Gender Differences and Performance Changes in Sprinting and Long Jump Among Young Athletes
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
- Individualised training programmes: Coaches should recognise that performance improvements during adolescence may be influenced more by biological maturity than by chronological age. Athletes who mature early or late may require individualised training plans that account for their unique growth trajectory. This could involve adjusting training loads, particularly in strength- and speed-focused disciplines such as sprinting and long jump, to align with the athlete’s stage of physical development.
- Talent identification and development: Talent identification programmes can use these findings to better evaluate athletes’ long-term potential. Rather than focusing solely on current performance, it is important to consider an athlete’s growth phase and potential for future development. Late-maturing athletes may not exhibit peak performance in early adolescence but could excel later if provided with appropriate support and training opportunities. This requires a shift in scouting strategies to look beyond immediate results and assess an athlete’s developmental trajectory.
- Mitigating disadvantages for younger athletes: As this study shows that younger athletes in a given age group (those closer to the beginning of the calendar year) may be at a disadvantage, coaches should be cautious not to overlook late developers. Individualised assessment methods could be introduced in training environments to ensure that younger or late-maturing athletes are not discouraged or overlooked in talent development pipelines.
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eime, R.; Harvey, J.; Charity, M.; Payne, W. Population levels of sport participation: Implications for sport policy. BMC Public Health 2016, 16, 752. [Google Scholar] [CrossRef] [PubMed]
- Lee, O.; Park, S.; Kim, Y.; So, W.-Y. Participation in sports activities before and after the outbreak of COVID-19: Analysis of data from the 2020 Korea national sports participation survey. Healthcare 2022, 10, 122. [Google Scholar] [CrossRef] [PubMed]
- Hancock, D.J.; Adler, A.L.; Côté, J. A proposed theoretical model to explain relative age effects in sport. Eur. J. Sport Sci. 2013, 13, 630–637. [Google Scholar] [CrossRef] [PubMed]
- Weaver, J.; Filson Moses, J.; Snyder, M. Self-fulfilling prophecies in ability settings. J. Soc. Psychol. 2016, 156, 179–189. [Google Scholar] [CrossRef]
- Xiang, C.; Tengku Kamalden, T.F.; Liu, H.; Ismail, N. Exploring the multidisciplinary factors affecting sports talent identification. Front. Psychol. 2022, 13, 948121. [Google Scholar] [CrossRef]
- Boccia, G.; Brustio, P.R.; Moisè, P.; Franceschi, A.; La Torre, A.; Schena, F.; Rainoldi, A.; Cardinale, M. Elite national athletes reach their peak performance later than non-elite in sprints and throwing events. J. Sci. Med. Sport 2019, 22, 342–347. [Google Scholar] [CrossRef]
- Loturco, I.; Kobal, R.; Kitamura, K.; Fernandes, V.; Moura, N.; Siqueira, F.; Abad, C.C.C.; Pereira, L.A. Predictive factors of elite sprint performance: Influences of muscle mechanical properties and functional parameters. J. Strength Cond. Res. 2019, 33, 974–986. [Google Scholar] [CrossRef]
