The Effect of Dark Chocolate Consumption on Arterial Function in Endurance Male Runners: Prospective Cohort Study
Abstract
:1. Introduction
1.1. Physical Activity and Vascular Function
1.2. Polyphenols and Nitric Oxide
1.3. Nitrates and Dark Chocolate
1.4. Background and Research Objective
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Instruments and Measurement Procedures
2.4. Dark Chocolate
2.5. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DeBlois, J.P.; Lefferts, W.K.; Heffernan, K.S. Influence of sprint exercise on aortic pulse wave velocity and femoral artery shear patterns. Eur. J. Appl. Physiol. 2020, 120, 2635–2647. [Google Scholar] [CrossRef] [PubMed]
- Durand, M.J.; Gutterman, D.D. Exercise and vascular function: How much is too much? Can. J. Physiol. Pharmacol. 2014, 92, 551–557. [Google Scholar] [CrossRef]
- Bovolini, A.; Costa-Brito, A.R.; Martins, F.; Furtado, G.E.; Mendonça, G.V.; Vila-Chã, C. Impact of exercise on vascular function in middle-aged and older adults: A scoping review. Sports 2022, 10, 208. [Google Scholar] [CrossRef] [PubMed]
- Kleinloog, J.P.D.; Mensink, R.P.; Roodt, J.O.; Thijssen, D.H.J.; Hesselink, M.K.C.; Joris, P.J. Aerobic exercise training improves not only brachial artery flow-mediated vasodilatation but also carotid artery reactivity: A randomized controlled, cross-over trial in older men. Physiol. Rep. 2022, 10, e15395. [Google Scholar] [CrossRef] [PubMed]
- Craighead, D.H.; Freeberg, K.A.; Seals, D.R. The protective role of regular aerobic exercise on vascular function with aging. Curr. Opin. Physiol. 2019, 10, 55–63. [Google Scholar] [CrossRef]
- Kobayashi, R.; Yoshida, S.; Okamoto, T. Effects of acute aerobic exercise on arterial stiffness before and after glucose ingestion. Int. J. Sports Med. 2017, 38, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, R.; Yoshida, S.; Okamoto, T. Arterial stiffness after glucose ingestion in exercise-trained versus untrained men. Appl. Physiol. Nutr. Metab. 2015, 40, 1151–1156. [Google Scholar] [CrossRef]
- Hambrecht, R.; Gielen, S.; Linke, A.; Fiehn, E.; Yu, J.; Walther, C.; Schoene, N.; Schuler, G. Effects of exercise training on left ventricular function and peripheral resistance in patients with chronic heart failure: A randomized trial. JAMA 2000, 283, 3095–3101. [Google Scholar] [CrossRef]
- Kay, C.D.; Kris-Etherton, P.M.; West, S.G. Effects of antioxidant-rich foods on vascular reactivity: Review of the clinical evidence. Curr. Atheroscler. Rep. 2006, 8, 510–522. [Google Scholar] [CrossRef] [PubMed]
- Dugo, L.; Tripodo, G.; Santi, L.; Fanali, C. Cocoa polyphenols: Chemistry, bioavailability and effects on cardiovascular performance. Curr. Med. Chem. 2018, 25, 4903–4917. [Google Scholar] [CrossRef]
- Liu, R.H. Health-promoting components of fruits and vegetables in the diet. Adv. Nutr. 2013, 4, 384S–392S. [Google Scholar] [CrossRef] [PubMed]
- Donovan, J.L.; Holes-Lewis, K.A.; Chavin, K.D.; Egan, B.M. Cocoa and Health. In Teas, Cocoa and Coffee; Wiley-Blackwell: Hoboken, NJ, USA, 2011; pp. 219–246. [Google Scholar]
