A Systematic Review and Meta-Analysis on Aerobic Fitness Dynamics in Post-COVID-19 Athletes: Implications in the Return-to-Play Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Assessment of Risk of Bias
2.4. Data Extraction and Analysis
3. Results
Source | Origins | Study Design | Nº Infected/All Athletes | CPET Evaluation | Primary Analytic Comparisons | Quality Score (%) a |
---|---|---|---|---|---|---|
Anastasio et al., 2021 [40] | Italy | Case–control study | 13/26 | Treadmill | Athletes recovered from mild–moderate COVID-19 were matched with elite cross-country skiers without SARS-CoV-2 infection | 79.3 |
Babity et al., 2022 [27] | Hungary | Cross-sectional study | 183/183 | Treadmill | CPET comparisons were performed in 62 asymptomatic elite athletes between examination before and after the SARS-CoV-2 infection | 82.8 |
Barker-Davies et al., 2023 [5] | United Kingdom | Case study | 1/1 | Cycle ergometer | CPET comparisons between 15 months prior and 5 months post-COVID-19 diagnosis | NA b |
Brito et al., 2023 [39] | Brazil | Cross-sectional study | 46/46 | Treadmill | CPET comparisons between symptomatic and asymptomatic after the SARS-CoV-2 infection in all study participants | 82.8 |
Brown et al., 2022 [16] | USA | Case study | 1/1 | Cycle ergometer | CPET comparisons between 6 days before and 19 weeks after COVID-19 diagnosis | NA b |
Cavigli et al., 2021 [32] | Italy | Prospective study | 90/90 | Cycle ergometer | CPET comparison between asymptomatic vs. symptomatic individuals | 79.3 |
Csulak et al., 2021 [28] | Hungary | Prospective study | 14/46 | Treadmill | CPET comparisons between infected and non-infected swimmers on pre- and post-COVID-19 pandemic | 79.3 |
Daems et al., 2022 [21] | Netherlands | Case study | 1/1 | No information | Descriptive | NA b |
Fikenzer et al., 2021 [22] | Germany | Cross-sectional study | 8/12 | Cycle ergometer | CPET comparisons between the summer 2020 (t0) preparation phase and either after SARS-CoV-2 infection in winter 2020 or during routine control in winter 2020 (t1). | 79.3 |
Keller et al., 2023 [33] | Germany | Cross-sectional study | 157/1200 | Treadmill or cycle ergometer | CPET comparisons of athletes with and without former COVID-19 infection | 82.8 |
Komici et al., 2021 [6] | Italy | Case–control study | 24/35 | Treadmill | CPET comparisons of COVID-19 athletes and a group of competitive athletes following previous physical capacity evaluation after summer holidays and before starting training program tested negative for COVID-19 | 72.4 |
Maestrini et al., 2023 [34] | Italy | Cross-sectional study | 219/219 | Cycle ergometer | Descriptive | 76.7 |
Maestrini et al., 2022 [35] | Italy | Cross-sectional study | 47/47 | Cycle ergometer | Descriptive | 82.8 |
Milovancev et al., 2021 [36] | Serbia | Cross-sectional study | 16/16 | Treadmill | Descriptive | 72.4 |
Mitrani et al., 2021 [37] | USA | Cross-sectional study | 174/174 | Treadmill | Descriptive | 72.4 |
Moulson et al., 2022 [7] | USA | Prospective cohort study | 21/63 | Treadmill | Post-COVID athletes were compared with a matched reference group of healthy athletes without COVID-19 infection | 83.9 |
Nedeljkovic et al., 2021 [8] | Serbia | Case study | 1/1 | Treadmill | CPET comparisons between 2-week and 3-month follow-up after infection with testing performed before infection | NA b |
Parpa et al., 2022 [9] | Cyprus | Cross-sectional study | 21/21 | Cycle ergometer | CPET comparisons between the same athletes before and after SARS-CoV-2 infection | 72.4 |
Rao et al., 2022 [10] | USA | Case study | 1/1 | Cycle ergometer | CPET comparisons between before and after SARS-CoV-2 infection | NA b |