- Valamatos, M.J.; Abrantes, J.M.; Carnide, F.; Valamatos, M.-J.; Monteiro, C.P. Biomechanical performance factors in the track and field sprint start: A systematic review. Int. J. Environ. Res. Public Health 2022, 19, 4074. [Google Scholar] [CrossRef]
- Largo, R.; Gasser, T.; Prader, A.; Stuetzle, W.; Huber, P. Analysis of the adolescent growth spurt using smoothing spline functions. Ann. Hum. Biol. 1978, 5, 421–434. [Google Scholar] [CrossRef]
- Tanner, J.M. Normal growth and techniques of growth assessment. Clin. Endocrinol. Metab. 1986, 15, 411–451. [Google Scholar] [CrossRef]
- Tanner, J.M.; Whitehouse, R.H. Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch. Dis. Child. 1976, 51, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Goswami, B.; Roy, A.S.; Dalui, R.; Bandyopadhyay, A. Impact of pubertal growth on physical fitness. Am. J. Sports Med. 2014, 2, 34–39. [Google Scholar] [CrossRef]
- Crewther, B.; Obminski, Z.; Cook, C. The effect of steroid hormones on the physical performance of boys and girls during an Olympic weightlifting competition. Pediatr. Exerc. Sci. 2016, 28, 580–587. [Google Scholar] [CrossRef] [PubMed]
- Monteiro Pinto, V.C.; dos Santos, P.G.M.D.; Peixoto Dantas, M.; de Freitas Araújo, J.P.; de Araújo Tinoco Cabral, S.; de Araújo Tinoco Cabral, B.G. Relationship between skeletal age, hormonal markers and physical capacity in adolescents. Rev. Bras. Crescimento Desenvolv. Hum. 2017, 27, 77–83. [Google Scholar] [CrossRef]
- Carré, J.M.; Archer, J. Testosterone and human behavior: The role of individual and contextual variables. Curr. Opin. Psychol. 2018, 19, 149–153. [Google Scholar] [CrossRef]
- Handelsman, D.J.; Hirschberg, A.L.; Bermon, S. Circulating testosterone as the hormonal basis of sex differences in athletic performance. Endocr. Rev. 2018, 39, 803–829. [Google Scholar] [CrossRef]
- Hirschberg, A.L. Female hyperandrogenism and elite sport. Endocr. Connect. 2020, 9, R81–R92. [Google Scholar] [CrossRef]
- Hunter, S.K.; Angadi, S.S.; Bhargava, A.; Harper, J.; Hirschberg, A.L.; Levine, B.D.; Moreau, K.L.; Nokoff, N.J.; Stachenfeld, N.S.; Bermon, S. The biological basis of sex differences in athletic performance: Consensus statement for the American College of Sports Medicine. Transl. J. Am. Coll. Sports Med. 2023, 8, 1–33. [Google Scholar]
- Hilton, E.N.; Lundberg, T.R. Transgender women in the female category of sport: Perspectives on testosterone suppression and performance advantage. Sports Med. 2021, 51, 199–214. [Google Scholar] [CrossRef]
- Wattie, N.; Cobley, S.; Baker, J. Towards a unified understanding of relative age effects. J. Sports Sci. 2008, 26, 1403–1409. [Google Scholar] [CrossRef]
- Khamis, H.J.; Roche, A.F. Predicting adult stature without using skeletal age: The Khamis-Roche method. Pediatrics 1994, 94, 504–507. [Google Scholar] [PubMed]
- Malina, R.M.; Kozieł, S.M. Validation of maturity offset in a longitudinal sample of Polish boys. J. Sports Sci. 2014, 32, 424–437. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.A.; McKay, H.A.; Macdonald, H.; Nettlefold, L.; Baxter-Jones, A.D.; Cameron, N.; Brasher, P.M. Enhancing a somatic maturity prediction model. Med. Sci. Sports Exerc. 2015, 47, 1755–1764. [Google Scholar] [CrossRef] [PubMed]