- Fraga, C.G.; Oteiza, P.I. Dietary flavonoids: Role of (-)-epicatechin and related procyanidins in cell signaling. Free Radic. Biol. Med. 2011, 51, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Hii, C.L.; Law, C.L.; Suzannah, S.; Misnawi, B.; Cloke, M. Polyphenols in cocoa (Theobroma cacao L.). Asian J. Food Agro-Ind. 2009, 2, 702–722. [Google Scholar]
- Hooper, L.; Kroon, P.A.; Rimm, E.B.; Cohn, J.S.; Harvey, I.; Le Cornu, K.A.; Ryder, J.J.; Hall, W.L.; Cassidy, A. Flavonoids, flavonoid-rich foods, and cardiovascular risk: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2008, 88, 38–50. [Google Scholar] [CrossRef]
- Fraga, C.G.; Croft, K.D.; Kennedy, D.O.; Tomás-Barberán, F.A. The effects of polyphenols and other bioactives on human health. Food Funct. 2019, 10, 514–528. [Google Scholar] [CrossRef] [PubMed]
- Al-Dashti, Y.A.; Holt, R.R.; Stebbins, C.L.; Keen, C.L.; Hackman, R.M. Dietary flavanols: A review of select effects on vascular function, blood pressure, and exercise performance. J. Am. Coll. Nutr. 2018, 37, 553–567. [Google Scholar] [CrossRef]
- Fraga, C.G.; Litterio, M.C.; Prince, P.D.; Calabró, V.; Piotrkowski, B.; Galleano, M. Cocoa flavanols: Effects on vascular nitric oxide and blood pressure. J. Clin. Biochem. Nutr. 2011, 48, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Fleenor, B.S.; Berrones, A.J. Arterial Stiffness: Implications and Interventions; Springer International Publishing: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Woessner, M.N.; McIlvenna, L.C.; Ortiz de Zevallos, J.; Neil, C.J.; Allen, J.D. Dietary nitrate supplementation in cardiovascular health: An ergogenic aid or exercise therapeutic? Am. J. Physiol. Heart Circ. Physiol. 2018, 314, H195–H212. [Google Scholar] [CrossRef] [PubMed]
- Van De Walle, G.P.; Vukovich, M.D. The effect of nitrate supplementation on exercise tolerance and performance: A systematic review and meta-analysis. J. Strength Cond. Res. 2018, 32, 1796–1808. [Google Scholar] [CrossRef]
- Thompson, C.; Vanhatalo, A.; Jell, H.; Fulford, J.; Carter, J.; Nyman, L.; Bailey, S.J.; Jones, A.M. Dietary nitrate supplementation improves sprint and high-intensity intermittent running performance. Nitric Oxide Biol. Chem. 2016, 61, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Clifford, T.; Howatson, G.; West, D.J.; Stevenson, E.J. The potential benefits of red beetroot supplementation in health and disease. Nutrients 2015, 7, 2801–2822. [Google Scholar] [CrossRef]
- Christensen, P.M.; Nyberg, M.; Bangsbo, J. Influence of nitrate supplementation on VO2 kinetics and endurance of elite cyclists: Nitrate supplementation in elite cyclists. Scand. J. Med. Sci. Sports 2013, 23, e21–e31. [Google Scholar] [CrossRef] [PubMed]
- Larsen, F.J.; Weitzberg, E.; Lundberg, J.O.; Ekblom, B. Effects of dietary nitrate on oxygen cost during exercise. Acta Physiol. 2007, 191, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Santos Leal, I.; Guimaraes, M.; Costa Campos, Y.; Abreu, W.; da Silva, S.F. Effect of acute and chronic nitrate supplementation on the performance of endurance athletes: A systematic review. Multidiscip. Rev. 2023, 5, 2022009. [Google Scholar]