Rudofker et al., 2022 [11] | USA | Case study | 1/1 | Cycle ergometer | Descriptive | NA b |
Śliż et al., 2022 [25]; Śliż et al., 2022 [29]; Śliż et al., 2023 [30] | Poland | Cross-sectional study | 49/49 | Treadmill or cycle ergometer | CPET comparisons between before and after SARS-CoV-2 infection | 82.8 |
Stavrou et al., 2023 [38] | Greece | Cross-sectional study | 20/40 | Treadmill | CPET comparisons between previously infected with SARS-CoV-2 versus non-infected athletes | 79.3 |
Stojmenovic et al., 2023 [23] | Serbia | Prospective study | 220/220 | Treadmill | CPET comparisons among the three strains of the SARS-CoV-2 (Wuhan, Delta, or Omicron) | 75.9 |
Vollrath et al., 2022 [12] | Germany | Prospective study | 60/60 | Cycle ergometer | CPET comparisons between t0 (4.1 ± 3.8 months after infection) and t1 three months later (3.3 ± 0.5 months) | 79.3 |
Wernhart et al., 2023 [13] | Germany | Cross-sectional study | 83/83 | Cycle ergometer | CPET comparisons between elite and recreational athletes who reported persistent symptoms of COVID-19 infection | 82.8 |
Source | Age (Years) a | Male Sex N (%) | BMI (Kg/m2) a | Sport Modality | Timing of Evaluation Since Infection (Days) a,b | O2max Post-Infection (mL/kg/min) a | VO2 at AT Post-Infection (mL/kg/min) a,d |
---|---|---|---|---|---|---|---|
Anastasio et al., 2021 [40] | Cases: 21 ± 5 Controls: 20 ± 4 | Cases: 10 (77) Controls: 8 (62) | Cases: 22 ± 2 Controls: 21 ± 1 | Cross-country skiing | 28–42 | 56.9 (48.5–64.3) | 48.8 (43.5–56.0) |
Babity et al., 2022 [27] c | 20 (17–24) | 122 (74) | No information | Basketball; ice hockey; water polo; wrestling; swimming; running; football; handball; others | 94 (67–130) | 50.9 ± 6.0 | 44.2 ± 5.0 |
Barker-Davies et al., 2023 [5] | 30 | 1 (100) | No information | Distance running | 35 | 59 | 27.0 |
Brito et al., 2023 [39] | 30 ± 9 | 26 (57) | 26 ± 5 | Soccer; CrossFit; rugby; athletics; para athletic; combat sports; swimming; volleyball; rowing; others | 14–252 | 41.1 ± 8.7 | 23.5 ± 6.2 |
Brown et al., 2022 [16] | 23 | 1 (100) | No information | No information | 133 | 38.8 | No information |
Cavigli et al., 2021 [32] | 24 ± 10 | 64 (71) | 23 ± 3 | Endurance; mixed; power; skill | No information | 39.0 ± 6.6 | No information |
Csulak et al., 2021 [28] | Cases: 23 ± 4 Non-infected: 24 ± 4 | Cases: 7 (50) Non-infected: 18 (56) | No information | Swimming | 10–14 | Female: 52.9 ± 4.1 Male: 56.5 ± 4.9 | No information |
Daems et al., 2022 [21] | 21 | 1 (100) | No information | Soccer | 270 | 45 | No information |
Fikenzer et al., 2021 [22] | Cases: 27 ± 4 Non-infected: 22 ± 3 | 12 (100) | Cases: ~27 (97 kg; 191 cm) Non-infected: ~26 (96 kg; 194 cm) | Handball | 20 | Cases: ~39.2 (3790 ± 513 mL/min; 96.7 ± 5.4 kg) | No information |
Keller et al., 2023 [33] | Cases: 23 ± 7Non-infected: 22 ± 12 | Cases: 122 (78) Controls: 667 (64) | Cases: 24 (22–26) Non-infected: 22 (20–24) | Several | No information | 43.4 (38.3–48.0) | NA |
Komici et al., 2021 [6] | Cases: 24 (20–26) Non-infected: 21 (10–24) | 35 (100) | Cases: 23 (22–24) Non-infected: 23 (22–26) | Soccer | 10–30 | 50.1 (47.7–51.6) | No information |
Maestrini et al., 2023 [34] | 23 (19–27) | 129 (59) | 23 (22–25) | Endurance; mixed power; skill | 10 (6–17) | 39 ± 8 | No information |
Maestrini et al., 2022 [35] | 26 ± 4 | 32 (68) | 24 ± 3 | Endurance; power; mixed | 9 (6–13) | 42 ± 6 | 22 ± 4 |
Milovancev et al., 2021 [36] | 24 ± 5 | 16 (100) | 24 ± 2 | Volleyball | 20 ± 5 | 44.1 ± 3.4 | 40.8 ± 3.9 |
Mitrani et al., 2021 [37] | 21 (19–22) | 122 (70) | No information | Baseball; football; basketball; volleyball; soccer; swimming; others | 19 (16–25) | 37.7 ± 8.0 | No information |