- Tønnessen, E.; Svendsen, I.S.; Olsen, I.C.; Guttormsen, A.; Haugen, T. Performance development in adolescent track and field athletes according to age, sex and sport discipline. PLoS ONE 2015, 10, e0129014. [Google Scholar] [CrossRef]
- Atkinson, M.; James, J.; Quinn, M.; Senefeld, J.; Hunter, S. Sex differences in track and field elite youth. Med. Sci. Sports Exerc. 2024, 56, 1390–1397. [Google Scholar] [CrossRef]
- Bezuglov, E.; Ahmetov, I.I.; Lazarev, A.; Mskhalaya, G.; Talibov, O.; Ustinov, V.; Shoshorina, M.; Bogachko, E.; Azimi, V.; Morgans, R. The relationship of testosterone levels with sprint performance in young professional track and field athletes. Physiol. Behav. 2023, 271, 114344. [Google Scholar] [CrossRef]
- Malina, R.; Sławinska, T.; Ignasiak, Z.; Rożek, K.; Kochan, K.; Domaradzki, J.; Fugiel, J. Sex differences in growth and performance of track and field athletes 11–15 years. J. Hum. Kinet. 2010, 24, 79–85. [Google Scholar] [CrossRef]
- Ozaki, Y.; Ueda, T. The Relationship between Take-Off Parameters and Relative Vertical Momentum of Free Limbs at the Take-Off in Hurdle Clearance. J. Hum. Kinet. 2024, 93, 41–52. [Google Scholar] [CrossRef]
- Rodriguez-Gomez, P.; Gallo-Salazar, C.; Salinero, J.J. Prospective and Retrospective Analysis of the Sporting Success of Elite Spanish High and Long Jumpers. J. Hum. Kinet. 2024, 90, 161–168. [Google Scholar] [CrossRef]
- Handelsman, D.J. Sex differences in athletic performance emerge coinciding with the onset of male puberty. Clin. Endocrinol. 2017, 87, 68–72. [Google Scholar] [CrossRef]
- Senefeld, J.W.; Coleman, D.L.; Johnson, P.W.; Carter, R.E.; Clayburn, A.J.; Joyner, M.J. Divergence in timing and magnitude of testosterone levels between male and female youths. JAMA 2020, 324, 99–101. [Google Scholar] [CrossRef] [PubMed]
- Malina, R.M.; Rogol, A.D.; Cumming, S.P.; e Silva, M.J.C.; Figueiredo, A.J. Biological maturation of youth athletes: Assessment and implications. Br. J. Sports Med. 2015, 49, 852–859. [Google Scholar] [CrossRef] [PubMed]
- Contini, M.E.; Spence, J.R. And the award goes to… the Matthew Effect: Examining external status as a predictor of productivity and opportunity. PLoS ONE 2023, 18, e0290954. [Google Scholar] [CrossRef] [PubMed]
- Enoksen, E. Drop-out rate and drop-out reasons among promising Norwegian track and field athletes: A 25 year study. Scand. Sport Stud. Forum 2011, 2, 19–43. [Google Scholar]
- Bayraktar, I.; Deliceoglu, G.; Yaman, M. Examination of the Normative Values of Turkish Adolescence Track and Field Athletes. Int. J. Acad. Res. 2014, 6, 196–202. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Stepanova, A.A.; Biktagirova, E.M.; Semenova, E.A.; Shchuplova, I.S.; Bets, L.V.; Andryushchenko, L.B.; Borisov, O.V.; Andryushchenko, O.N.; Generozov, E.V.; et al. Is testosterone responsible for athletic success in female athletes? J. Sports Med. Phys. Fit. 2020, 60, 1377–1382. [Google Scholar] [CrossRef]
