UP150 Project: A Longitudinal Analysis of Active Lifestyles in the Complex Working System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
- (i)
- educate future participants in understanding and using the TQR recovery assessment [21], the RPE perceived exertion [22], and the Stretch Intensity Scale [23]. These scales are necessary for proposing the sub-maximal motor efficiency tests by the Cubo Fitness Test [13], educating employees on proper body use through self-perception, and for the conscious use of the UP150 app. The technological support given by the app allowed employees to achieve the minimum weekly physical activity score required, adjusting effort intensity appropriately to the situation and one’s psychophysical state.
- (ii)
- administer the questionnaires.
- (iii)
- administer the Cubo Fitness Test.
- (iv)
- promote physical activity using supportive communication (Need Supportive Communication) based on the self-determination theory [24]. The Need Supportive Communication is an empathetic, flexible, and patient communication style that develops autonomy, competence, and relationships among participants [25]. It is considered a valuable and effective communication tool for promoting healthy lifestyles and is positively associated with psychological needs satisfaction and psychophysical health, which aligns with the purposes of the UP150 concept [26].
2.3. Measurements
2.3.1. Physical Features
2.3.2. Clinical Features
2.3.3. Psychological Features
Workplace Psychological Wellness Features
2.4. Statistical Analysis
3. Results
3.1. Physical Features
3.2. Clinical Features
3.3. Psychological Features
Workplace Psychological Wellness Features
4. Discussion
4.1. Physical Features
4.2. Clinical Features
4.3. Psychological Features
Workplace Psychological Wellness Features
4.4. Summary
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Crapse, T.B.; Sommer, M.A. Corollary discharge across the animal kingdom. Nat. Rev. Neurosci. 2008, 9, 587–600. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, M.H.; Farley, C.T.; Full, R.J.; Koehl, M.A.; Kram, R.; Lehman, S. How animals move: An integrative view. Science 2000, 288, 100–106. [Google Scholar] [CrossRef] [PubMed]
- McNeil, I. An Encyclopedia of the History of Technology; Taylor & Francis: London, UK, 2002. [Google Scholar]
- McCrady, S.K.; Levine, J.A. Sedentariness at work: How much do we really sit? Obesity 2009, 17, 2103–2105. [Google Scholar] [CrossRef] [PubMed]
- Herbert, C. Enhancing Mental Health, Well-Being and Active Lifestyles of University Students by Means of Physical Activity and Exercise Research Programs. Front. Public Health 2022, 10, 849093. [Google Scholar] [CrossRef] [PubMed]
- Cornish, K.; Fox, G.; Fyfe, T.; Koopmans, E.; Pousette, A.; Pelletier, C.A. Understanding physical literacy in the context of health: A rapid scoping review. BMC Public Health 2020, 20, 1569. [Google Scholar] [CrossRef] [PubMed]
- Brennan, L.K.; Sabounchi, N.S.; Kemner, A.L.; Hovmand, P. Systems thinking in 49 communities related to healthy eating, active living, and childhood obesity. J. Public Health Manag. Pract. 2015, 21 (Suppl. 3), S55–S69. [Google Scholar] [CrossRef] [PubMed]