Moulson et al., 2022 [7] | Cases: 22 ± 4 Non-infected: 22 ± 4 | Cases: 12 (57) Non-infected: 24 (51) | Cases: 23 ± 3 Non-infected: 24 ± 3 | Endurance; team sport; mixed | 90 ± 60 | 44.6 ± 9.1 | 35.7 ± 11.3 |
Nedeljkovic et al., 2021 [8] | 32 | No information | No information | No information | 15 | 32.2 | 23.1 |
Parpa et al., 2022 [9] | 24 ± 6 | 21 (100) | ~23 (74 ± 5 kg; 178 ± 5 cm) | Soccer | 60 | 54.3 ± 5.2 | 36.9 ± 5.2 |
Rao et al., 2022 [10] | 18 | 1 (100) | No information | Rowing | No information | 28 | No information |
Rudofker et al., 2022 [11] | 56 | 1 (100) | No information | No information | 270 | 33.1 | No information |
Śliż et al., 2022 [25]; Śliż et al., 2022 [29]; Śliż et al., 2023 [30] | 40 ± 8 | 43 (88) | 24 ± 3 | Endurance | 155 ± 82 | 45 ± 7 | 32 ± 6 |
Stavrou et al., 2023 [38] | Cases: 25 ± 4 Non-infected: 25 ± 4 | Cases: 20 (100) Non-infected: 20 (100) | Cases: 23 ± 2 Non-infected: 24 ± 1 | Soccer | 2 | 55.7 ± 4.4 | No information |
Stojmenovic et al., 2023 [23] | Soccer: 23 ± 5 Basketball: 25 ± 5 | No information | No information | Soccer; basketball | 22 | Wuhan: 47.6 ± 5.1 Delta: 47.9 ± 4.6 Omicron: 50.6 ± 4.1 | Wuhan: 26.2 ± 4.7 Delta: 24.9 ± 3.7 Omicron: 30.4 ± 4.4 |
Vollrath et al., 2022 [12] | 35 ± 12 | 34 (57) | 24 ± 4 | Several | 120 ± 90 | t0: Symptoms free: 44.7 ± 7.7 Persistent symptoms: 33.7±9.9 | No information |
Wernhart et al., 2023 [13] | Elite: 22 ± 4 Recreational: 35 ± 13 | Elite: 29 (67) Recreational: 21 (53) | Elite: 24 ± 2 Recreational: 24 ± 4 | Football; handball; endurance; badminton; swimming | 180 | Elite: 44.8 ± 6.8 | No information |
Comparisons | Mean ± SD | p-Value a | Post Hoc Test (Tukey HRD) | Mean Difference (95% CI) |
---|---|---|---|---|
Without infection | 49.54 ± 8.56 | 0.03 | --- | 1 b |
Post-infection | 43.90 ± 7.92 | 5.64 (0.52–10.76) | ||
Without infection | 49.54 ± 8.56 | 0.06 | 1 b | 1 b |
Asymptomatic | 50.29 ± 5.11 | 0.99 | −0.75 (−13.01–11.51) | |
Mild symptoms | 43.70 ± 6.11 | 0.27 | 5.84 (−2.74–14.44) | |
Persistent symptoms | 41.55 ± 9.79 | 0.07 | 8.00 (−0.38–16.37) | |
Without infection | 49.54 ± 8.56 | 0.05 | 1 b | 1 b |
Asymptomatic or Mild symptoms | 45.45 ± 6.43 | 0.36 | 4.09 (−3.14–11.32) | |
Persistent symptoms | 41.55 ± 9.79 | 0.04 | 7.99 (0.31–15.68) | |
Without infection | 49.54 ± 8.56 | 0.02 | 1 b | 1 b |
Asymptomatic | 50.29 ± 5.11 | 0.98 | 0.75 (−11.79–10.29) | |
Symptomatic | 42.57 ± 8.13 | 0.03 | 6.97 (0.54–13.39) | |
Asymptomatic | 50.29 ± 5.11 | 0.08 | ---- | 1 b |
Symptomatic | 42.57 ± 8.13 | 7.71 (−1.02–16.45) | ||
Asymptomatic | 50.29 ± 5.11 | 0.18 | 1 b | 1 b |
Mild symptoms | 43.70 ± 6.11 | 0.34 | 6.60 (−4.96–18.15) | |
Persistent symptoms | 41.55 ± 9.79 | 0.16 | 8.75 (−2.68–20.17) |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACE | Angiotensin-converting enzyme |
ACE2 | Angiotensin-converting enzyme 2 |
ACSM | American College of Sports Medicine |
AT | Anaerobic threshold |
ATP | Adenosine triphosphate |
BMI | Body mass index |
CI | Confidence interval |
CPET | Cardiopulmonary exercise test |
IQR | Interquartile range |
PCR | Polymerase chain reaction |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-analysis |
RAS | Renin–angiotensin system |
S | Spike protein |
SD | Standard deviation |
SNP | Single-nucleotide polymorphism |
STROBE | Strengthening the Reporting of Observational Studies in Epidemiology |
O2max | Maximal oxygen uptake |
References
- World Health Organization (WHO). Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/?mapFilter=cases (accessed on 20 September 2024).