- Bermon, S.; Garnier, P.-Y. Serum androgen levels and their relation to performance in track and field: Mass spectrometry results from 2127 observations in male and female elite athletes. Br. J. Sports Med. 2017, 51, 1309–1314. [Google Scholar] [CrossRef]
- Bezuglov, E.; Semeniuk, N.; Shoshorina, M.; Savin, E.; Waśkiewicz, Z.; Emanov, A.; Malyakin, G.; Telyshev, D.; Morgans, R. Is There a Relative Age Effect among the Most Successful Track and Field Athletes? J. Hum. Kinet. 2024, 92, 193. [Google Scholar] [CrossRef]
- Bezuglov, E.N.; Nikolaidis, P.T.; Khaitin, V.; Usmanova, E.; Luibushkina, A.; Repetiuk, A.; Waśkiewicz, Z.; Gerasimuk, D.; Rosemann, T.; Knechtle, B. Prevalence of relative age effect in Russian soccer: The role of chronological age and performance. Int. J. Environ. Res. Public Health 2019, 16, 4055. [Google Scholar] [CrossRef]
- Bezuglov, E.; Shvets, E.; Lyubushkina, A.; Lazarev, A.; Valova, Y.; Zholinsky, A.; Waskiewicz, Z. Relative age effect in Russian elite hockey. J. Strength Cond. Res. 2020, 34, 2522–2527. [Google Scholar] [CrossRef]
Age Group | Sprint | Jump | ||||
---|---|---|---|---|---|---|
Boys | Girls | p-Value | Boys | Girls | p-Value | |
10 years | 127 ± 3.1, n = 92 | 127 ± 3.1, n = 96 | 0.78 | 127 ± 3.2, n = 111 | 127 ± 3.2, n = 104 | 0.46 |
11 years | 138 ± 3.0, n = 104 | 138 ± 3.0, n = 102 | 0.69 | 138 ± 3.2, n = 90 | 137 ± 3.3, n = 125 | 0.93 |
12 years | 151 ± 3.4, n = 94 | 151 ± 3.15, n = 144 | 0.36 | 152 ± 3.1, n = 92 | 151 ± 3.1, n = 111 | 0.12 |
13 years | 163 ± 3.0, n = 108 | 162 ± 3.4, n = 216 | 0.012 | 162 ± 3.1, n = 98 | 162 ± 3.3, n = 117 | 0.19 |
14 years | 175 ± 3.2, n = 148 | 174 ± 3.3, n = 185 | 0.063 | 175 ± 3.1, n = 78 | 174 ± 3.5 n = 95 | 0.13 |
15 years | 184 ± 2.6, n = 155 | 184 ± 2.7, n = 116 | 0.30 | 184 ± 2.6, n = 79 | 183 ± 2.4, n = 86 | 0.031 |
10 years | 127 ± 3.1, n = 92 | 127 ± 3.1, n = 96 | 0.78 | 127 ± 3.2, n = 111 | 127 ± 3.2, n = 104 | 0.46 |
Age Group | Sprint | Jump | ||||
---|---|---|---|---|---|---|
Boys | Girls | p-Value | Boys | Girls | p-Value | |
10 years | 9.19 ± 0.20, n = 92 | 9.17 ± 0.19, n = 96 | 0.48 | 403 ± 22, n = 111 | 403 ± 19, n = 104 | 0.98 |
11 years | 8.93 ± 0.21, n = 104 | 8,93 ± 0.19, n = 102 | 0.83 | 434 ± 22, n = 90 | 423 ± 19, n = 125 | <0.001 |
12 years | 8.48 ± 0.19, n = 94 | 8.64 ± 0.15, n = 144 | <0.001 | 460 ± 22, n = 92 | 448 ± 18.5, n = 111 | <0.001 |
13 years | 8.01 ± 0.15, n = 108 | 8.52 ± 0.14, n = 216 | <0.001 | 514 ± 24.5, n = 98 | 476 ± 18, n = 117 | <0.001 |
14 years | 7.76 ± 0.15, n = 148 | 8.40 ± 0.14, n = 185 | <0.001 | 570 ± 30, n = 78 | 493 ± 17.5 n = 95 | <0.001 |
15 years | 7.64 ± 0.14, n = 155 | 8.33 ± 0.15, n = 116 | <0.001 | 594 ± 30, n = 79 | 489 ± 22, n = 86 | <0.001 |
11 Years | 12 Years | 13 Years | 14 Years | 15 Years | |
---|---|---|---|---|---|
10 years | 0.287 p < 0.001 | 0.528 p < 0.001 | 0.649 p < 0.001 | 0.776 p < 0.001 | 0.8384 p < 0.001 |
11 years | 0.241 p < 0.001 | 0.362 p = 0.816 | 0.489 p < 0.001 | 0.5512 p < 0.001 | |
12 years | 0.121 p < 0.001 | 0.248 p < 0.001 | 0.3106 p < 0.001 | ||
13 years | 0.127 p < 0.001 | 0.1895 p < 0.001 | |||
14 years | 0.0627 p = 0.055 |
11 Years | 12 Years | 13 Years | 14 Years | 15 Years | |
---|---|---|---|---|---|
10 years | −19.5 p < 0.001 | −44.6 p < 0.001 | −73.1 p < 0.001 | −91.8 p < 0.001 | −89.73 p < 0.001 |
