Greater Strength Drives Difference in Power between Sexes in the Conventional Deadlift Exercise
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Procedures
2.3. Body Composition
2.4. One-Repetition Maximum (1-RM)
2.5. Experimental Protocol
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Stone, M.H.; Moir, G.; Glaister, M.; Sanders, R. How much strength is necessary? Phys. Ther. Sport 2002, 3, 88–96. [Google Scholar]
- Cormie, P.; McGuigan, M.; Newton, R. Developing Maximal Neuromuscular Power. Sports Med. 2011, 41, 17–38. [Google Scholar]
- Haff, G.G.; Nimphius, S. Training principles for power. Strength Cond. J. 2012, 34, 2–12. [Google Scholar]
- Newton, R.U.; Kraemer, W.J. Developing explosive muscular power: Implications for a mixed methods training strategy. Strength Cond. J. 1994, 16, 20–31. [Google Scholar] [CrossRef]
- Adams, K.; O’Shea, J.P.; O’Shea, K.L.; Climstein, M. The effect of six weeks of squat, plyometric and squat-plyometric training on power production. J. Strength Cond. Res. 1992, 6, 36–41. [Google Scholar] [CrossRef]
- Cormie, P.; McCaulley, G.O.; McBride, J.M. Power versus strength-power jump squat training: Influence on the load-power relationship. Med. Sci. Sports Exerc. 2007, 39, 996–1003. [Google Scholar] [CrossRef] [PubMed]
- Harris, G.R.; Stone, M.H.; O’Bryant, H.S.; Proulx, C.M.; Johnson, R.L. Short-term performance effects of high power, high Force, or combined weight-training methods. J. Strength Cond. Res. 2000, 14, 14–20. [Google Scholar] [CrossRef]
- Kawamori, N.; Haff, G.G. The optimal training load for the development of muscular power. J. Strength Cond. Res. 2004, 18, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Thomas, G.A.; Kraemer, W.J.; Spiering, B.A.; Volek, J.S.; Anderson, J.M.; Maresh, C.M. Maximal power at different percentages of one repetition maximum: Influence of resistance and gender. J. Strength Cond. Res. 2007, 21, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.; Fiatarone, M.A.; Fielding, R.A. Leg power in young women: Relationship to body composition, strength, and function. Med. Sci. Sports Exerc. 1996, 28, 1321–1326. [Google Scholar] [CrossRef] [PubMed]
- Garhammer, J. A comparison of maximal power outputs between elite male and female weightlifters in competition. Int. J. Sport Biomech. 1991, 7, 3–11. [Google Scholar]
- Laubach, L.L. Comparative muscular strength of men and women: A review of the literature. Aviat. Space Environ. Med. 1976, 47, 534–542. [Google Scholar] [PubMed]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Adaptation in athletic performance after ballistic power versus strength training. Med. Sci. Sports Exerc. 2010, 42, 1582–1598. [Google Scholar] [CrossRef] [PubMed]
- Bird, S.; Barrington-Higgs, B. Exploring the deadlift. Strength Cond. J. 2010, 32, 46–51. [Google Scholar] [CrossRef]
- Escamilla, R.F.; Francisco, A.C.; Fleisig, G.S.; Barrentine, S.W.; Welch, C.M.; Kayes, A.V.; Speer, K.P.; Andrews, J.R. A three-dimensional biomechanical analysis of sumo and conventional style deadlifts. Med. Sci. Sports Exerc. 2000, 32, 1265–1275. [Google Scholar] [CrossRef] [PubMed]
- Escamilla, R.F.; Francisco, A.C.; Kayes, A.V.; Speer, K.P.; Moorman, C. An electromyographic analysis of sumo and conventional style deadlifts. Med. Sci. Sports Exerc. 2002, 34, 682–688. [Google Scholar] [CrossRef] [PubMed]
