Improved Antioxidant Status after Diet Supplementation with Novel Natural-Based Supplement in Combat Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Study Design
2.2. Blood Collection
2.3. The Antioxidant Capacity—TEAC Assay
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BAS | basophils |
BMI | body mass index |
CHO | carbohydrates |
CRP | c-reactive protein |
EOS | eosinophils |
ESR | Erythrocyte sedimentation rate |
HCT | hematocrit |
HGB | hemoglobin |
LYM | lymphocytes |
MON | monocytes |
NEU | neutrophils |
NLR | neutrophyls/lymphocytes ratio |
PLT | platelets |
RBC | red blood cells |
ROS | Reactive oxygen species |
TEAC | trolox equivalent antioxidant capacity |
VO2 max | maximum aerobic capacity |
WBC | white blood cell |
References
- Jurendić, T.; Ščetar, M. Aronia Melanocarpa Products and By-Products for Health and Nutrition: A Review. Antioxidants 2021, 10, 1052. [Google Scholar] [CrossRef] [PubMed]
- Tirla, A.; Timar, A.V.; Becze, A.; Memete, A.R.; Vicas, S.I.; Popoviciu, M.S.; Cavalu, S. Designing New Sport Supplements Based on Aronia Melanocarpa and Bee Pollen to Enhance Antioxidant Capacity and Nutritional Value. Molecules 2023, 28, 6944. [Google Scholar] [CrossRef] [PubMed]
- Kostić, A.Ž.; Arserim-Uçar, D.K.; Materska, M.; Sawicka, B.; Skiba, D.; Milinčić, D.D.; Pešić, M.B.; Pszczółkowski, P.; Moradi, D.; Ziarati, P.; et al. Unlocking Quercetin’s Neuroprotective Potential: A Focus on Bee-Collected Pollen. Chem. Biodivers. 2024, 21, e202400114. [Google Scholar] [CrossRef] [PubMed]
- Oroian, M.; Dranca, F.; Ursachi, F. Characterization of Romanian Bee Pollen—An Important Nutritional Source. Foods 2022, 11, 2633. [Google Scholar] [CrossRef]
- Zare, R.; Kimble, R.; Ali Redha, A.; Cerullo, G.; Clifford, T. How Can Chokeberry (Aronia) (Poly)Phenol-Rich Supplementation Help Athletes? A Systematic Review of Human Clinical Trials. Food Funct. 2023, 14, 5478–5491. [Google Scholar] [CrossRef]
- Legge, B.J.; Banister, E.W. The Astrand-Ryhming Nomogram Revisited. J. Appl. Physiol. 1986, 61, 1203–1209. [Google Scholar] [CrossRef]
- Suh, S.-H.; Paik, I.-Y.; Jacobs, K. Regulation of Blood Glucose Homeostasis during Prolonged Exercise. Mol. Cells 2007, 23, 272–279. [Google Scholar] [CrossRef]
- Vasold, K.L.; Parks, A.C.; Phelan, D.M.L.; Pontifex, M.B.; Pivarnik, J.M. Reliability and Validity of Commercially Available Low-Cost Bioelectrical Impedance Analysis. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 406–410. [Google Scholar] [CrossRef]
- King, D.E.; Carek, P.; Mainous, A.G.; Pearson, W.S. Inflammatory Markers and Exercise: Differences Related to Exercise Type. Med. Sci. Sports Exerc. 2003, 35, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Plaisance, E.P.; Taylor, J.K.; Alhassan, S.; Abebe, A.; Mestek, M.L.; Grandjean, P.W. Cardiovascular Fitness and Vascular Inflammatory Markers after Acute Aerobic Exercise. Int. J. Sport Nutr. Exerc. Metab. 2007, 17, 152–162. [Google Scholar] [CrossRef]