- Roxas, F.M.Y.; Rivera, J.P.R.; Gutierrez, E.L.M. Locating Potential Leverage Points In A Systems Thinking Causal Loop Diagram Toward Policy Intervention. World Futures 2019, 75, 609–631. [Google Scholar] [CrossRef]
- Buckley, J.P.; Hedge, A.; Yates, T.; Copeland, R.J.; Loosemore, M.; Hamer, M.; Bradley, G.; Dunstan, D.W. The sedentary office: An expert statement on the growing case for change towards better health and productivity. Br. J. Sports Med. 2015, 49, 1357–1362. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Preventing Noncommunicable Diseases in the Workplace through Diet and Physical Activity; REF: 150108; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Robroek, S.J.; van Lenthe, F.J.; van Empelen, P.; Burdorf, A. Determinants of participation in worksite health promotion programmes: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2009, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, G.M.; Behrens, T.K.; Domina, L. Barriers and enabling factors for work-site physical activity programs: A qualitative examination. J. Phys. Act. Health 2008, 5, 418–429. [Google Scholar] [CrossRef] [PubMed]
- Invernizzi, P.L.; Signorini, G.; Bosio, A.; Raiola, G.; Scurati, R. Validity and Reliability of Self-Perception-Based Submaximal Fitness Tests in Young Adult Females: An Educational Perspective. Sustainability 2020, 12, 2265. [Google Scholar] [CrossRef]
- Signorini, G.; Scurati, R.; D’Angelo, C.; Rigon, M.; Invernizzi, P.L. Enhancing motivation and psychological wellbeing in the workplace through conscious physical activity: Suggestions from a qualitative study examining workers’ experience. Front. Psychol. 2022, 13, 1006876. [Google Scholar] [CrossRef] [PubMed]
- Invernizzi, P.L.; Signorini, G.; Scurati, R.; Michielon, G.; Benedini, S.; Bosio, A.; Staiano, W. The UP150: A Multifactorial Environmental Intervention to Promote Employee Physical and Mental Well-Being. Int. J. Environ. Res. Public Health 2022, 19, 1175. [Google Scholar] [CrossRef] [PubMed]
- Von Korff, M.; Koepsell, T.; Curry, S.; Diehr, P. Multi-level analysis in epidemiologic research on health behaviors and outcomes. Am. J. Epidemiol. 1992, 135, 1077–1082. [Google Scholar] [CrossRef] [PubMed]
- Yap, T.L.; Davis, L.S. Process of behavioral change as it relates to intentional physical activity. Aaohn J. 2007, 55, 372–378, quiz 379–380. [Google Scholar] [CrossRef] [PubMed]
- Deci, E.L.; Ryan, R.M. The “What” and “Why” of Goal Pursuits: Human Needs and the Self-Determination of Behavior. Psychol. Inq. 2000, 11, 227–268. [Google Scholar] [CrossRef]
- Signorini, G.; Scurati, R.; Bosio, A.; Maestri, G.; Rigon, M.; Trecroci, A.; Invernizzi, P.L. Effects of cognitive load and different exercise intensities on perceived effort in sedentary university students: A follow up of the Cubo Fitness Test validation. Front. Psychol. 2023, 14, 1254767. [Google Scholar] [CrossRef] [PubMed]
- Deci, E.L.; Ryan, R.M. Self-determination theory: When mind mediates behavior. J. Mind Behav. 1980, 1, 33–43. [Google Scholar]
- Kenttä, G.; Hassmén, P. Overtraining and recovery. A conceptual model. Sports Med. 1998, 26, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Borg, G.A.V.; Noble, B.J. Perceived Exertion. Exerc. Sport. Sci. Rev. 1974, 2, 131–154. [Google Scholar] [CrossRef] [PubMed]