- Ostolin, T.L.V.D.P.; Miranda, R.A.D.R.; Abdala, C.V.M. Evidence map on post-acute COVID-19 sequelae and rehabilitation: Update as of July 2022. Rev. Panam. Salud Publica 2023, 47, e30. [Google Scholar] [PubMed]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.N.; Shalev, D.; Sehrawat, T.S.; et al. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef]
- Venkatesan, P. NICE guideline on long COVID. Lancet Respir. Med. 2021, 9, 129. [Google Scholar] [CrossRef] [PubMed]
- Barker-Davies, R.M.; Ladlow, P.; Chamley, R.; Nicol, E.; Holdsworth, D.A. Reduced athletic performance post-COVID-19 is associated with reduced anaerobic threshold. BMJ Case Rep. 2023, 16, e250191. [Google Scholar] [CrossRef] [PubMed]
- Komici, K.; Bianco, A.; Perrotta, F.; Dello Iacono, A.; Bencivenga, L.; D’Agnano, V.; Rocca, A.; Bianco, A.; Rengo, G.; Guerra, G. Clinical Characteristics, Exercise Capacity and Pulmonary Function in Post-COVID-19 Competitive Athletes. J. Clin. Med. 2021, 10, 3053. [Google Scholar] [CrossRef]
- Moulson, N.; Gustus, S.K.; Scirica, C.; Petek, B.J.; Vanatta, C.; Churchill, T.W.; Guseh, J.S.; Baggish, A.; Wasfy, M.M. Diagnostic evaluation and cardiopulmonary exercise test findings in young athletes with persistent symptoms following COVID-19. Br. J. Sports Med. 2022, 18, 105157. [Google Scholar] [CrossRef] [PubMed]
- Nedeljkovic, I.P.; Giga, V.; Ostojic, M.; Djordjevic-Dikic, A.; Stojmenovic, T.; Nikolic, I.; Dikic, N.; Nedeljkovic-Arsenovic, O.; Maksimovic, R.; Dobric, M.; et al. Focal Myocarditis after Mild COVID-19 Infection in Athletes. Diagnostics 2021, 11, 1519. [Google Scholar] [CrossRef]
- Parpa, K.; Michaelides, M. Aerobic capacity of professional soccer players before and after COVID-19 infection. Sci. Rep. 2022, 12, 11850. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.; Peritz, D.C.; Systrom, D.; Lewine, K.; Cornwell, W.K.; Hsu, J.J. Orthostatic and Exercise Intolerance in Recreational and Competitive Athletes With Long COVID. JACC Case Rep. 2022, 4, 1119–1123. [Google Scholar] [CrossRef]
- Rudofker, E.W.; Parker, H.; Cornwell, W.K., 3rd. An Exercise Prescription as a Novel Management Strategy for Treatment of Long COVID. JACC Case Rep. 2022, 4, 1344–1347. [Google Scholar] [CrossRef]
- Vollrath, S.; Bizjak, D.A.; Zorn, J.; Matits, L.; Jerg, A.; Munk, M.; Schulz, S.V.W.; Kirsten, J.; Schellenberg, J.; Steinacker, J.M.; et al. Recovery of performance and persistent symptoms in athletes after COVID-19. PLoS ONE 2022, 17, e0277984. [Google Scholar] [CrossRef] [PubMed]
- Wernhart, S.; Weihe, E.; Totzeck, M.; Balcer, B.; Rassaf, T.; Luedike, P. Cardiopulmonary Profiling of Athletes with Post-Exertional Malaise after COVID-19 Infection-A Single-Center Experience. J. Clin. Med. 2023, 12, 4348. [Google Scholar] [CrossRef] [PubMed]
- Alkodaymi, M.S.; Omrani, O.A.; Fawzy, N.A.; Shaar, B.A.; Almamlouk, R.; Riaz, M.; Obeidat, M.; Obeidat, Y.; Gerberi, D.; Taha, R.M.; et al. Prevalence of post-acute COVID-19 syndrome symptoms at different follow-up periods: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2022, 28, 657–666. [Google Scholar] [CrossRef]
- Petek, B.J.; Moulson, N.; Baggish, A.L.; Kliethermes, S.A.; Patel, M.R.; Churchill, T.W.; Harmon, K.G.; Drezner, J.A.; ORCCA Investigators. Prevalence and clinical implications of persistent or exertional cardiopulmonary symptoms following SARS-CoV-2 infection in 3597 collegiate athletes: A study from the Outcomes Registry for Cardiac Conditions in Athletes (ORCCA). Br. J. Sports Med. 2022, 56, 913–918. [Google Scholar] [CrossRef]
- Brown, K.D.; Gilliland, T.J.; Reynolds, M.; McShan, E.E.; Driver, S. Reduction in cardiopulmonary and cognitive performance after COVID-19 in a competitive athlete. In Baylor University Medical Center Proceedings; Taylor & Francis: Abingdon, UK, 2022; Volume 36, pp. 75–77. [Google Scholar]
- Wilson, M.G.; Hull, J.H.; Rogers, J.; Pollock, N.; Dodd, M.; Haines, J.; Harris, S.; Loosemore, M.; Malhotra, A.; Pieles, G.; et al. Cardiorespiratory considerations for return-to-play in elite athletes after COVID-19 infection: A practical guide for sport and exercise medicine physicians. Br. J. Sports Med. 2020, 54, 1157–1161. [Google Scholar] [CrossRef]