- Fischer, M.A.J.G.; Gransier, T.J.M.; Beckers, L.M.G.; Bekers, O.; Bast, A.; Haenen, G.R.M.M. Determination of the Antioxidant Capacity in Blood. Clin. Chem. Lab. Med. CCLM 2005, 43, 735–740. [Google Scholar] [CrossRef]
- Sullivan, G.M.; Feinn, R. Using Effect Size—Or Why the P Value Is Not Enough. J. Grad. Med. Educ. 2012, 4, 279–282. [Google Scholar] [CrossRef]
- Cohen, J. A Power Primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Nieman, D.C.; Nehlsen-Cannarella, S.L.; Fagoaga, O.R.; Shannon, M.; Davis, J.M.; Austin, M.D.; Hisey, C.L.; Holbeck, J.C.; Hjertman, J.M.E.; Bolton, M.R.; et al. Immune Response to Two Hours of Rowing in Elite Female Rowers. Int. J. Sports Med. 1999, 20, 476–481. [Google Scholar] [CrossRef]
- Naclerio, F.; Larumbe-Zabala, E.; Seijo, M.; Ashrafi, N.; Nielsen, B.V.; Earnest, C.P. Effects of Protein Versus Carbohydrate Supplementation on Markers of Immune Response in Master Triathletes: A Randomized Controlled Trial. J. Am. Coll. Nutr. 2019, 38, 395–404. [Google Scholar] [CrossRef]
- Kreider, R.B.; Iosia, M.; Cooke, M.; Hudson, G.; Rasmussen, C.; Chen, H.; Mollstedt, O.; Tsai, M.-H. Bioactive Properties and Clinical Safety of a Novel Milk Protein Peptide. Nutr. J. 2011, 10, 99. [Google Scholar] [CrossRef] [PubMed]
- Stankiewicz, B.; Cieślicka, M.; Kujawski, S.; Piskorska, E.; Kowalik, T.; Korycka, J.; Skarpańska-Stejnborn, A. Effects of Antioxidant Supplementation on Oxidative Stress Balance in Young Footballers—A Randomized Double-Blind Trial. J. Int. Soc. Sports Nutr. 2021, 18, 44. [Google Scholar] [CrossRef] [PubMed]
- Jannesar, M.; Sharif Shoushtari, M.; Majd, A.; Pourpak, Z. Bee Pollen Flavonoids as a Therapeutic Agent in Allergic and Immunological Disorders. Iran. J. Allergy Asthma Immunol. 2017, 16, 171–182. [Google Scholar]
- Urbaniak, A.; Basta, P.; Ast, K.; Wołoszyn, A.; Kuriańska-Wołoszyn, J.; Latour, E.; Skarpańska-Stejnborn, A. The Impact of Supplementation with Pomegranate Fruit (Punica granatum L.) Juice on Selected Antioxidant Parameters and Markers of Iron Metabolism in Rowers. J. Int. Soc. Sports Nutr. 2018, 15, 35. [Google Scholar] [CrossRef]
- Tirla, A.; Islam, F.; Islam, M.R.; Ioana Vicas, S.; Cavalu, S. New Insight and Future Perspectives on Nutraceuticals for Improving Sports Performance of Combat Players: Focus on Natural Supplements, Importance and Advantages over Synthetic Ones. Appl. Sci. 2022, 12, 8611. [Google Scholar] [CrossRef]
- Kerksick, C.M.; Arent, S.; Schoenfeld, B.J.; Stout, J.R.; Campbell, B.; Wilborn, C.D.; Taylor, L.; Kalman, D.; Smith-Ryan, A.E.; Kreider, R.B.; et al. International Society of Sports Nutrition Position Stand: Nutrient Timing. J. Int. Soc. Sports Nutr. 2017, 14, 33. [Google Scholar] [CrossRef]