- Freitas, S.R.; Vaz, J.R.; Gomes, L.; Silvestre, R.; Hilario, E.; Cordeiro, N.; Carnide, F.; Pezarat-Correia, P.; Mil-Homens, P. A New Tool to Assess the Perception of Stretching Intensity. J. Strength Cond. Res. 2015, 29, 2666–2678. [Google Scholar] [CrossRef] [PubMed]
- Deci, E.L.; Ryan, R.M. Self-determination theory. In Handbook of Theories of Social Psychology; Sage Publications Ltd.: Thousand Oaks, CA, USA, 2012; Volume 1, pp. 416–436. [Google Scholar] [CrossRef]
- Ntoumanis, N.; Quested, E.; Reeve, J.; Cheon, S.H. Need-supportive communication: Implications for motivation in sport, exercise, and physical activity. In Persuasion and comZmunication in Sport, Exercise, and Physical Activity; Routledge: Abingdon, UK, 2017; p. 155. [Google Scholar] [CrossRef]
- Ng, J.Y.; Ntoumanis, N.; Thøgersen-Ntoumani, C.; Deci, E.L.; Ryan, R.M.; Duda, J.L.; Williams, G.C. Self-Determination Theory Applied to Health Contexts: A Meta-Analysis. Perspect. Psychol. Sci. 2012, 7, 325–340. [Google Scholar] [CrossRef] [PubMed]
- Doherty, A.; Jackson, D.; Hammerla, N.; Plötz, T.; Olivier, P.; Granat, M.H.; White, T.; van Hees, V.T.; Trenell, M.I.; Owen, C.G.; et al. Large Scale Population Assessment of Physical Activity Using Wrist Worn Accelerometers: The UK Biobank Study. PLoS ONE 2017, 12, e0169649. [Google Scholar] [CrossRef] [PubMed]
- Dieu, O.; Mikulovic, J.; Fardy, P.S.; Bui-Xuan, G.; Béghin, L.; Vanhelst, J. Physical activity using wrist-worn accelerometers: Comparison of dominant and non-dominant wrist. Clin. Physiol. Funct. Imaging 2017, 37, 525–529. [Google Scholar] [CrossRef]
- Arvidsson, D.; Fridolfsson, J.; Buck, C.; Ekblom, Ö.; Ekblom-Bak, E.; Lissner, L.; Hunsberger, M.; Börjesson, M. Reexamination of Accelerometer Calibration with Energy Expenditure as Criterion: VO2net Instead of MET for Age-Equivalent Physical Activity Intensity. Sensors 2019, 19, 3377. [Google Scholar] [CrossRef] [PubMed]
- Papini, G.; Bonomi, A.G.; Stut, W.; Kraal, J.J.; Kemps, H.M.C.; Sartor, F. Proof of concept of a 45-second cardiorespiratory fitness self-test for coronary artery disease patients based on accelerometry. PLoS ONE 2017, 12, e0183740. [Google Scholar] [CrossRef] [PubMed]
- Crotti, M.; Bosio, A.; Invernizzi, P.L. Validity and reliability of submaximal fitness tests based on perceptual variables. J. Sports Med. Phys. Fit. 2018, 58, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Harre, D. Teoria Dell’allenamento; SSS: Rome, Italy, 1997; Volume 501. [Google Scholar]
- Jones, C.J.; Rikli, R.E.; Max, J.; Noffal, G. The reliability and validity of a chair sit-and-reach test as a measure of hamstring flexibility in older adults. Res. Q. Exerc. Sport. 1998, 69, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Invernizzi, P.L.; Signorini, G.; Bosio, A.; Scurati, R. Children over “-enty,-rty,-fty”: Gamification and autonomy as an environmental education leitmotif for “children of all ages” using a new workplace narrative. J. Phys. Educ. Sport 2021, 21, 585–591. [Google Scholar] [CrossRef]
- Durnin, J.V.; Womersley, J. Body fat assessed from total body density and its estimation from skinfold thickness: Measurements on 481 men and women aged from 16 to 72 years. Br. J. Nutr. 1974, 32, 77–97. [Google Scholar] [CrossRef] [PubMed]