- Swinton, P.A.; Lloyd, R.; Agouris, I.; Stewart, A. Contemporary training practices in elite British powerlifters: Survey results from an international competition. J. Strength Cond. Res. 2009, 23, 380–384. [Google Scholar] [CrossRef] [PubMed]
- Thompson, B.J.; Stock, M.S.; Shields, J.E.; Luera, M.J.; Munayer, I.K.; Mota, J.A.; Carrillo, E.C.; Olinghouse, K.D. Barbell deadlift training increases the rate of torque development and vertical jump performance in novices. J. Strength Cond. Res. 2015, 29, 1–10. [Google Scholar] [CrossRef] [PubMed]
- McCrory, M.A.; Gomez, T.D.; Bernauer, E.M.; Molé, P.A. Evaluation of a new air displacement plethysmograph for measuring human body composition. Med. Sci. Sports Exerc. 1995, 27, 1686–1691. [Google Scholar] [CrossRef] [PubMed]
- Brožek, J.; Grande, F.; Anderson, J.T.; Keys, A. Densitometric analysis of body composition: Revision of some quantitative assumptions. Ann. N. Y. Acad. Sci. 1963, 110, 113–140. [Google Scholar] [CrossRef] [PubMed]
- Jennings, C.L.; Viljoen, W.; Durandt, J.; Lambert, M.I. The reliability of the Fitrodyne as a measure of muscle power. J. Strength Cond. Res. 2005, 19, 859–863. [Google Scholar] [PubMed]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Lindle, R.S.; Metter, E.J.; Lynch, N.A.; Fleg, J.L.; Fozard, J.L.; Tobin, J.; Roy, T.A.; Hurley, B.F. Age and gender comparisons of muscle strength in 654 women and men aged 20–93 yr. J. Appl. Physiol. 1997, 83, 1581–1587. [Google Scholar] [PubMed]
- West, D.W.; Burd, N.A.; Churchward-Venne, T.A.; Camera, D.M.; Mitchell, C.J.; Baker, S.K.; Hawley, J.A.; Coffey, V.G.; Phillips, S.M. Sex-based comparisons of myofibrillar protein synthesis after resistance exercise in the fed state. J. Appl. Physiol. 2012, 112, 1805–1813. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.E.J.; MacDougall, J.; Tarnopolsky, M.; Sale, D. Gender differences in strength and muscle fiber characteristics. Eur. J. Appl. Physiol. 1993, 66, 254–262. [Google Scholar] [CrossRef]
- Ryushi, T.; Hakkinen, K.; Kauhanen, H.; Komi, P. Muscle fiber characteristics, muscle cross-sectional area and force production in strength athletes, physically active males and females. Scand. J. Sports Sci. 1988, 10, 7–15. [Google Scholar]
- Maughan, R.; Nimmo, M.A. The influence of variations in muscle fibre composition on muscle strength and cross-sectional area in untrained males. J. Physiol. 1984, 351, 299–311. [Google Scholar] [CrossRef] [PubMed]
- Maughan, R.; Watson, J.; Weir, J. Strength and cross sectional area of human skeletal muscle. J. Physiol. 1983, 338, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Levine, L.; Falkel, J.; Sawka, M. Upper to lower body strength ratio comparison between men and women. Med. Sci. Sports Exerc. 1984, 16, 125. [Google Scholar] [CrossRef]
- Hames, K.C.; Anthony, S.J.; Thornton, J.C.; Gallagher, D.; Goodpaster, B.H. Body composition analysis by air displacement plethysmography in normal weight to extremely obese adults. Obesity 2014, 22, 1078–1084. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, H.; Ikegawa, S.; Fukunaga, T. Comparison of muscle cross-sectional area and strength between untrained women and men. Eur. J. Appl. Physiol. 1994, 68, 148–154. [Google Scholar] [CrossRef]