- Guazzi, M.; Adams, V.; Conraads, V.; Halle, M.; Mezzanim, A.; Vanheesm, L.; Arena, R.; Fletcher, G.F.; Forman, D.E.; Kitzman, D.W.; et al. EACPR/AHA Scientific Statement. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation 2012, 126, 2261–2274. [Google Scholar] [CrossRef] [PubMed]
- Tran, D. Cardiopulmonary Exercise Testing. Methods Mol. Biol. 2018, 1735, 285–295. [Google Scholar]
- Bye, A.; Klevjer, M.; Ryeng, E.; Silva, G.J.J.D.; Moreira, J.B.N.; Stensvold, D.; Wisløff, U. Identification of novel genetic variants associated with cardiorespiratory fitness. Prog. Cardiovasc. Dis. 2020, 63, 341–349. [Google Scholar] [CrossRef]
- Daems, J.J.N.; van Hattum, J.C.; Pinto, Y.M.; Jørstad, H.T. Case report: The role of multimodal imaging to optimize the timing of return to sports in an elite athlete with persistent COVID-19 myocardial inflammation. Eur. Heart J. Case Rep. 2022, 6, ytac336. [Google Scholar] [CrossRef]
- Fikenzer, S.; Kogel, A.; Pietsch, C.; Lavall, D.; Stöbe, S.; Rudolph, U.; Laufs, U.; Hepp, P.; Hagendorff, A. SARS-CoV2 infection: Functional and morphological cardiopulmonary changes in elite handball players. Sci. Rep. 2021, 11, 17798. [Google Scholar] [CrossRef] [PubMed]
- Stojmenovic, D.; Stojmenovic, T.; Andjelkovic, M.; Trunic, N.; Dikic, N.; Kilibarda, N.; Nikolic, I.; Nedeljkovic, I.; Ostojic, M.; Purkovic, M.; et al. The Influence of Different SARS-CoV-2 Strains on Changes in Maximal Oxygen Consumption, Ventilatory Efficiency and Oxygen Pulse of Elite Athletes. Diagnostics 2023, 13, 1574. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, D.S.; Reiman, M.P.; Lehecka, B.J.; Naylor, A. What performance characteristics determine elite versus nonelite athletes in the same sport? Sports Health 2013, 5, 542–547. [Google Scholar] [CrossRef] [PubMed]
- Śliż, D.; Wiecha, S.; Gąsior, J.S.; Kasiak, P.S.; Ulaszewska, K.; Postuła, M.; Małek, L.A.; Mamcarz, A. The Influence of Nutrition and Physical Activity on Exercise Performance after Mild COVID-19 Infection in Endurance Athletes-CESAR Study. Nutrients 2022, 14, 5381. [Google Scholar] [CrossRef]
- Cuschieri, S. The STROBE guidelines. Saudi J. Anaesth. 2019, 13, S31–S34. [Google Scholar] [CrossRef]
- Babity, M.; Zamodics, M.; Konig, A.; Kiss, A.R.; Horvath, M.; Gregor, Z.; Rakoczi, R.; Kovacs, E.; Fabian, A.; Tokodi, M.; et al. Cardiopulmonary examinations of athletes returning to high-intensity sport activity following SARS-CoV-2 infection. Sci. Rep. 2022, 12, 21686. [Google Scholar] [CrossRef]
- Csulak, E.; Petrov, Á.; Kováts, T.; Tokodi, M.; Lakatos, B.; Kovács, A.; Staub, L.; Suhai, F.I.; Szabó, E.L.; Dohy, Z.; et al. The Impact of COVID-19 on the Preparation for the Tokyo Olympics: A Comprehensive Performance Assessment of Top Swimmers. Int. J. Environ. Res. Public. Health 2021, 8, 9770. [Google Scholar] [CrossRef]
- Śliż, D.; Wiecha, S.; Ulaszewska, K.; Gąsior, J.S.; Lewandowski, M.; Kasiak, P.S.; Mamcarz, A. COVID-19 and athletes: Endurance sport and activity resilience study-CAESAR study. Front. Physiol. 2022, 13, 1078763. [Google Scholar] [CrossRef]
- Śliż, D.; Wiecha, S.; Gąsior, J.S.; Kasiak, P.S.; Ulaszewska, K.; Lewandowski, M.; Barylski, M.; Mamcarz, A. Impact of COVID-19 Infection on Cardiorespiratory Fitness, Sleep, and Psychology of Endurance Athletes-CAESAR Study. J. Clin. Med. 2023, 12, 3002. [Google Scholar] [CrossRef]
- Lippincott, W. Wilkins7. Fitness Categories for Maximal Aerobic Power for Men and Women by Age updated from 2009 to 2013. In ACSM’s Health-Related Physical Fitness Assessment Manual, 5th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2019. [Google Scholar]
- Cavigli, L.; Frascaro, F.; Turchini, F.; Mochi, N.; Sarto, P.; Bianchi, S.; Parri, A.; Carraro, N.; Valente, S.; Focardi, M.; et al. A prospective study on the consequences of SARS-CoV-2 infection on the heart of young adult competitive athletes: Implications for a safe return-to-play. Int. J. Cardiol. 2021, 336, 130–136. [Google Scholar] [CrossRef]