- Peterson, M.J.; Czerwinski, S.A.; Siervogel, R.M. Development and validation of skinfold-thickness prediction equations with a 4-compartment model. Am. J. Clin. Nutr. 2003, 77, 1186–1191. [Google Scholar] [CrossRef] [PubMed]
- Siri, W.E. The gross composition of the body. Adv. Biol. Med. Phys. 1956, 4, 239–280. [Google Scholar] [CrossRef] [PubMed]
- Chassany, O.; Dimenäs, E.; Dubois, D.; Wu, A.; Dupuy, H. The Psychological General Well-Being Index (PGWBI) User Manual; MAPI Research Institute: Lyon, France, 2004. [Google Scholar]
- Dupuy, H. The Psychological General Well-Being (PGWB) Index. In Assessment of Quality of Life in Clinical Trials of Cardiovascular Therapies; Wenger, N., Ed.; Le Jacq: New York, NY, USA, 1984; pp. 70–183. [Google Scholar]
- Grossi, E.; Mosconi, P.; Groth, N.; Niero, M.; Apolone, G. Questionario Psychological General Well-Being Index: Versione Italiana; Istituto Farmacologiao Mario Negri: Milan, Italy, 2002. [Google Scholar]
- Hart, S.G. Nasa-Task Load Index (NASA-TLX); 20 Years Later. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2006, 50, 904–908. [Google Scholar] [CrossRef]
- Hart, S.G.; Staveland, L.E. Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. Adv. Psychol. 1988, 52, 139–183. [Google Scholar]
- Hoonakker, P.; Carayon, P.; Gurses, A.; Brown, R.; McGuire, K.; Khunlertkit, A.; Walker, J.M. Measuring Workload of Icu Nurses with a Questionnaire Survey: The Nasa Task Load Index (Tlx). IIE Trans. Health Syst. Eng. 2011, 1, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Baldasseroni, A.; Camerino, D.; Cenni, P.; Cesana, G.C.; Fattorini, E.; Ferrario, M.; Mariani, M.; Tartaglia, R. La Valutazione dei Fattori Psicosociali. Proposta della Versione Italiana del Job Content Questionnaire di R.A. Karasek; ISPESL Pubblicazioni: Rome, Italy, 2006. [Google Scholar]
- Karasek, R.; Theorell, T. Healthy Work: Stress, Productivity, and the Reconstruction of Working Life; Basic Books: New York, NY, USA, 1990. [Google Scholar]
- Karasek, R.A. Lower health risk with increased job control among white collar workers. J. Organ. Behav. 1990, 11, 171–185. [Google Scholar] [CrossRef]
- Kim, H.Y. Statistical notes for clinical researchers: Assessing normal distribution (2) using skewness and kurtosis. Restor. Dent. Endod. 2013, 38, 52–54. [Google Scholar] [CrossRef] [PubMed]
- Bakeman, R. Recommended effect size statistics for repeated measures designs. Behav. Res. Methods 2005, 37, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; L. Erlbaum Associates: Mahwah, NJ, USA, 1988. [Google Scholar]
- Mullane, S.L.; Buman, M.P.; Zeigler, Z.S.; Crespo, N.C.; Gaesser, G.A. Acute effects on cognitive performance following bouts of standing and light-intensity physical activity in a simulated workplace environment. J. Sci. Med. Sport. 2017, 20, 489–493. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Action Plan on Physical Activity 2018–2030: More Active People for a Healthier World; World Health Organization: Geneva, The Netherlands, 2018. [Google Scholar]
- Dagenais-Desmarais, V.; Forest, J.; Girouard, S.; Crevier-Braud, L. The Importance of Need-Supportive Relationships for Motivation and Psychological Health at Work. In Human Motivation and Interpersonal Relationships: Theory, Research, and Applications; Springer Science + Business Media: New York, NY, USA, 2014; pp. 263–297. [Google Scholar] [CrossRef]