- Shannon, O.M.; Barlow, M.J.; Duckworth, L.; Williams, E.; Wort, G.; Woods, D.; Siervo, M.; O’Hara, J.P. Dietary nitrate supplementation enhances short but no longer duration running time-trial performance. Eur. J. Appl. Physiol. 2017, 117, 775–785. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Gupta, S.; Adli, T.; Hou, W.; Coolsaet, R.; Hayes, A.; Kim, K.; Pandey, A.; Gordon, J.; Chahil, G.; et al. The effects of dietary nitrate supplementation on endurance exercise performance and cardiorespiratory measures in healthy adults: A systematic review and meta-analysis. J. Int. Soc. Sports Nutr. 2021, 18, 55. [Google Scholar] [CrossRef]
- Patel, R.K.; Brouner, J.; Spendiff, O. Dark chocolate supplementation reduces the oxygen cost of moderate-intensity cycling. J. Int. Soc. Sports Nutr. 2015, 12, 47. [Google Scholar] [CrossRef] [PubMed]
- Azad, J.B.; Daneshzad, E.; Meysamie, A.P.; Koohdani, F. Chronic and acute effects of cocoa products intake on arterial stiffness and platelet count and function: A systematic review and dose-response meta-analysis of randomized clinical trials. Crit. Rev. Food Sci. Nutr. 2021, 61, 357–379. [Google Scholar] [CrossRef] [PubMed]
- Ebaditabar, M.; Djafarian, K.; Saeidifard, N.; Shab-Bidar, S. Effect of dark chocolate on flow-mediated dilatation: Systematic review, meta-analysis, and dose-response analysis of randomized controlled trials. Clin. Nutr. ESPEN 2020, 36, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Grassi, D.; Necozione, S.; Lippi, C.; Croce, G.; Valeri, L.; Pasqualetti, P.; Desideri, G.; Blumberg, J.B.; Ferri, C. Cocoa reduces blood pressure and insulin resistance and improves endothelium-dependent vasodilation in hypertensives. Hypertension 2005, 46, 398–405. [Google Scholar] [CrossRef]
- Engler, M.B.; Engler, M.M.; Chen, C.Y.; Malloy, M.J.; Browne, A.; Chiu, E.Y.; Kwak, H.-K.; Milbury, P.; Paul, S.M.; Blumberg, J.; et al. Flavonoid-rich dark chocolate improves endothelial function and increases plasma epicatechin concentrations in healthy adults. J. Am. Coll. Nutr. 2004, 23, 197–204. [Google Scholar] [CrossRef]
- Schramm, D.D.; Wang, J.F.; Holt, R.R.; Ensunsa, J.L.; Gonsalves, J.L.; Lazarus, S.A.; Schmitz, H.H.; German, J.B.; Keen, C.L. Chocolate procyanidins decrease the leukotriene-prostacyclin ratio in humans and human aortic endothelial cells. Am. J. Clin. Nutr. 2001, 73, 36–40. [Google Scholar] [CrossRef]
- Wilkinson, I.B.; McEniery, C.M.; Schillaci, G.; Boutouyrie, P.; Segers, P.; Donald, A.; Chowienczyk, P.J. ARTERY Society guidelines for validation of non-invasive haemodynamic measurement devices: Part 1, arterial pulse wave velocity. Artery Res. 2010, 4, 34. [Google Scholar] [CrossRef]