- Keller, K.; Friedrich, O.; Treiber, J.; Quermann, A.; Friedmann-Bette, B. Former SARS-CoV-2 Infection Was Related to Decreased VO2 Peak and Exercise Hypertension in Athletes. Diagnostics 2023, 13, 1792. [Google Scholar] [CrossRef]
- Maestrini, V.; Penza, M.; Filomena, D.; Birtolo, L.I.; Monosilio, S.; Lemme, E.; Squeo, M.R.; Mango, R.; Di Gioia, G.; Serdoz, A.; et al. Low prevalence of cardiac abnormalities in competitive athletes at return-to-play after COVID-19. J. Sci. Med. Sport. 2023, 26, 8–13. [Google Scholar] [CrossRef]
- Maestrini, V.; Filomena, D.; Birtolo, L.I.; Serdoz, A.; Fiore, R.; Tatangelo, M.; Lemme, E.; Squeo, M.R.; Mango, R.; Di Gioia, G.; et al. Systematic Cardiovascular Screening in Olympic Athletes before and after SARS-CoV-2 Infection. J. Clin. Med. 2022, 11, 3499. [Google Scholar] [CrossRef] [PubMed]
- Milovancev, A.; Avakumovic, J.; Lakicevic, N.; Stajer, V.; Korovljev, D.; Todorovic, N.; Bianco, A.; Maksimovic, N.; Ostojic, S.; Drid, P. Cardiorespiratory Fitness in Volleyball Athletes Following a COVID-19 Infection: A Cross-Sectional Study. Int. J. Environ. Res. Public. Health 2021, 18, 4059. [Google Scholar] [CrossRef]
- Mitrani, R.D.; Alfadhli, J.; Lowery, M.H.; Best, T.M.; Hare, J.M.; Fishman, J.; Dong, C.; Siegel, Y.; Scavo, V.; Basham, G.J.; et al. Utility of exercise testing to assess athletes for post COVID-19 myocarditis. Am. Heart J. Plus 2022, 14, 100125. [Google Scholar] [CrossRef]
- Stavrou, V.T.; Kyriaki, A.; Vavougios, G.D.; Fatouros, I.G.; Metsios, G.S.; Kalabakas, K.; Karagiannis, D.; Daniil, Z.; Gourgoulianis, K.I.; Βasdekis, G. Athletes with mild post-COVID-19 symptoms experience increased respiratory and metabolic demands: A cross-sectional study. Sports Med. Health Sci. 2023, 5, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Brito, G.M.; do Prado, D.M.L.; Rezende, D.A.; de Matos, L.D.N.J.; Loturco, I.; Vieira, M.L.C.; Pinto, A.L.S.P.; Alô, R.O.B.; Albuquerque, L.C.A.; Bianchini, F.R.; et al. The utility of cardiopulmonary exercise testing in athletes and physically active individuals with or without persistent symptoms after COVID-19. Front. Med. 2023, 10, 1128414. [Google Scholar] [CrossRef]
- Anastasio, F.; LA Macchia, T.; Rossi, G.; D’Abbondanza, M.; Curcio, R.; Vaudo, G.; Pucci, G. Mid-term impact of mild-moderate COVID-19 on cardiorespiratory fitness in élite athletes. J. Sports Med. Phys. Fit. 2022, 62, 1383–1390. [Google Scholar] [CrossRef] [PubMed]
- Nieman, D.C.; Henson, D.A.; Austin, M.D.; Sha, W. Upper respiratory tract infection is reduced in physically fit and active adults. Br. J. Sports Med. 2011, 45, 987–992. [Google Scholar] [CrossRef]
- Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020, 8, 420–422. [Google Scholar] [CrossRef] [PubMed]
- Lopes, L.R.; Miranda, V.A.; Goes, R.A.; Souza, G.G.; Souza, G.R.; Rocha, J.C.; Cossich, V.R.; Perini, J.A. Repercussions of the COVID-19 pandemic on athletes: A cross-sectional study. Biol. Sport. 2021, 38, 703–711. [Google Scholar] [CrossRef]
- Gonzales, T.I.; Jeon, J.Y.; Lindsay, T.; Westgate, K.; Perez-Pozuelo, I.; Hollidge, S.; Wijndaele, K.; Rennie, K.; Forouhi, N.; Griffin, S.; et al. Resting heart rate is a population-level biomarker of cardiorespiratory fitness: The Fenland Study. PLoS ONE 2023, 18, e0285272. [Google Scholar] [CrossRef]
- Nieman, D.C. Risk of upper respiratory tract infection in athletes: An epidemiologic and immunologic perspective. J. Athl. Train. 1997, 32, 344–349. [Google Scholar] [PubMed]
- Nieman, D.C.; Nehlsen-Cannarella, S.L.; Markoff, P.A.; Balk-Lamberton, A.J.; Yang, H.; Chritton, D.B.; Lee, J.W.; Arabatzis, K. The effects of moderate exercise training on natural killer cells and acute upper respiratory tract infections. Int. J. Sports Med. 1990, 11, 467–473. [Google Scholar] [CrossRef]
- Clavario, P.; De Marzo, V.; Lotti, R.; Barbara, C.; Porcile, A.; Russo, C.; Beccaria, F.; Bonavia, M.; Bottaro, L.C.; Caltabellotta, M.; et al. Cardiopulmonary exercise testing in COVID-19 patients at 3 months follow-up. Int. J. Cardiol. 2021, 340, 113–118. [Google Scholar] [CrossRef]