- Aragon, A.A.; Schoenfeld, B.J. Nutrient Timing Revisited: Is There a Post-Exercise Anabolic Window? J. Int. Soc. Sports Nutr. 2013, 10, 5. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Ferrán, M.; Berlanga, L.A.; Barcelo-Guido, O.; Matos-Duarte, M.; Vicente-Campos, D.; Sánchez-Jorge, S.; Romero-Morales, C.; Munguía-Izquierdo, D.; Pareja-Galeano, H. Antioxidant Vitamin Supplementation on Muscle Adaptations to Resistance Training: A Double-Blind, Randomized Controlled Trial. Nutrition 2023, 105, 111848. [Google Scholar] [CrossRef] [PubMed]
- Kanazashi, M.; Iida, T.; Nakanishi, R.; Tanaka, M.; Ikeda, H.; Takamiya, N.; Maeshige, N.; Kondo, H.; Nishigami, T.; Harada, T.; et al. Brazilian Propolis Intake Decreases Body Fat Mass and Oxidative Stress in Community-Dwelling Elderly Females: A Randomized Placebo-Controlled Trial. Nutrients 2023, 15, 364. [Google Scholar] [CrossRef] [PubMed]
- Gillam, I.H.; Cunningham, R.B.; Telford, R.D. Antioxidant Supplementation Protects Elite Athlete Muscle Integrity During Submaximal Training. Int. J. Sports Physiol. Perform. 2022, 17, 549–555. [Google Scholar] [CrossRef]
- Méndez-del Villar, M.; González-Ortiz, M.; Martínez-Abundis, E.; Pérez-Rubio, K.G.; Lizárraga-Valdez, R. Effect of Resveratrol Administration on Metabolic Syndrome, Insulin Sensitivity, and Insulin Secretion. Metab. Syndr. Relat. Disord. 2014, 12, 497–501. [Google Scholar] [CrossRef]
- Vinha, A.F.; Barreira, S.V.P.; Costa, A.S.G.; Alves, R.C.; Oliveira, M.B.P.P. Pre-Meal Tomato (Lycopersicon Esculentum) Intake Can Have Anti-Obesity Effects in Young Women? Int. J. Food Sci. Nutr. 2014, 65, 1019–1026. [Google Scholar] [CrossRef]
- Kalafati, M.; Jamurtas, A.Z.; Nikolaidis, M.G.; Paschalis, V.; Theodorou, A.A.; Sakellariou, G.K.; Koutedakis, Y.; Kouretas, D. Ergogenic and Antioxidant Effects of Spirulina Supplementation in Humans. Med. Sci. Sports Exerc. 2010, 42, 142–151. [Google Scholar] [CrossRef]
- Rahn, C.; Bakuradze, T.; Stegmüller, S.; Galan, J.; Niesen, S.; Winterhalter, P.; Richling, E. Polyphenol-Rich Beverage Consumption Affecting Parameters of the Lipid Metabolism in Healthy Subjects. Int. J. Mol. Sci. 2023, 24, 841. [Google Scholar] [CrossRef]
- Kas’ianenko, V.I.; Komisarenko, I.A.; Dubtsova, E.A. Correction of atherogenic dyslipidemia with honey, pollen and bee bread in patients with different body mass. Terapevticheskii Arkhiv 2011, 83, 58–62. [Google Scholar]
- Törrönen, R.; Kolehmainen, M.; Sarkkinen, E.; Poutanen, K.; Mykkänen, H.; Niskanen, L. Berries Reduce Postprandial Insulin Responses to Wheat and Rye Breads in Healthy Women. J. Nutr. 2013, 143, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Nieman, D.C.; Simonson, A.; Sakaguchi, C.A.; Sha, W.; Blevins, T.; Hattabaugh, J.; Kohlmeier, M. Acute Ingestion of a Mixed Flavonoid and Caffeine Supplement Increases Energy Expenditure and Fat Oxidation in Adult Women: A Randomized, Crossover Clinical Trial. Nutrients 2019, 11, 2665. [Google Scholar] [CrossRef] [PubMed]
- Pahwa, R.; Goyal, A.; Jialal, I. Chronic Inflammation. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Cerqueira, É.; Marinho, D.A.; Neiva, H.P.; Lourenço, O. Inflammatory Effects of High and Moderate Intensity Exercise—A Systematic Review. Front. Physiol. 2020, 10, 1550. [Google Scholar] [CrossRef]
