.; Devries, M.C.; Tarnopolsky, M.A. Influence of gender, menstrual phase, and oral contraceptive use on immunological changes in response to prolonged cycling. J. Appl. Physiol. 2005, 99, 979–985. [Google Scholar] [CrossRef] [PubMed]
- Wuest, R.C.I.; Morse, C.I.; de Haan, A.; Jones, D.A.; Degens, H. Sex differences in contractile properties and fatigue resistance of human skeletal muscle. Exp. Physiol. 2008, 93, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Goldfarb, A.H.; Garten, R.S.; Cho, C.; Chee, P.D.M.; Chambers, L.A. Effects of a fruit/berry/vegetable supplement on muscle function and oxidative stress. Med. Sci. Sports Exerc. 2011, 43, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Glenn, J.M.; Gray, M.; Wethington, L.N.; Stone, M.S.; Stewart, R.W.; Moyen, N.E. Acute citrulline malate suplementation improves upper- and lower-body submaximal weightlifting exercise performance in resistance-trained female athetes. Eur. J. Nutr. 2015. [Google Scholar] [CrossRef] [PubMed]
- Legault, Z.; Bagnall, N.; Kimmerly, D.S. The influence of oral l-glutamine supplementation on muscle strength recovery and soreness following unilateral knee extension eccentric exercise. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Carter, A.; Dobridge, J.; Hackney, A.C. Influence of estrogen on markers of muscle tissue damage following eccentric exercise. Hum. Physiol. 2001, 27, 626–630. [Google Scholar] [CrossRef]
- Murphy, D.F.; Connolly, D.A.J.; Beynnon, B.D. Risk factors for lower extremity injury: A review of the literature. Br. J. Sports Med. 2003, 37, 13–29. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.; Kjaer, M. Influence of sex and estrogen on musculotendinous protein turnover at rest and after exercise. Exerc. Sport Sci. Rev. 2014, 42, 183–192. [Google Scholar] [CrossRef] [PubMed]
Reference | Participants | Exercise Protocol | Supplementation Protocol | Time of Supplementation | Study Design |
---|---|---|---|---|---|
Green, et al. [60] | 18 females (age: 24.6 ± 3.3 years) Low to moderate level of aerobic activity (1–5 h/week) | Intermittent 30 min Downhill Run (−12% grade at 8.0 mph) Six intervals of 5 min each with 2-min standing rest between intervals | Hour 1 Post-Ex.: CHO—1.2 g CHO/kg Body weight (BW) CHO-Protein—1.2 g CHO/kg BW + 0.3 g Protein/kg BW Placebo—noncaloric, artificially sweetened drink, isovolumetric to CHO and CHO + protein beverages Hour 2 Post-Ex.: CHO—0.6 g CHO/kg body weight (BW) CHO-Protein—0.6 g CHO/kg BW + 0.15 g Protein/kg BW Placebo—noncaloric, artificially sweetened drink, isovolumetric to CHO and CHO + protein beverages | Post-exercise | Double blind, placebo controlled, non-crossover study |
McLeay, et al. [25] | 10 healthy, resistance trained physically active females (age: 22 ± 1 year) (participating in recreational resistance and aerobic exercise at least twice a week) | Three sets of 100 eccentric repetitions of quadriceps on an isokinetic dynamometer Passive recovery lasting 5 min between sets | Blueberry beverage: 200 g frozen New Zealand blueberries blended with 1 banana (approx. 50 g) and 200 mL commercial apple juice Control beverage: 25 g dextrose blended with 1 banana (approx. 50 g) and 200 mL commercial apple juice | Immediately post (evening), and 12 and 36 h post (morning). No treatment taken at 60 h post | Randomized, balanced, cross-over study |
Tara, et al. [59] | 18 healthy endurance female athletes (age: 21.3 ± 0.4 years) | Minimum of 1 h running per week, maintain normal training routine | Whey protein isolate—89.3 g protein, 1.1 g fat, 3.6 g CHO per 100 g Soy protein isolate—83.3 g protein, 4.2 g fat, <2.1 g CHO, 175 mg isoflavones per 100 g Each serving standardized to 40 g protein consumed daily as a drink, for 6 weeks | No specified time point | Randomized, double-blind |
Wilborn, et al. [58] | 16 female resistance trained basketball players (age: WP 20.0 ± 1.9 years; CP 21.0 ± 2.8 years) | Periodised anaerobic resistance-training program 4 days per week for 8 weeks. 2 upper- and 2 lower-extremity workouts per week. 30–40 min skill and conditioning related work | Whey protein (WP) group—24 g Optimum nutrition 100% whey gold standard protein (120 Cal, 1 g fat, 4 g CHO, 24 g Protein) Casein protein (CP) group—24 g Optimum nutrition 100% casein protein (120 Cal, 1 g fat, 3 g CHO, 24 g protein) 30 min before and immediately after each training session for 8 weeks. Protein mixed with 10fl oz water | Pre- and post-exercise | Randomized, double-blind |
Taylor, et al. [62] | 14 NCAA Division III Female Basketball Players (WP: age, 20 ± 2 years; MD: age, 21 ± 3 years) | 8 week resistance training: 4 days/week undulating aerobic and resistance-training (3 days/week = resistance-training; 3 days/week = “explosive” exercises; 4 days/week = agility and conditioning) | Immediately prior to and following supervised workouts, for 8 weeks, dissolved in water: 24 g WP—1951 kcal/day, 92 ± 6 g/day protein, 263 ± 30 g/day CHO, 64 ± 6 g/day fat 24 g maltodextrin (MD)—1875 kcal/day, 74 ± 12 g/day protein, 283 ± 34 g CHO, 75 ± 17 g/day fat | Immediately prior to and following resistance training workout | Matched according to DEXA lean muscle mass, double blind and randomly assigned to supplement |
Reference | Markers of Muscle Damage and Inflammation | Result | Difference Among Groups |
---|---|---|---|
Green et al. [60] | Serum creatine kinase (CK) activity |
|
|
Tara et al. [59] | CRP |
|
|
IL-1α |
|
| |
IL-1β |
| ||
IL-2 | |||
IL-6 | |||
IL-8 | |||
TNF-α | |||
IFN-γ | |||
IL-6 |
|
| |
McLeay, et al. [25] | ROS-generating potential |
|
|
Protein carbonyls |
|
| |
CK |
|
| |
IL-6 |
|
| |
Total anti-oxidant capacity (TAC) |
|
|
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Köhne, J.L.; Ormsbee, M.J.; McKune, A.J. Supplementation Strategies to Reduce Muscle Damage and Improve Recovery Following Exercise in Females: A Systematic Review. Sports 2016, 4, 51. https://doi.org/10.3390/sports4040051
Köhne JL, Ormsbee MJ, McKune AJ. Supplementation Strategies to Reduce Muscle Damage and Improve Recovery Following Exercise in Females: A Systematic Review. Sports. 2016; 4(4):51. https://doi.org/10.3390/sports4040051
Chicago/Turabian StyleKöhne, Jessica L., Michael J. Ormsbee, and Andrew J. McKune. 2016. "Supplementation Strategies to Reduce Muscle Damage and Improve Recovery Following Exercise in Females: A Systematic Review" Sports 4, no. 4: 51. https://doi.org/10.3390/sports4040051