- Hull, J.H.; Wootten, M.; Moghal, M.; Heron, N.; Martin, R.; Walsted, E.S.; Biswas, A.; Loosemore, M.; Elliott, N.; Ranson, C. Clinical patterns, recovery time and prolonged impact of COVID-19 illness in international athletes: The UK experience. Br. J. Sports Med. 2022, 56, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Vonbank, K.; Lehmann, A.; Bernitzky, D.; Gysan, M.R.; Simon, S.; Schrott, A.; Burtscher, M.; Idzko, M.; Gompelmann, D. Predictors of Prolonged Cardiopulmonary Exercise Impairment After COVID-19 Infection: A Prospective Observational Study. Front. Med. 2021, 8, 773788. [Google Scholar] [CrossRef]
- Martinez, M.W.; Tucker, A.M.; Bloom, O.J.; Green, G.; DiFiori, J.P.; Solomon, G.; Phelan, D.; Kim, J.H.; Meeuwisse, W.; Sills, A.K.; et al. Prevalence of Inflammatory Heart Disease Among Professional Athletes With Prior COVID-19 Infection Who Received Systematic Return-to-Play Cardiac Screening. JAMA Cardiol. 2021, 6, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Durstenfeld, M.S.; Sun, K.; Tahir, P.; Peluso, M.J.; Deeks, S.G.; Aras, M.A.; Grandis, D.J.; Long, C.S.; Beatty, A.; Hsue, P.Y. Use of Cardiopulmonary Exercise Testing to Evaluate Long COVID-19 Symptoms in Adults: A Systematic Review and Meta-analysis. JAMA Netw. Open 2022, 5, e2236057. [Google Scholar] [CrossRef]
- Letnes, J.M.; Nes, B.M.; Wisløff, U. Age-related decline in peak oxygen uptake: Cross-sectional vs. longitudinal findings. A review. Int. J. Cardiol. Cardiovasc. Risk Prev. 2023, 16, 200171. [Google Scholar] [CrossRef]
- de Subijana, C.L.; Galatti, L.; Moreno, R.; Chamorro, J.L. Analysis of the Athletic Career and Retirement Depending on the Type of Sport: A Comparison between Individual and Team Sports. Int. J. Environ. Res. Public. Health 2020, 17, 9265. [Google Scholar] [CrossRef]
- Atakan, M.M.; Li, Y.; Koşar, Ş.N.; Turnagöl, H.H.; Yan, X. Evidence-Based Effects of High-Intensity Interval Training on Exercise Capacity and Health: A Review with Historical Perspective. Int. J. Environ. Res. Public. Health 2021, 18, 7201. [Google Scholar] [CrossRef]
- Xavier, R.; Sánchez, C.; Paulucio, D.; da Silva, I.M.; Velasque, R.; Nogueira, F.S.; Ferrini, L.S.G.; Dornelas Ribeiro, M.; Serrato, M.; Alvarenga, R.; et al. A Multidimensional Approach to Assessing Anthropometric and Aerobic Fitness Profiles of Elite Brazilian Endurance Athletes and Military Personnel. Mil. Med. 2019, 184, 875–881. [Google Scholar] [CrossRef]
- Spyrou, K.; Freitas, T.T.; Marín-Cascales, E.; Alcaraz, P.E. Physical and Physiological Match-Play Demands and Player Characteristics in Futsal: A Systematic Review. Front. Psychol. 2020, 11, 569897. [Google Scholar] [CrossRef]
- Zhang, J.J.; Dong, X.; Liu, G.H.; Gao, Y.D. Risk and Protective Factors for COVID-19 Morbidity, Severity, and Mortality. Clin. Rev. Allergy Immunol. 2023, 64, 90–107. [Google Scholar] [CrossRef] [PubMed]
- Perez-Valera, M.; Martinez-Canton, M.; Gallego-Selles, A.; Galván-Alvarez, V.; Gelabert-Rebato, M.; Morales-Alamo, D.; Santana, A.; Martin-Rodriguez, S.; Ponce-Gonzalez, J.G.; Larsen, S.; et al. Angiotensin-Converting Enzyme 2 (SARS-CoV-2 receptor) expression in human skeletal muscle. Scand. J. Med. Sci. Sports 2021, 31, 2249–2258. [Google Scholar] [CrossRef] [PubMed]
- Mascolo, A.; Scavone, C.; Rafaniello, C.; De Angelis, A.; Urbanek, K.; di Mauro, G.; Cappetta, D.; Berrino, L.; Rossi, F.; Capuano, A. The Role of Renin-Angiotensin-Aldosterone System in the Heart and Lung: Focus on COVID-19. Front. Pharmacol. 2021, 12, 667254. [Google Scholar] [CrossRef] [PubMed]
- Arazi, H.; Falahati, A.; Suzuki, K. Moderate Intensity Aerobic Exercise Potential Favorable Effect Against COVID-19: The Role of Renin-Angiotensin System and Immunomodulatory Effects. Front. Physiol. 2021, 12, 747200. [Google Scholar] [CrossRef]
- Daniel, G.; Paola, A.R.; Nancy, G.; Fernando, S.O.; Beatriz, A.; Zulema, R.; Julieth, A.; Claudia, C.; Adriana, R. Epigenetic mechanisms and host factors impact ACE2 gene expression: Implications in COVID-19 susceptibility. Infect. Genet. Evol. 2022, 104, 105357. [Google Scholar] [CrossRef] [PubMed]