- Pereira, T.; Maldonado, J. Pulse wave analysis reproducibility with the Complior Analyse device: A methodological study. Blood Press. Monit. 2018, 23, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Stea, F.; Bozec, E.; Millasseau, S.; Khettab, H.; Boutouyrie, P.; Laurent, S. Comparison of the Complior Analyse device with Sphygmocor and Complior SP for pulse wave velocity and central pressure assessment. J. Hypertens. 2014, 32, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Spronck, B.; Terentes-Printzios, D.; Avolio, A.P.; Boutouyrie, P.; Guala, A.; Jerončić, A.; Laurent, S.; Barbosa, E.C.D.; Baulmann, J.; Chen, C.-H.; et al. 2024 recommendations for validation of noninvasive arterial pulse wave velocity measurement devices. Hypertension 2023, 81, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Asmar, R.; Benetos, A.; Topouchian, J.; Laurent, P.; Pannier, B.; Brisac, A.-M.; Target, R.; Levy, B.I. Assessment of arterial distensibility by automatic pulse wave velocity measurement: Validation and clinical application studies. Hypertension 1995, 26, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Zinner, C.; Sperlich, B.; Wahl, P.; Mester, J. Classification of selected cardiopulmonary variables of elite athletes of different age, gender, and disciplines during incremental exercise testing. SpringerPlus 2015, 4, 544. [Google Scholar] [CrossRef]
- Vilela, E.M.; Oliveira, C.; Oliveira, C.; Torres, S.; Sampaio, F.; Primo, J.; Ribeiro, J.; Teixeira, M.; Oliveira, M.; Bettencourt, N.; et al. Sixty years of the Bruce protocol: Reappraising the contemporary role of exercise stress testing with electrocardiographic monitoring. Porto Biomed. J. 2023, 8, e235. [Google Scholar] [CrossRef] [PubMed]
- Klukowska, A.M.; Vandertop, W.P.; Schröder, M.L.; Staartjes, V.E. Calculation of the minimum clinically important difference (MCID) using different methodologies: Case study and practical guide. Eur. Spine J. 2024, 33, 3388–3400. [Google Scholar] [CrossRef]
- Van de Laar, R.J.; Ferreira, I.; van Mechelen, W.; Prins, M.H.; Twisk, J.W.; Stehouwer, C.D. Habitual physical activity and peripheral arterial compliance in young adults: The Amsterdam Growth and Health Longitudinal Study. Am. J. Hypertens. 2011, 24, 200–208. [Google Scholar] [CrossRef] [PubMed]
- McEniery, C.M.; Yasmin, N.; Hall, I.R.; Qasem, A.; Wilkinson, I.B.; Cockcroft, J.R.; ACCT Investigators. Normal vascular aging: Differential effects on wave reflection and aortic pulse wave velocity: The Anglo-Cardiff Collaborative Trial (ACCT). J. Am. Coll. Cardiol. 2005, 46, 1753–1760. [Google Scholar] [CrossRef] [PubMed]
- The Reference Values for Arterial Stiffness’ Collaboration. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values’. Eur. Heart J. 2010, 31, 2338–2350. [Google Scholar] [CrossRef] [PubMed]
- Fernberg, U.; Fernström, M.; Hurtig-Wennlöf, A. Arterial stiffness is associated with cardiorespiratory fitness and body mass index in young Swedish adults: The Lifestyle, Biomarkers, and Atherosclerosis study. Eur. J. Prev. Cardiol. 2017, 24, 1809–1818. [Google Scholar] [CrossRef] [PubMed]
- Taubert, D.; Roesen, R.; Schömig, E. Effect of cocoa and tea intake on blood pressure: A meta-analysis. Arch. Intern. Med. 2007, 167, 626–634. [Google Scholar] [CrossRef]