- Brunelle, D.C.; Larson, K.J.; Bundy, A.; Roemmich, J.N.; Warne, D.; Redvers, N. Chokeberry Reduces Inflammation in Human Preadipocytes. J. Funct. Foods 2024, 112, 105947. [Google Scholar] [CrossRef]
- Wilson, S.M.G.; Peach, J.T.; Fausset, H.; Miller, Z.T.; Walk, S.T.; Yeoman, C.J.; Bothner, B.; Miles, M.P. Metabolic Impact of Polyphenol-Rich Aronia Fruit Juice Mediated by Inflammation Status of Gut Microbiome Donors in Humanized Mouse Model. Front. Nutr. 2023, 10, 1244692. [Google Scholar] [CrossRef]
- Zhu, Y.; Cai, P.-J.; Dai, H.-C.; Xiao, Y.-H.; Jia, C.-L.; Sun, A.-D. Black Chokeberry (Aronia melanocarpa L.) Polyphenols Attenuate Obesity-Induced Colonic Inflammation by Regulating Gut Microbiota and the TLR4/NF-κB Signaling Pathway in High Fat Diet-Fed Rats. Food Funct. 2023, 14, 10014–10030. [Google Scholar] [CrossRef] [PubMed]
- Broncel, M.; Kozirog, M.; Duchnowicz, P.; Koter-Michalak, M.; Sikora, J.; Chojnowska-Jezierska, J. Aronia Melanocarpa Extract Reduces Blood Pressure, Serum Endothelin, Lipid, and Oxidative Stress Marker Levels in Patients with Metabolic Syndrome. Med. Sci. Monit. 2009, 16, CR28–CR34. [Google Scholar]
- Colby, J.A.; Chen, W.T.; Baker, W.L.; Coleman, C.I.; Reinhart, K.; Kluger, J.; White, C.M. Effect of Ascorbic Acid on Inflammatory Markers after Cardiothoracic Surgery. Am. J. Health-Syst. Pharm. AJHP 2011, 68, 1632–1639. [Google Scholar] [CrossRef]
- Ke, Y.S.; Cao, H.; Xu, X.H. Effect of theo-polyphenols on oxygen free radicals and hemorrheology in patients with essential hypertension. Zhongguo Zhongxiyi Jiehe Zazhi Chin. J. Integr. Tradit. West. Med. 1997, 17, 221–223. [Google Scholar]
- Arabshomali, A.; Bazzazzadehgan, S.; Mahdi, F.; Shariat-Madar, Z. Potential Benefits of Antioxidant Phytochemicals in Type 2 Diabetes. Molecules 2023, 28, 7209. [Google Scholar] [CrossRef]
- Simeonov, S.B.; Botushanov, N.P.; Karahanian, E.B.; Pavlova, M.B.; Husianitis, H.K.; Troev, D.M. Effects of Aronia Melanocarpa Juice as Part of the Dietary Regimen in Patients with Diabetes Mellitus. Folia Med. 2002, 44, 20–23. [Google Scholar]
- Christiansen, C.B.; Jeppesen, P.B.; Hermansen, K.; Gregersen, S. Aronia in the Type 2 Diabetes Treatment Regimen. Nutrients 2023, 15, 4188. [Google Scholar] [CrossRef]
- Kim, Y.; Keogh, J.B.; Clifton, P.M. Polyphenols and Glycemic Control. Nutrients 2016, 8, 17. [Google Scholar] [CrossRef]
- Cao, G.; Zuo, J.; Wu, B.; Wu, Y. Polyphenol Supplementation Boosts Aerobic Endurance in Athletes: Systematic Review. Front. Physiol. 2024, 15, 1369174. [Google Scholar] [CrossRef] [PubMed]
- Skaug, A.; Sveen, O.; Raastad, T. An Antioxidant and Multivitamin Supplement Reduced Improvements in VO2max. J. Sports Med. Phys. Fit. 2014, 54, 63–69. [Google Scholar]