- Kinnafick, F.E.; Thøgersen-Ntoumani, C.; Duda, J. The effect of need supportive text messages on motivation and physical activity behaviour. J. Behav. Med. 2016, 39, 574–586. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.L.; Sherrington, C.; Smith, K.; Carswell, P.; Bell, R.; Bell, M.; Nascimento, D.P.; Máximo Pereira, L.S.; Vardon, P. Physical activity improves strength, balance and endurance in adults aged 40-65 years: A systematic review. J. Physiother. 2012, 58, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, D.; Heymsfield, S.B.; Heo, M.; Jebb, S.A.; Murgatroyd, P.R.; Sakamoto, Y. Healthy percentage body fat ranges: An approach for developing guidelines based on body mass index. Am. J. Clin. Nutr. 2000, 72, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Wang, Z.; Shen, W.; Heymsfield, S.B.; Heshka, S. Percentage body fat ranges associated with metabolic syndrome risk: Results based on the third National Health and Nutrition Examination Survey (1988–1994). Am. J. Clin. Nutr. 2003, 78, 228–235. [Google Scholar] [CrossRef]
- Winters-van Eekelen, E.; Van der Velde, J.H.; Boone, S.C.; Westgate, K.; Brage, S.; Lamb, H.J.; Rosendaal, F.R.; De Mutsert, R. Objectively Measured Physical Activity and Body Fatness: Associations with Total Body Fat, Visceral Fat, and Liver Fat. Med. Sci. Sports Exerc. 2021, 53, 2309–2317. [Google Scholar] [CrossRef] [PubMed]
- Guhanarayan, G.; Jablonski, J.; Witkowski, S. Circulating angiogenic cell population responses to 10 days of reduced physical activity. J. Appl. Physiol. 2014, 117, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, T.; Bodin, K.; Sylvén, C.; Gordon, A.; Tyni-Lenné, R.; Jansson, E. Increased expression of VEGF following exercise training in patients with heart failure. Eur. J. Clin. Investig. 2001, 31, 362–366. [Google Scholar] [CrossRef] [PubMed]
- Shaaban, C.E.; Aizenstein, H.J.; Jorgensen, D.R.; Mahbubani, R.L.M.; Meckes, N.A.; Erickson, K.I.; Glynn, N.W.; Mettenburg, J.; Guralnik, J.; Newman, A.B.; et al. Physical Activity and Cerebral Small Vein Integrity in Older Adults. Med. Sci. Sports Exerc. 2019, 51, 1684–1691. [Google Scholar] [CrossRef] [PubMed]
- Mateo, I.; Llorca, J.; Infante, J.; Rodríguez-Rodríguez, E.; Fernández-Viadero, C.; Peña, N.; Berciano, J.; Combarros, O. Low serum VEGF levels are associated with Alzheimer’s disease. Acta Neurol. Scand. 2007, 116, 56–58. [Google Scholar] [CrossRef] [PubMed]
- Cramer, S.R.; Nieman, D.C.; Lee, J.W. The effects of moderate exercise training on psychological well-being and mood state in women. J. Psychosom. Res. 1991, 35, 437–449. [Google Scholar] [CrossRef] [PubMed]
- Gerber, M.; Schilling, R.; Colledge, F.; Ludyga, S.; Pühse, U.; Brand, S. More than a simple pastime? The potential of physical activity to moderate the relationship between occupational stress and burnout symptoms. Int. J. Stress. Manag. 2020, 27, 53–64. [Google Scholar] [CrossRef]
- Strijk, J.E.; Proper, K.I.; van Mechelen, W.; van der Beek, A.J. Effectiveness of a worksite lifestyle intervention on vitality, work engagement, productivity, and sick leave: Results of a randomized controlled trial. Scand. J. Work. Environ. Health 2013, 39, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Lambert, L.; Topolskaya, E.; Warren, M.A.; Habib, M.A. Positivity at Work: It’s Not a Contradiction! In Positive Psychology in the Middle East/North Africa: Research, Policy, and Practise; Springer Nature Switzerland AG: Cham, Switzerland, 2019; pp. 133–156. [Google Scholar] [CrossRef]