- Davison, G.; Callister, R.; Williamson, G.; Cooper, K.A.; Gleeson, M. The effect of acute pre-exercise dark chocolate consumption on plasma antioxidant status, oxidative stress, and immunoendocrine responses to prolonged exercise. Eur. J. Nutr. 2012, 51, 69–79. [Google Scholar] [CrossRef]
- Vlachopoulos, C.; Kardara, D.; Anastasakis, A.; Baou, K.; Terentes-Printzios, D.; Tousoulis, D.; Stefanadis, C. Arterial stiffness and wave reflections in marathon runners. Am. J. Hypertens. 2010, 23, 974–979. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Guzmán, M.; Jiménez, R.; Sánchez, M.; Zarzuelo, M.J.; Galindo, P.; Quintela, A.M.; López-Sepúlveda, R.; Romero, M.; Tamargo, J.; Vargas, F.; et al. Epicatechin lowers blood pressure, restores endothelial function, and decreases oxidative stress and endothelin-1 and NADPH oxidase activity in DOCA-salt hypertension. Free Radic. Biol. Med. 2012, 52, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Schewe, T.; Steffen, Y.; Sies, H. How do dietary flavanols improve vascular function? A position paper. Arch. Biochem. Biophys. 2008, 476, 102–106. [Google Scholar] [CrossRef]
- Deanfield, J.E.; Halcox, J.P.; Rabelink, T.J. Endothelial function and dysfunction: Testing and clinical relevance. Circulation 2007, 115, 1285–1295. [Google Scholar] [CrossRef] [PubMed]
- Bourque, S.L.; Davidge, S.T.; Adams, M.A. The interaction between endothelin-1 and nitric oxide in the vasculature: New perspectives. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 300, R1288–R1295. [Google Scholar] [CrossRef] [PubMed]
- Schroeter, H.; Heiss, C.; Balzer, J.; Kleinbongard, P.; Keen, C.L.; Hollenberg, N.K.; Sies, H.; Kwik-Uribe, C.; Schmitz, H.H.; Kelm, M. (-)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc. Natl. Acad. Sci. USA 2006, 103, 1024–1029. [Google Scholar] [CrossRef] [PubMed]
- Meng, C.C.; Jalil, A.M.M.; Ismail, A. Phenolic and theobromine contents of commercial dark, milk, and white chocolates on the Malaysian market. Molecules 2009, 14, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.-L. Understanding cardiac output. Crit. Care 2008, 12, 174. [Google Scholar] [CrossRef] [PubMed]
- Kelley, G.A.; Kelley, K.S.; Stauffer, B.L. Walking and resting blood pressure: An inter-individual response difference meta-analysis of randomized controlled trials. Sci. Prog. 2022, 105, 368504221101636. [Google Scholar] [CrossRef]
- Podrug, M.; Šunjić, B.; Koren, P.; Đogaš, V.; Mudnić, I.; Boban, M.; Jerončić, A. What is the smallest change in pulse wave velocity measurements that can be attributed to clinical changes in arterial stiffness with certainty: A randomized crossover study. J. Cardiovasc. Dev. Dis. 2023, 10, 44. [Google Scholar] [CrossRef]
- Wilkinson, T.J.; Watson, E.L.; Xenophontos, S.; Gould, D.W.; Smith, A.C. The “minimum clinically important difference” in frequently reported objective physical function tests after a 12-week renal rehabilitation exercise intervention in nondialysis chronic kidney disease. Am. J. Phys. Med. Rehabil. 2019, 98, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Ashor, A.W.; Lara, J.; Siervo, M.; Celis-Morales, C.; Mathers, J.C. Effects of exercise modalities on arterial stiffness and wave reflection: A systematic review and meta-analysis of randomized controlled trials. PLoS ONE 2014, 9, e110034. [Google Scholar] [CrossRef] [PubMed]