- Prince, F.P.; Hikida, R.S.; Hagerman, F.C. Muscle fiber types in women athletes and non-athletes. Pflüg. Arch. 1977, 371, 161–165. [Google Scholar] [CrossRef]
- Sale, D.; MacDougall, J.; Always, S.; Sutton, J. Voluntary strength and muscle characteristics in untrained men and women and male bodybuilders. J. Appl. Physiol. 1987, 62, 1786–1793. [Google Scholar] [PubMed]
Characteristic | Men (n = 9) | Women (n = 9) | p Value |
---|---|---|---|
Age (year) | 29 ± 8 | 29 ± 4.7 | 0.917 |
Height (cm) | 175.6 ± 5.3 | 162.3 ± 5.5 * | 0.001 |
Body Mass (kg) | 85.5 ± 16.2 | 62.0 ± 7.3 * | 0.002 |
%BF | 14.8 ± 7.1 | 23.3 ± 9.2 * | 0.042 |
FFM (kg) | 72.0 ± 8.9 | 47.1 ± 3.9 * | 0.001 |
FFMI | 23.3 ± 1.7 | 17.9 ± 1.4 | 0.001 |
1-RM CDL (kg) | 197.8 ± 46.3 | 100.0 ± 18.4 * | 0.001 |
1-RM CDL: BM ratio | 2.3 ± 0.3 | 1.6 ± 0.4 * | 0.001 |
1-RM CDL: FFM ratio | 2.7 ± 0.4 | 2.1 ± 0.3 * | 0.002 |
Variable | Men | Women | Combined | p Value |
---|---|---|---|---|
Average Power (W) | ||||
30% 1-RM | 626 (519, 733) | 299 (192, 407) | 463 (387, 539) | L = 0.001 |
60% 1-RM | 822 (719, 925) | 388 (285, 490) | 605 (532, 678) † | S = 0.001 # |
90% 1-RM | 646 (590, 702) | 320 (264, 377) | 483 (444, 523) ‡ | L × S = 0.134 |
Peak Power (W) | ||||
30% 1-RM | 919 (759, 1079) * | 442 (282, 602) | 681 (567, 793) | L = 0.001 |
60% 1-RM | 1247 (1097, 1396) †,* | 569 (419, 718) † | 908 (802, 1013) | S = 0.001 |
90% 1-RM | 927 (845, 1009) ‡,* | 541 (459, 623) | 734 (676, 792) | L × S = 0.016 |
Average Velocity (m·s−1) | ||||
30% 1-RM | 1.09 (1.02, 1.15) * | 0.89 (0.82, 0.96) | 0.99 (0.94, 1.04) | L = 0.001 |
60% 1-RM | 0.73 (0.67, 0.79) † | 0.67 (0.61, 0.73) † | 0.70 (0.65, 0.74) | S = 0.001 |
90% 1-RM | 0.38 (0.33, 0.45) †,‡ | 0.38 (0.32, 0.44) †,‡ | 0.38 (0.34, 0.43) | L × S = 0.002 |
Peak Velocity (m·s−1) | ||||
30% 1-RM | 1.59 (1.48, 1.70) * | 1.32 (1.21, 1.42) | 1.45 (1.38, 1.53) | L = 0.001 |
60% 1-RM | 1.10 (1.01, 1.19) †,* | 0.98 (0.89, 1.07) † | 1.04 (0.98, 1.10) | S = 0.052 |
90% 1-RM | 0.57 (0.45, 0.68) †,‡ | 0.63 (0.52, 0.75) †,‡ | 0.60 (0.52, 0.68) | L × S = 0.001 |
Variable | Men | Women | Combined | p Value | |
---|---|---|---|---|---|
Average Power (W·kg·FFM−1) | |||||
30% 1-RM | 9 (6, 11) | 6 (4, 8) | 8 (6, 9) | L = 0.001 | |
60% 1-RM | 11 (10, 13) | 8 (7, 10) | 10 (9, 11) † | S = 0.003 # | |
90% 1-RM | 9 (8, 10) | 7 (6, 8) | 8 (7, 8) ‡ | L × S = 0.618 | |
Peak Power (W·kg·FFM−1) | |||||
30% 1-RM | 13 (10, 16) | 10 (7, 12) | 11 (9, 13) | L = 0.001 | |
60% 1-RM | 17 (15, 19) | 12 (10, 14) | 15 (13, 16) † | S = 0.006 # | |
90% 1-RM | 13 (11, 14) | 12 (10, 13) | 12 (11, 13) ‡ | L × S = 0.121 | |
Average Velocity (m·s−1·kg·FFM−1) | |||||
30% 1-RM | 0.015 (0.013, 0.017) | 0.019 (0.017, 0.021) | 0.017 (0.016, 0.019) | L = 0.001 | |
60% 1-RM | 0.010 (0.009, 0.012) | 0.014 (0.013, 0.016) | 0.012 (0.011, 0.013) † | S = 0.003 # | |
90% 1-RM | 0.006 (0.004, 0.007) | 0.008 (0.007, 0.010) | 0.007 (0.006,0.008) †,‡ | L × S = 0.279 | |
Peak Velocity (m·s−1·kg·FFM−1) | |||||
30% 1-RM | 0.022 (0.019, 0.026) | 0.028 (0.025, 0.031) | 0.025 (0.023, 0.028) | L = 0.001 | |
60% 1-RM | 0.016 (0.013, 0.018) | 0.021 (0.019, 0.023) | 0.018 (0.017, 0.020) † | S = 0.004 # | |