- Bańkowski, S.; Petr, M.; Rozpara, M.; Sadowska-Krępa, E. Effect of 6-Week Curcumin Supplementation on Aerobic Capacity, Antioxidant Status and Sirtuin 3 Level in Middle-Aged Amateur Long-Distance Runners. Redox Rep. Commun. Free Radic. Res. 2022, 27, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Powers, S.K.; Jackson, M.J. Exercise-Induced Oxidative Stress: Cellular Mechanisms and Impact on Muscle Force Production. Physiol. Rev. 2008, 88, 1243–1276. [Google Scholar] [CrossRef]
- Gül, I.; Gökbel, H.; Belviranli, M.; Okudan, N.; Büyükbaş, S.; Başarali, K. Oxidative Stress and Antioxidant Defense in Plasma after Repeated Bouts of Supramaximal Exercise: The Effect of Coenzyme Q10. J. Sports Med. Phys. Fit. 2011, 51, 305–312. [Google Scholar]
- Tauler, P.; Ferrer, M.D.; Sureda, A.; Pujol, P.; Drobnic, F.; Tur, J.A.; Pons, A. Supplementation with an Antioxidant Cocktail Containing Coenzyme Q Prevents Plasma Oxidative Damage Induced by Soccer. Eur. J. Appl. Physiol. 2008, 104, 777–785. [Google Scholar] [CrossRef]
Characteristics | Supplemented Group | Control Group |
---|---|---|
Age (mean ± SD) | 25 ± 6.34 | 26 ± 5.42 |
Practiced sport and number of participants | Judo (11) MMA* (3) Wrestling (1) | Judo (10) MMA* (2) Wrestling (1) Boxing (1) |
Training program | 11 training sessions per week (six specific, five physical training, each 80 min long) |
Parameter | Supplemented Group | Control Group | p-Value Time Factor | p-Value Group Factor | Interaction T × G | Cohen’s d | Normal Range | ||
---|---|---|---|---|---|---|---|---|---|
Initial | Final | Initial | Final | ||||||
WBC | 5.50 ± 0.90 | 6.33 ± 0.70 | 6.09 ± 0.89 | 6.07 ± 1.12 | 0.0964 | 0.4935 | 0.0814 | 0.27 | 4.00–10.50 /103/uL |
NEU% | 50.22 ± 4.5 | 55.90 ± 3.77 | 49.20 ± 7.58 | 54.14 ± 8.17 | 0.0020 | 0.3997 | 0.8221 | 0.27 | 45.0–76.0% |
LYM% | 38.53 ± 3.61 | 34.71 ± 3.89 | 36.43 ± 7.40 | 33.64 ± 6.65 | 0.2236 | 0.9540 | 0.1750 | 0.19 | 25.0–55.0% |
NLR | 1.51 ± 0.92 | 1.72 ± 0.65 | 1.32 ± 0.27 | 1.64 ± 0.28 | 0.1003 | 0.3814 | 0.7374 | 0.15 | |
MON% | 6.96 ± 0.81 | 5.82 ± 0.86 | 8.86 ± 3.85 | 7.92 ± 2.49 | 0.0950 | 0.0019 | 0.8708 | 1.12 | 0.0–15.0% |
EOS% | 3.82 ± 1.52 | 3.19 ± 2.58 | 3.05 ± 1.56 | 3.38 ± 2.16 | 0.7773 | 0.5849 | 0.3671 | 0.07 | 0–7% |
BAS% | 0.45 ± 0.12 | 0.37 ± 0.79 | 1.22 ± 0.55 | 0.98 ± 0.35 | 0.2445 | <0.0001 | 0.5588 | 0.99 | 0–2% |
RBC | 4.91 ± 0.41 | 5.01 ± 0.31 | 4.82 ± 0.41 | 4.89 ± 0.40 | 0.4033 | 0.3027 | 0.8824 | 0.33 | 4.5–5.7/ 106/uL |
HGB | 14.59 ± 0.66 | 14.76 ± 0.66 | 14.49 ± 1.14 | 14.65 ± 1.04 | 0.4987 | 0.6415 | 0.9662 | 0.12 | 13.5–17.2/ g/dL |
HCT | 42.94 ± 2.08 | 43.71 ± 2.17 | 43.08 ± 3.35 | 44.59 ± 3.34 | 0.1245 | 0.4881 | 0.6146 | 0.31 | 40.0–50.0% |
PLT | 266.6 ± 22.85 | 271.5 ± 31.93 | 229.70 ± 50.78 | 248.90 ± 61.98 | 0.3031 | 0.0131 | 0.5399 | 0.45 | 150–450/ 103/uL |
Parameter | Supplemented Group | Control Group | p-Value Time Factor | p-Value Group Factor | Interaction T × G | Cohen’s d | Normal Range | ||
---|---|---|---|---|---|---|---|---|---|
initial | final | initial | final | ||||||