- Radwan, A.; Barnes, L.; DeResh, R.; Englund, C.; Gribanoff, S.; Borsci, S. Effects of active microbreaks on the physical and mental well-being of office workers: A systematic review. Cogent Eng. 2022, 9. [Google Scholar] [CrossRef]
- Taylor, W.C. Transforming work breaks to promote health. Am. J. Prev. Med. 2005, 29, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Ginoux, C.; Isoard-Gautheur, S.; Sarrazin, P. “Workplace Physical Activity Program” (WOPAP) study protocol: A four-arm randomized controlled trial on preventing burnout and promoting vigor. BMC Public Health 2019, 19, 289. [Google Scholar] [CrossRef] [PubMed]
- Dickerson, S.S.; Gruenewald, T.L.; Kemeny, M.E. When the social self is threatened: Shame, physiology, and health. J. Pers. 2004, 72, 1191–1216. [Google Scholar] [CrossRef] [PubMed]
Time Point | Group | RU (au) $ | PU (au) | SU (au) | SM (cm) | S&R (cm) § | IME (au) $ |
---|---|---|---|---|---|---|---|
Session #1 | EG | 7.8 ± 2.9 | 3.6 ± 1.6 | 6.7 ± 3.8 | 53.5 ± 8.4 | −1.6 ± 9.3 | 51.6 ± 11.0 |
CG | 9.4 ± 2.9 | 3.3 ± 1.8 | 5.4 ± 2.4 | 50.5 ± 12.1 | −6.8 ± 9.5 | 48.1 ± 9.3 | |
Session #2 | EG | 7.1 ± 4.2 | 4.7 ± 3.1 | 7.0 ± 4.2 | 56.3 ± 8.4 | −3.8 ± 9.8 | 48.5 ± 15.9 |
CG | 9.0 ± 2.9 | 3.1 ± 1.3 | 5.6 ± 3.6 | 51.3 ± 10.8 | −1.1 ± 9.4 | 46.6 ± 10.4 | |
Session #3 | EG | 6.8 ± 3.3 | 5.4 ± 2.6 * | 8.0 ± 4.1 * | 52.9 ± 9.2 | −1.5 ± 9.7 | 56.3 ± 11.8 |
CG | 8.1 ± 3.1 | 3.1 ± 1.3 | 5.4 ± 2.0 | 51.3 ± 11.0 | −3.8 ± 10.9 | 49.8 ± 10.0 | |
Session #4 | EG | 5.8 ± 2.1 | 5.4 ± 2.6 * | 7.7 ± 4.1 * | 53.5 ± 9.2 | −1.1 ± 9.6 | 57.9 ± 11.3 |
CG | 8.5 ± 3.3 | 3.2 ± 1.3 | 4.9 ± 1.9 | 50.7 ± 11.1 | −6.2 ± 11.2 | 49.0 ± 8.0 | |
Session #5 | EG | 6.1 ± 2.7 | 5.4 ± 3.6 * | 8.3 ± 4.1 * | 53.0 ± 8.8 | 2.2 ± 9.4 * | 57.1 ± 10.4 |
CG | 9.3 ± 3.6 | 3.2 ± 1.3 | 5.2 ± 2.1 | 52.4 ± 12.4 | −7.6 ± 12.2 | 46.4 ± 10.6 |
Session #1 | Session #3 | Session #5 | ||||
---|---|---|---|---|---|---|
EG | CG | EG | CG | EG | CG | |
BMI (Kg/m2) | 23.3 ± 3.7 | 23.1 ± 3.5 | 23.4 ± 3.7 | 23.3 ± 3.5 | 23.2 ± 3.8 | 23.1 ± 3.5 |
% Body Fat $ | 25.5 ± 6.0 | 27.2 ± 6.5 | 25.6 ± 6.2 | 28.4 ± 7.0 | 24.7 ± 6.1 | 27.4 ± 7.4 |
EG | CG | Delta (#5–#1) | ||||
---|---|---|---|---|---|---|
Session #1 | Session #5 | Session #1 | Session #5 | EG | CG | |
Creatinine (mg/dL) | 0.92 ± 0.20 | 0.84 ± 0.22 * | 0.86 ± 0.12 | 0.77 ± 0.16 * | −0.09 ± 0.06 | −0.08 ± 0.08 |
Glucose (mg/dL) | 83.4 ± 7.65 | 75.20 ± 6.32 * | 81.92 ± 8.95 | 83.77 ± 8.17 | −6.53 ± 5.94 § | −0.08 ± 7.90 |
Insulin (µU/mL) | 5.45 ± 1.85 | 4.22 ± 1.22 * | 6.80 ± 7.68 | 7.18 ± 8.08 | −1.11 ± 1.04 § | 0.23 ± 1.27 |
Total cholesterol (mg/dL) | 186.67 ± 27.05 | 172.07 ± 21.18 * | 206.92 ± 56.31 | 211.85 ± 61.10 | −14.87 ± 7.80 § | 5.23 ± 19.63 |
Triglycerides (mg/dL) | 82.93 ± 29.65 | 76.67 ± 25.46 * | 86.00 ± 47.89 | 110.62 ± 47.27 * | −1.93 ± 12.92 § | 19.62± 8.90 |
HDL (mg/dL) | 60.00 ± 11.64 | 64.33 ± 11.99 * | 67.38 ± 16.33 | 62.38 ± 14.39 * | 2.80 ± 7.02 § | −3.23 ± 6.67 |