- Lavie, C.J.; Arena, R.; Swift, D.L.; Johannsen, N.M.; Sui, X.; Lee, D.-C.; Earnest, C.P.; Church, T.S.; O’Keefe, J.H.; Milani, R.V.; et al. Exercise and the cardiovascular system: Clinical science and cardiovascular outcomes. Circ. Res. 2015, 117, 207–219. [Google Scholar] [CrossRef] [PubMed]
- Ried, K.; Sullivan, T.R.; Fakler, P.; Frank, O.R.; Stocks, N.P. Effect of chocolate on blood pressure. In Cochrane Database Systematic Reviews; Ried, K., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Latif, R. Chocolate/cocoa and human health: A review. Neth. J. Med. 2013, 71, 63–68. [Google Scholar]
Component | Polyphenols (as Tyrosol) (mg/Kg) | Catechins (Catechin-Epicatechin) (mg/Kg) |
---|---|---|
Content | 24,450 | 11,550 |
Method | COI/T.20/Doc No 29 | HPLC-UV |
Method Code | M130/GF | M129/GF |
Method Reference Limit | 40 | 1 |
Mean ± SD (n = 46) | Mean ± SD (n = 23) <40 yrs | Mean ± SD (n = 23) >40 yrs | |
---|---|---|---|
Age (years) | 40.69 ± 9.04 | 33.13 ± 4.89 | 48.26 ± 4.85 |
Weight (kg) | 73.69 ± 9.40 | 72.48 ± 10.04 | 74.91 ± 8.77 |
Height (cm) | 175.86 ± 7.61 | 176.65 ± 7.63 | 175.09 ± 7.69 |
ΒΜΙ (kg/m2) | 23.79 ± 2.35 | 23.17 ± 2.31 | 24.42 ± 2.48 |
HR (bpm) | 57.34 ± 6.70 | 54.43 ± 7.19 | 56.26 ± 6.18 |
SBP (mmHg) | 128.58 ± 8.40 | 124.61 ± 8.94 | 126.57 ± 7.90 |
DBP (mmHg) | 76.47 ± 6.78 | 73.96 ± 6.53 | 75.00 ± 7.12 |
T-E (yrs) | 9.98 ± 6.03 | 10.43 ± 6.69 | 9.52 ± 5.40 |
Baseline | Follow-Up | Difference | ||||||
---|---|---|---|---|---|---|---|---|
Mean ± SD (n = 46) | Mean ± SD (n = 46) | Mean ± SD | t | p | Cohen’s d | MID | ||
HR (rest) (bpm) | 57.59 ± 8.82 | 60.22 ± 10.11 | −2.63 ± 8.03 | −2.221 | 0.031 * | −0.327 | 1.606 | |
bSBP (mmHg) | 128.39 ± 11.59 | 125.67 ± 11.52 | 2.72 ± 7.39 | 2.494 | 0.016 * | 0.368 | 1.478 | |
bDBP (mmHg) | 76.67 ± 9.49 | 74.54 ± 9.11 | 2.13 ± 6.33 | 2.284 | 0.027 * | 0.337 | 1.266 | |
bPP (mmHg) | 51.72 ± 10.61 | 51.13 ± 8.61 | 0.59 ± 7.72 | 0.516 | 0.609 | 0.076 | 1.544 | |
bMAP (mmHg) | 93.74 ± 8.99 | 91.48 ± 9.06 | 2.26 ± 5.65 | 2.714 | 0.009 * | 0.400 | 2.825 | |
cSBP (mmHg) | 121.50 ± 13.94 | 120.00 ± 12.72 | 1.50 ± 10.67 | 0.954 | 0.345 | 0.141 | 2.134 | |
cDBP (mmHg) | 76.38 ± 9.18 | 74.24 ± 9.01 | 2.14 ± 6.32 | 2.264 | 0.029 * | 0.339 | 1.264 | |
cPP (mmHg) | 44.83 ± 12.18 | 45.46 ± 12.07 | −0.63 ± 9.22 | −0.464 | 0.645 | −0.068 | 1.844 | |
cMAP (mmHg) | 93.45 ± 8.68 | 91.18 ± 9.02 | 2.27 ± 5.55 | 2.614 | 0.009 * | 0.404 | 2.775 | |
cf-PWV (m/s) | 7.78 ± 1.24 | 6.86 ± 1.20 | 0.92 ± 0.94 | 6.606 | 0.000 ** | 0.974 | 0.752 | |
AIx (%) | 5.56 ± 14.80 | −13.91 ± 22.67 | 19.47 ± 22.87 | 5.775 | 0.000 ** | 0.852 | 18.296 | |
PPratio | 1.18 ± 0.15 | 1.16 ± 0.17 | 0.03 ± 0.19 | 0.915 | 0.365 | 0.135 | 0.038 | |
LVET (msec) | 325.83 ± 34.92 | 309.89 ± 28.69 | 15.94 ± 31.68 | 3.412 | 0.001 ** | 0.194 | 6.336 | |
Total Time (mins) | 13.46 ± 1.93 | 13.75 ± 1.98 | 0.29 ± 0.49 | −0.400 | 0.001 ** | −0.590 | 0.245 | |