- Meyler, S.; Bottoms, L.; Muniz-Pumares, D. Biological and methodological factors affecting O2max response variability to endurance training and the influence of exercise intensity prescription. Exp. Physiol. 2021, 106, 1410–1424. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Moochhala, S.M.; Tham, S.Y.; Lu, J.; Chia, M.; Byrne, C.; Hu, Q.; Lee, L.K. Relationship between angiotensin-converting enzyme ID polymorphism and VO₂max of Chinese males. Life Sci. 2003, 73, 2625–2630. [Google Scholar] [CrossRef]
- de Almeida, K.Y.; Cetolin, T.; Marrero, A.R.; Aguiar Junior, A.S.; Mohr, P.; Kikuchi, N. A Pilot Study on the Prediction of Non-Contact Muscle Injuries Based on ACTN3 R577X and ACE I/D Polymorphisms in Professional Soccer Athletes. Genes 2022, 13, 2009. [Google Scholar] [CrossRef] [PubMed]
- Fricke-Galindo, I.; Buendia-Roldan, I.; Ponce-Aguilar, D.I.; Pérez-Rubio, G.; Chavez-Galan, L.; Alanis-Ponce, J.; Pérez-Torres, K.; Valencia-Pérez Rea, D.; Téllez-Quijada, F.; Nava-Quiroz, K.J.; et al. The ACE rs1799752 Variant Is Associated with COVID-19 Severity but Is Independent of Serum ACE Activity in Hospitalized and Recovered Patients. Int. J. Mol. Sci. 2023, 24, 7678. [Google Scholar] [CrossRef]
- Lopes, L.R.; de Souza, G.R.; Goes, R.A.; Amaral, V.G.; Guimarães, J.A.M.; Cossich, V.R.A.; Perini, J.A. Association between depressive symptoms and episodes of musculoskeletal injuries in Brazilian athletes during crisis time. Am. J. Sports Sci. Med. 2023, 11, 22–28. [Google Scholar] [CrossRef]
- Chen, Y.T.; Hsieh, Y.Y.; Ho, J.Y.; Lin, T.Y.; Lin, J.C. Two weeks of detraining reduces cardiopulmonary function and muscular fitness in endurance athletes. Eur. J. Sport Sci. 2022, 22, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Villano, M.; Spaniol, F. The effects of COVID-19 infection on athletic performance: A systematic review. Sport. J. 2024, 24. Available online: https://thesportjournal.org/article/title-the-effects-of-covid-19-infection-on-athletic-performance-a-systematic-review/ (accessed on 15 January 2025).
- Wezenbeek, E.; Denolf, S.; Bourgois, J.G.; Philippaerts, R.M.; De Winne, B.; Willems, T.M.; Witvrouw, E.; Verstockt, S.; Schuermans, J. Impact of (long) COVID on athletes’ performance: A prospective study in elite football players. Ann. Med. 2023, 55, 2198776. [Google Scholar] [CrossRef]
- Nien, J.T.; Wu, C.H.; Yang, K.T.; Cho, Y.M.; Chu, C.H.; Chang, Y.K.; Zhou, C. Mindfulness Training Enhances Endurance Performance and Executive Functions in Athletes: An Event-Related Potential Study. Neural Plast. 2020, 2020, 8213710. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, L.R.; Medeiros, R.; Tavares, V.; Dias, F.; Amaral, M.V.G.; Goes, R.A.; Matheus Guimarães, J.A.; Perini, J.A. A Systematic Review and Meta-Analysis on Aerobic Fitness Dynamics in Post-COVID-19 Athletes: Implications in the Return-to-Play Performance. Sports 2025, 13, 40. https://doi.org/10.3390/sports13020040
Lopes LR, Medeiros R, Tavares V, Dias F, Amaral MVG, Goes RA, Matheus Guimarães JA, Perini JA. A Systematic Review and Meta-Analysis on Aerobic Fitness Dynamics in Post-COVID-19 Athletes: Implications in the Return-to-Play Performance. Sports. 2025; 13(2):40. https://doi.org/10.3390/sports13020040
Chicago/Turabian StyleLopes, Lucas Rafael, Rui Medeiros, Valéria Tavares, Francisca Dias, Marcus Vinícius Galvão Amaral, Rodrigo Araújo Goes, João Antonio Matheus Guimarães, and Jamila Alessandra Perini. 2025. "A Systematic Review and Meta-Analysis on Aerobic Fitness Dynamics in Post-COVID-19 Athletes: Implications in the Return-to-Play Performance" Sports 13, no. 2: 40. https://doi.org/10.3390/sports13020040
APA StyleLopes, L. R., Medeiros, R., Tavares, V., Dias, F., Amaral, M. V. G., Goes, R. A., Matheus Guimarães, J. A., & Perini, J. A. (2025). A Systematic Review and Meta-Analysis on Aerobic Fitness Dynamics in Post-COVID-19 Athletes: Implications in the Return-to-Play Performance. Sports, 13(2), 40. https://doi.org/10.3390/sports13020040