Cortisol (mcg/dL) | 15.71 ± 9.88 | 12.50 ± 8.03 * | 11.82 ± 2.61 | 14.50 ± 6.52 | −2.48 ± 3.70 | 1.83 ± 7.84 |
BDNF (pg/mL) | 8495.7 ± 2081.9 | 7778.9 ± 2818.0 | 8880.6 ± 2603.2 | 7412.3 ± 2818.8 * | −716.8 ± 2242.3 | −1468.3 ± 2261.5 |
VEGF (pg/mL) | 162.2 ± 118.9 | 252.2 ± 182.5 * | 223.0 ± 98.7 | 139.1 ± 73.8 * | 90.0 ± 128.4 § | −83.8 ± 84.0 |
NGF (pg/mL) | 153.1 ± 261.2 | 74.9 ± 146.6 | 143.4 ± 234.0 | 182.1 ± 289.6 | −78.2 ± 198.2 | 38.7 ± 203.5 |
Session #1 | Session #3 | Session #5 | ||||
---|---|---|---|---|---|---|
EG | CG | EG | CG | EG | CG | |
Decision latitude (au) ⸸ | 77.5 ± 7.5 | 73.9 ± 10.6 | 76.8 ± 8.1 | 72.2 ± 6.0 | 61.2 ± 25.4 | 58.9 ± 19.8 |
Job demand (au) § | 36.1 ± 3.7 | 34.5 ± 2.4 | 32.3 ± 6.0 | 34.4 ± 3.6 | 21.0 ± 12.8 * | 33.5 ± 5.1 |
Social support (au) | 19.7 ± 5.9 | 23.1 ± 5.2 | 23.7 ± 3.9 | 25.4 ± 4.8 | 25.7 ± 3.3 * | 20.2 ± 4.4 |
Time Point | Group | MD (au) § | PD (au) | TD (au) | PE (au) | EF (au) $ | FR (au) | WS (au) |
---|---|---|---|---|---|---|---|---|
Session #1 | EG | 74.0 ± 17.7 | 11.5 ± 12.6 | 44.7 ± 24.7 | 34.7 ± 18.3 | 26.7 ± 18.0 | 6.9 ± 10.6 | 13.2 ± 2.8 |
CG | 61.9 ± 23.9 | 7.5 ± 8.0 | 43.2 ± 21.2 | 31.1 ± 17.7 | 29.4 ± 20.7 | 4.6 ± 7.4 | 11.8 ± 3.5 | |
Session #2 | EG | 62.8 ± 19.8 | 9.1 ± 10.6 | 52.4 ± 23.4 | 35.8 ± 26.7 | 25.6 ± 18.6 | 14.4 ± 24.9 | 13.3 ± 3.4 |
CG | 55.1 ± 15.6 | 11.7 ± 11.2 | 44.0 ±23.7 | 28.5 ± 22.7 | 27.9 ± 15.5 | 13.1 ± 24.1 | 12.0 ± 2.0 | |
Session #3 | EG | 65.8 ± 22.9 | 11.0 ± 16.1 | 48.9 ± 18.9 | 23.3 ± 13.9 | 30.3 ± 20.0 | 13.6 ± 23.1 | 12.9 ± 3.2 |
CG | 60.6 ± 27.4 | 11.2 ± 15.8 | 43.6 ± 21.7 | 21.2 ± 12.8 | 26.1 ± 20.4 | 7.3 ± 9.5 | 11.3 ± 2.0 | |
Session #4 | EG | 53.3 ± 22.9 | 8.2 ± 10.0 | 50.3 ± 18.7 | 34.7 ± 21.9 | 22.3 ± 15.9 | 12.3 ± 16.6 | 12.1 ± 3.3 |
CG | 67.2 ± 23.2 | 6.1 ± 10.1 | 46.3 ± 27.0 | 22.3 ± 13.6 | 29.2 ± 23.8 | 19.7 ± 25.9 | 12.8 ± 2.9 | |
Session #5 | EG | 59.2 ± 16.9 | 7.3 ± 9.9 | 51.2 ± 19.7 | 23.1 ± 14.0 | 28.6 ± 21.4 | 15.8 ± 18.1 | 12.3 ± 2.3 |
CG | 73.3 ± 25.9 | 16.6 ± 20.9 | 48.6 ± 25.7 | 22.8 ± 10.0 | 36.8 ± 27.1 | 8.2 ± 15.5 | 13.7 ± 2.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Signorini, G.; Scurati, R.; Bosio, A.; D’Angelo, C.; Benedini, S.; Tringali, C.; Magaldi, E.; Rigon, M.; Invernizzi, P.L. UP150 Project: A Longitudinal Analysis of Active Lifestyles in the Complex Working System. Sports 2024, 12, 219. https://doi.org/10.3390/sports12080219
Signorini G, Scurati R, Bosio A, D’Angelo C, Benedini S, Tringali C, Magaldi E, Rigon M, Invernizzi PL. UP150 Project: A Longitudinal Analysis of Active Lifestyles in the Complex Working System. Sports. 2024; 12(8):219. https://doi.org/10.3390/sports12080219
Chicago/Turabian StyleSignorini, Gabriele, Raffaele Scurati, Andrea Bosio, Chiara D’Angelo, Stefano Benedini, Cristina Tringali, Emanuele Magaldi, Marta Rigon, and Pietro Luigi Invernizzi. 2024. "UP150 Project: A Longitudinal Analysis of Active Lifestyles in the Complex Working System" Sports 12, no. 8: 219. https://doi.org/10.3390/sports12080219
APA StyleSignorini, G., Scurati, R., Bosio, A., D’Angelo, C., Benedini, S., Tringali, C., Magaldi, E., Rigon, M., & Invernizzi, P. L. (2024). UP150 Project: A Longitudinal Analysis of Active Lifestyles in the Complex Working System. Sports, 12(8), 219. https://doi.org/10.3390/sports12080219