HR (max) (bpm) | 180.83 ± 9.97 | 182.91 ± 9.29 | −2.09 ± 4.94 | −2.863 | 0.006 * | −0.422 | 0.988 | |
AT-Time (mins) | 9.69 ± 1.49 | 10.36 ± 1.58 | 0.67 ± 0.88 | −5.209 | 0.001 * | −0.768 | 0.440 | |
AT-VO2max (%) | 78.59 ± 5.97 | 84.04 ± 5.82 | −5.46 ± 6.53 | −5.667 | 0.001 * | −0.835 | 3.265 | |
VE (L/min) | 119.62 ± 17.37 | 124.12 ± 16.28 | −4.50 ± 13.16 | −2.316 | 0.025 * | −0.336 | 2.632 | |
VO2max (ml/kg/min) | 52.22 ± 8.70 | 53.43 ± 8.44 | −1.21 ± 3.61 | −2.274 | 0.028 * | −0.335 | 0.722 | |
VO2max/Pred (%) | 133.96 ± 24.86 | 136.57 ± 22.92 | −2.61 ± 9.54 | −1.855 | 0.070 | −0.274 | 1.908 |
Baseline | Follow-Up | Difference | ||||||
---|---|---|---|---|---|---|---|---|
Mean ± SD (n = 23) | Mean ± SD (n = 23) | Mean ± SD | t | p | Cohen’s d | MID | ||
HR (rest) (bpm) | 57.22 ± 10.48 | 58.35 ± 8.91 | −1.13 ± 7.54 | −0.719 | 0.480 | −0.150 | 1.508 | |
bSBP (mmHg) | 127.43 ± 12.14 | 124.74 ± 10.87 | 2.70 ± 6.92 | 1.867 | 0.075 | 0.389 | 1.384 | |
bDBP (mmHg) | 73.57 ± 7.95 | 71.70 ± 8.29 | 1.87 ± 7.05 | 1.271 | 0.217 | 0.265 | 1.410 | |
bPP (mmHg) | 53.87 ± 12.55 | 53.04 ± 8.91 | 0.83 ± 7.63 | 0.519 | 0.609 | 0.108 | 1.526 | |
bMAP (mmHg) | 91.35 ± 7.49 | 89.22 ± 8.12 | 2.13 ± 6.06 | 1.685 | 0.106 | 0.351 | 1.212 | |
cSBP (mmHg) | 120.91 ± 13.67 | 121.48 ± 13.37 | −0.57 ± 12.27 | −0.221 | 0.827 | −0.046 | 2.454 | |
cDBP (mmHg) | 73.28 ± 7.66 | 71.41 ± 8.09 | 1.87 ± 7.03 | 1.271 | 0.217 | 0.265 | 1.406 | |
cPP (mmHg) | 47.35 ± 14.33 | 49.78 ± 13.88 | −2.44 ± 10.79 | −1.082 | 0.291 | −0.226 | 2.158 | |
cMAP (mmHg) | 91.06 ± 7.20 | 89.02 ± 7.92 | 2.04 ± 6.03 | 1.685 | 0.106 | 0.351 | 1.206 | |
cf-PWV (m/s) | 7.47 ± 1.20 | 6.57 ± 1.19 | 0.90 ± 0.62 | 6.898 | 0.000 ** | 1.438 | 0.496 | |
AIx (%) | 2.18 ± 15.35 | −24.11 ± 25.42 | 26.30 ± 27.46 | 4.593 | 0.000 ** | 0.958 | 21.968 | |
PPratio | 1.17 ± 0.14 | 1.10 ± 0.19 | 0.07 ± 0.22 | 1.533 | 0.140 | 0.320 | 0.044 | |
LVET (msec) | 326.48 ± 40.21 | 315.43 ± 32.11 | 11.04 ± 25.77 | 2.055 | 0.052 | 0.429 | 12.885 | |
Total Time (mins) | 13.91 ± 2.19 | 14.22 ± 2.26 | 0.31 ± 0.47 | −3.207 | 0.004 * | −0.669 | 0.235 | |
HR (max) (bpm) | 183.43 ± 9.25 | 185.26 ± 8.94 | −1.83 ± 4.89 | −1.792 | 0.087 | −0.374 | 0.978 | |
AT-Time (mins) | 9.90 ± 1.75 | 10.65 ± 1.84 | 0.75 ± 1.06 | −3.383 | 0.003 * | −0.705 | 0.530 | |
AT-VO2max (%) | 78.30 ± 6.60 | 83.26 ± 6.68 | −4.96 ± 7.54 | −3.155 | 0.005 * | −0.658 | 3.770 | |
VE (L/min) | 120.24 ± 18.91 | 127.61 ± 18.71 | −7.37 ± 13.74 | −2.572 | 0.017 * | −0.536 | 6.870 | |
VO2max (ml/kg/min) | 53.22 ± 10.21 | 54.82 ± 9.43 | −1.60 ± 3.71 | −2.075 | 0.050 | −0.433 | 1.484 | |
VO2max/Pred (%) | 124.30 ± 23.19 | 127.91 ± 20.89 | −3.61 ± 8.79 | −1.969 | 0.062 | −0.411 | 3.516 |
Baseline | Follow-Up | Difference | ||||||
---|---|---|---|---|---|---|---|---|
Mean ± SD (n = 23) | Mean ± SD (n = 23) | Mean ± SD | t | p | Cohen’s d | MID | ||
HR (rest) (bpm) | 57.96 ± 6.99 | 62.52 ± 10.20 | −4.57 ± 8.27 | −2.648 | 0.015 * | −0.552 | 4.135 | |
bSBP (mmHg) | 129.35 ± 11.20 | 126.61 ± 12.30 | 2.74 ± 7.98 | 1.645 | 0.114 | 0.343 | 1.596 | |
bDBP (mmHg) | 79.78 ± 10.04 | 77.39 ± 9.17 | 2.39 ± 5.66 | 2.028 | 0.055 | 0.423 | 2.830 | |