11 years | −25.1 p < 0.001 | −53.6 p < 0.001 | −72.3 p < 0.001 | −70.23 p < 0.001 | |
12 years | −28.5 p < 0.001 | −47.2 p < 0.001 | −45.09 p < 0.001 | ||
13 years | −18.7 p < 0.001 | −16.61 p < 0.001 | |||
14 years | 2.09 p = 0.98 |
11 Years | 12 Years | 13 Years | 14 Years | 15 Years | |
---|---|---|---|---|---|
10 years | 0.302 p < 0.001 | 0.712 p < 0.001 | 1.185 p < 0.001 | 1.435 p < 0.001 | 1.547 p < 0.001 |
11 years | 0.411 p < 0.001 | 0.883 p < 0.001 | 1.133 p < 0.001 | 1.246 p < 0.001 | |
12 years | 0.472 p < 0.001 | 0.722 p < 0.001 | 0.835 p < 0.001 | ||
13 years | 0.250 p < 0.001 | 0.363 p < 0.001 | |||
14 years | 0.113 p < 0.001 |
11 Years | 12 Years | 13 Years | 14 Years | 15 Years | |
---|---|---|---|---|---|
10 years | −35.7 p < 0.001 | −56.4 p < 0.001 | −110.5 p < 0.001 | −167 p < 0.001 | −191.0 p < 0.001 |
11 years | −20.8 p < 0.001 | −74.9 p < 0.001 | −132 p < 0.001 | −155.4 p < 0.001 | |
12 years | −54.1 p < 0.001 | −111 p < 0.001 | −134.6 p < 0.001 | ||
13 years | −56.7 p < 0.001 | −80.5 p < 0.001 | |||
14 years | −23.8 p < 0.001 |
Age Group | Boys Sprint | Girls Sprint | p-Value Sprint | Boys Jump | Girls Jump | p-Value Jump |
---|---|---|---|---|---|---|
10 years | 8.77 ± 0.11, n = 10 | 8.79 ± 0.16, n = 10 | 0.761 | 379.00 ± 1.15, n = 10 | 379.80 ± 0.63, n = 10 | 0.075 |
11 years | 8.43 ± 0.07, n = 10 | 8.47 ± 0.11, n = 10 | 0.346 | 414.20 ± 1.55, n = 10 | 403.00 ± 0.94, n = 10 | 0.000 |
12 years | 8.11 ± 0.10, n = 10 | 8.28 ± 0.11, n = 10 | 0.002 | 432.20 ± 1.32, n = 10 | 428.10 ± 0.88, n = 10 | 0.000 |
13 years | 7.70 ± 0.07, n = 10 | 8.16 ± 0.10, n = 10 | 0.000 | 488.90 ± 0.88, n = 10 | 456.10 ± 0.88, n = 10 | 0.000 |
14 years | 7.44 ± 0.09, n = 10 | 8.09 ± 0.08, n = 10 | 0.000 | 541.00 ± 1.41, n = 10 | 473.20 ± 1.55, n = 10 | 0.000 |
15 years | 7.34 ± 0.08, n = 10 | 8.01 ± 0.05, n = 10 | 0.000 | 561.30 ± 1.89, n = 10 | 467.30 ± 1.06, n = 10 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bezuglov, E.; Achkasov, E.; Vakhidov, T.; Malyakin, G.; Kapralova, E.; Kolesnichenko, V.; Vinogradov, M.; Zharikova, T.; Emanov, A. Gender Differences and Performance Changes in Sprinting and Long Jump Among Young Athletes. Sports 2024, 12, 347. https://doi.org/10.3390/sports12120347
Bezuglov E, Achkasov E, Vakhidov T, Malyakin G, Kapralova E, Kolesnichenko V, Vinogradov M, Zharikova T, Emanov A. Gender Differences and Performance Changes in Sprinting and Long Jump Among Young Athletes. Sports. 2024; 12(12):347. https://doi.org/10.3390/sports12120347
Chicago/Turabian StyleBezuglov, Eduard, Evgeniy Achkasov, Timur Vakhidov, Georgiy Malyakin, Elizaveta Kapralova, Vyacheslav Kolesnichenko, Mikhail Vinogradov, Tatiana Zharikova, and Anton Emanov. 2024. "Gender Differences and Performance Changes in Sprinting and Long Jump Among Young Athletes" Sports 12, no. 12: 347. https://doi.org/10.3390/sports12120347
APA StyleBezuglov, E., Achkasov, E., Vakhidov, T., Malyakin, G., Kapralova, E., Kolesnichenko, V., Vinogradov, M., Zharikova, T., & Emanov, A. (2024). Gender Differences and Performance Changes in Sprinting and Long Jump Among Young Athletes. Sports, 12(12), 347. https://doi.org/10.3390/sports12120347