90% 1-RM | 0.008 (0.006, 0.011) | 0.014 (0.011, 0.016) | 0.011 (0.009, 0.013) †,‡ | L × S = 0.973 |
Variable | Men | Women | Combined | p Value |
---|---|---|---|---|
Average Power (W·FFMI−1) | ||||
30% 1-RM | 27 (22, 32) | 17 (12, 22) | 22 (18, 25) | L = 0.001 |
60% 1-RM | 35 (31, 39) | 22 (18, 26] | 28 (25, 31) † | S = 0.001 # |
90% 1-RM | 28 (25, 30) | 18 (16, 20] | 23 (21, 25) ‡ | L × S = 0.400 |
Peak Power (W·FFMI−1) | ||||
30% 1-RM | 39 (32, 47) | 25 (17, 32) | 32 (27, 37) | L = 0.001 |
60% 1-RM | 53 (47, 59) † | 32 (26, 38) † | 42 (38, 47) † | S = 0.001 # |
90% 1-RM | 40 (36, 44) ‡ | 30 (26, 34) | 35 (32, 38) ‡ | L × S = 0.060 |
Average Velocity (m·s−1·FFMI−1) | ||||
30% 1-RM | 0.047 (0.042, 0.052) | 0.050 (0.045, 0.055) | 0.049 (0.045, 0.052) | L = 0.001 |
60% 1-RM | 0.031 (0.027, 0.035) | 0.038 (0.034, 0.041) | 0.034 (0.032, 0.037) † | S = 0.089 |
90% 1-RM | 0.017 (0.013, 0.021) | 0.021 (0.017, 0.025) | 0.019 (0.016, 0.022) †,‡ | L × S = 0.479 |
Peak Velocity (m·s−1·FFMI−1) | ||||
30% 1-RM | 0.069 (0.061, 0.077) | 0.074 (0.066, 0.082) | 0.071 (0.066, 0.077) | L = 0.001 |
60% 1-RM | 0.048 (0.041, 0.054) | 0.055 (0.049, 0.061) | 0.051 (0.047, 0.056) † | S = 0.079 |
90% 1-RM | 0.025 (0.018, 0.032) | 0.036 (0.029, 0.043) | 0.030 (0.025, 0.036) †,‡ | L × S = 0.312 |
Variable | Value | FFM | CDL 1-RM |
---|---|---|---|
Fat Free Mass (FFM) | r | 0.965 | |
p | 0.000 * | ||
CDL 1-RM | r | 0.965 | |
p | 0.000 * | ||
Average Power 30% 1-RM | r | 0.811 | 0.892 |
p | 0.000 * | 0.000 * | |
Average Power 60% 1-RM | r | 0.931 | 0.958 |
p | 0.000 * | 0.000 * | |
Average Power 90% 1-RM | r | 0.911 | 0.870 |
p | 0.000 * | 0.000 * | |
Peak Power 30% 1-RM | r | 0.811 | 0.898 |
p | 0.000 * | 0.000 * | |
Peak Power 60% 1-RM | r | 0.938 | 0.960 |
p | 0.000 * | 0.000 * | |
Peak Power 90% 1-RM | r | 0.835 | 0.782 |
p | 0.000 * | 0.000 * | |
Average Velocity 30% 1-RM | r | 0.558 | 0.554 |
p | 0.016 * | 0.017 * | |
Average Velocity 60% 1-RM | r | 0.311 | 0.321 |
p | 0.209 | 0.194 | |
Average Velocity 90% 1-RM | r | −0.229 | −0.392 |
p | 0.631 | 0.107 | |
Peak Velocity 30% 1-RM | r | 0.526 | 0.545 |
p | 0.025 * | 0.019 * | |
Peak Velocity 60% 1-RM | r | 0.389 | 0.382 |
p | 0.111 | 0.118 | |
Peak Velocity 90% 1-RM | r | −0.481 | −0.618 |
p | 0.043 * | 0.006 * |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jones, M.T.; Jagim, A.R.; Haff, G.G.; Carr, P.J.; Martin, J.; Oliver, J.M. Greater Strength Drives Difference in Power between Sexes in the Conventional Deadlift Exercise. Sports 2016, 4, 43. https://doi.org/10.3390/sports4030043
Jones MT, Jagim AR, Haff GG, Carr PJ, Martin J, Oliver JM. Greater Strength Drives Difference in Power between Sexes in the Conventional Deadlift Exercise. Sports. 2016; 4(3):43. https://doi.org/10.3390/sports4030043
Chicago/Turabian StyleJones, Margaret T., Andrew R. Jagim, G. Gregory Haff, Patrick J. Carr, Joel Martin, and Jonathan M. Oliver. 2016. "Greater Strength Drives Difference in Power between Sexes in the Conventional Deadlift Exercise" Sports 4, no. 3: 43. https://doi.org/10.3390/sports4030043
APA StyleJones, M. T., Jagim, A. R., Haff, G. G., Carr, P. J., Martin, J., & Oliver, J. M. (2016). Greater Strength Drives Difference in Power between Sexes in the Conventional Deadlift Exercise. Sports, 4(3), 43. https://doi.org/10.3390/sports4030043