bPP (mmHg) | 49.57 ± 7.93 | 49.22 ± 8.05 | 0.348 ± 7.98 | 0.209 | 0.836 | 0.044 | 1.596 | |
bMAP (mmHg) | 96.13 ± 9.86 | 93.74 ± 9.55 | 2.39 ± 5.34 | 2.147 | 0.043 * | 0.448 | 2.670 | |
cSBP (mmHg) | 122.09 ± 14.50 | 118.52 ± 12.17 | 3.57 ± 8.56 | 1.996 | 0.058 | 0.416 | 4.280 | |
cDBP (mmHg) | 79.49 ± 9.75 | 77.10 ± 8.88 | 2.39 ± 5.37 | 2.008 | 0.051 | 0.423 | 2.685 | |
cPP (mmHg) | 42.30 ± 9.20 | 41.13 ± 8.14 | 1.17 ± 7.11 | 0.791 | 0.437 | 0.165 | 1.422 | |
cMAP (mmHg) | 95.84 ± 9.57 | 93.45 ± 9.26 | 2.39 ± 5.15 | 2.118 | 0.041 * | 0.448 | 2.575 | |
cf-PWV (m/s) | 8.08 ± 1.22 | 7.14 ± 1.16 | 0.94 ± 1.19 | 3.771 | 0.001 * | 0.786 | 0.595 | |
AIx (%) | 8.94 ± 13.74 | −3.71 ± 13.72 | 12.65 ± 14.78 | 4.106 | 0.000 ** | 0.856 | 11.824 | |
PPratio | 1.20 ± 0.16 | 1.21 ± 0.14 | −0.02 ± 0.16 | −0.487 | 0.631 | −0.102 | 0.032 | |
LVET (msec) | 325.17 ± 29.62 | 304.35 ± 24.26 | 20.83 ± 36.59 | 2.730 | 0.012 * | 0.569 | 18.295 | |
Total Time (mins) | 13.00 ± 1.54 | 13.27 ± 1.56 | 0.27 ± 0.52 | −2.443 | 0.023 * | −0.509 | 0.260 | |
HR (max) (bpm) | 178.22 ± 10.23 | 180.57 ± 9.23 | −2.35 ± 5.09 | −2.210 | 0.038 * | −0.461 | 2.545 | |
AT-Time (mins) | 9.47 ± 1.16 | 10.07 ± 1.25 | 0.60 ± 0.66 | −4.358 | 0.000 ** | −0.909 | 0.528 | |
AT-VO2max (%) | 78.87 ± 5.41 | 84.83 ± 4.82 | −5.96 ± 5.47 | −5.220 | 0.000 ** | −1.088 | 4.376 | |
VE (L/min) | 119.00 ± 16.10 | 120.62 ± 12.91 | −1.62 ± 12.18 | −0.639 | 0.530 | −0.133 | 2.436 | |
VO2max (ml/kg/min) | 51.40 ± 7.15 | 52.04 ± 7.27 | −0.64 ± 3.70 | −0.833 | 0.414 | −0.174 | 0.740 | |
VO2max/Pred (%) | 143.61 ± 23.06 | 145.22 ± 21.94 | −1.61 ± 10.33 | −0.747 | 0.463 | −0.156 | 2.066 |
How Would You Rate the Effects of Dark Chocolate Consumption? | ||
---|---|---|
Rating | Description | Percentage (%) |
1 | Very positive | 60 |
2 | Positive | 27 |
3 | Similar | 10 |
4 | Negative | 3 |
5 | Very negative | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vordos, Z.; Deli, I.; Anifanti, M.; Kluzek, S.; Koutlianos, N.; Kouidi, E.; Deligiannis, A. The Effect of Dark Chocolate Consumption on Arterial Function in Endurance Male Runners: Prospective Cohort Study. Sports 2024, 12, 344. https://doi.org/10.3390/sports12120344
Vordos Z, Deli I, Anifanti M, Kluzek S, Koutlianos N, Kouidi E, Deligiannis A. The Effect of Dark Chocolate Consumption on Arterial Function in Endurance Male Runners: Prospective Cohort Study. Sports. 2024; 12(12):344. https://doi.org/10.3390/sports12120344
Chicago/Turabian StyleVordos, Zacharias, Ifigeneia Deli, Maria Anifanti, Stefan Kluzek, Nikolaos Koutlianos, Evangelia Kouidi, and Asterios Deligiannis. 2024. "The Effect of Dark Chocolate Consumption on Arterial Function in Endurance Male Runners: Prospective Cohort Study" Sports 12, no. 12: 344. https://doi.org/10.3390/sports12120344
APA StyleVordos, Z., Deli, I., Anifanti, M., Kluzek, S., Koutlianos, N., Kouidi, E., & Deligiannis, A. (2024). The Effect of Dark Chocolate Consumption on Arterial Function in Endurance Male Runners: Prospective Cohort Study. Sports, 12(12), 344. https://doi.org/10.3390/sports12120344