ESR | 2.86 ± 1.59 | 3.00 ± 1.41 | 6.78 ± 3.92 | 7.71 ± 4.92 | 0.5362 | 0.0001 | 0.6476 | 1.30 | 0–12/mm/1 h |
CRP | 2.26 ± 0.96 | 2.00 ± 0.75 | 2.00 ± 0.87 | 2.42 ± 0.64 | 0.7105 | 0.7105 | 0.1186 | 0.60 | 0–6/mg/L |
Fibr | 295.8 ± 53.57 | 295.5 ± 58.95 | 283.10 ± 46.01 | 300.00 ± 36.44 | 0.5281 | 0.7550 | 0.5134 | 0.09 | 180–450/mg/dL |
Parameter | Supplemented Group | Control Group | p-Value Time Factor | p-Value Group Factor | Interaction T × G | Cohen’s d | Normal Range | ||
---|---|---|---|---|---|---|---|---|---|
Initial | Final | Initial | Final | ||||||
Blood glycemia | 85.74 ± 3.58 | 81.93 ± 7.77 | 87.57 ± 8.76 | 89.08 ± 8.57 | 0.5580 | 0.0253 | 0.1784 | 0.87 | 70–115 |
Parameter | Supplemented Group | Control Group | p-Value Time Factor | p-Value Group Factor | Interaction T × G | Cohen’s d | ||
---|---|---|---|---|---|---|---|---|
Initial | Final | Initial | Final | |||||
Weight | 87.89 ± 12.83 | 88.17 ± 12.50 | 88.54 ± 16.68 | 88.54 ± 16.39 | 0.9711 | 0.8951 | 0.9711 | 0.02 |
Fat% | 15.31 ± 3.31 | 15.00 ± 3.15 | 15.79 ± 3.83 | 15.70 ± 3.63 | 0.8277 | 0.5216 | 0.9047 | 0.20 |
FFM% | 84.69 ± 3.31 | 85.00 ± 3.15 | 84.21 ± 3.83 | 84.30 ± 3.63 | 0.8277 | 0.5216 | 0.9047 | 0.20 |
BMI | 26.98 ± 2.91 | 27.07 ± 2.82 | 27.57 ± 3.58 | 27.56 ± 3.50 | 0.9623 | 0.5245 | 0.9529 | 0.15 |
Parameter | Supplemented Group | Control Group | p-Value Time Factor | p-Value Group Factor | Interaction T × G | Cohen’s d | ||
---|---|---|---|---|---|---|---|---|
Initial | Final | Initial | Final | |||||
VO2 max | 46.35 ± 2.82 | 46.66 ± 2.58 | 44.51 ± 3.12 | 44.92 ± 3.12 | 0.6398 | 0.0230 | 0.9481 | 0.60 |
Parameter | Supplemented Group | Control Group | p-Value Time Factor | p-Value Group Factor | Interaction T × G | Cohen’s d | ||
---|---|---|---|---|---|---|---|---|
Initial | Final | Initial | Final | |||||
TEAC | 0.30 ± 0.04 | 0.42 ± 0.04 | 0.29 ± 0.039 | 0.30 ± 0.04 | <0.0001 | <0.0001 | <0.0001 | 2.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tirla, A.; Vicas, S.I.; Sirca, T.B.; Cinezan, C.; Cavalu, S. Improved Antioxidant Status after Diet Supplementation with Novel Natural-Based Supplement in Combat Athletes. Sports 2024, 12, 247. https://doi.org/10.3390/sports12090247
Tirla A, Vicas SI, Sirca TB, Cinezan C, Cavalu S. Improved Antioxidant Status after Diet Supplementation with Novel Natural-Based Supplement in Combat Athletes. Sports. 2024; 12(9):247. https://doi.org/10.3390/sports12090247
Chicago/Turabian StyleTirla, Adrian, Simona Ioana Vicas, Teodora Bianca Sirca, Corina Cinezan, and Simona Cavalu. 2024. "Improved Antioxidant Status after Diet Supplementation with Novel Natural-Based Supplement in Combat Athletes" Sports 12, no. 9: 247. https://doi.org/10.3390/sports12090247
APA StyleTirla, A., Vicas, S. I., Sirca, T. B., Cinezan, C., & Cavalu, S. (2024). Improved Antioxidant Status after Diet Supplementation with Novel Natural-Based Supplement in Combat Athletes. Sports, 12(9), 247. https://doi.org/10.3390/sports12090247