The Acute Effect of Different Cluster Set Intra-Set Rest Interval Configurations on Mechanical Power Measures During a Flywheel Resistance Training Session
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Intervention
2.4. Mechanical Range of Motion
2.5. The kMeter Application
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kraemer, W.J.; Ratamess, N.A. Fundamentals of resistance training: Progression and exercise prescription. J. Med. Sci. Sports Exerc. 2004, 36, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, M.; Häkkinen, K.; Gonzalez-Badillo, J.J.; Ibanez, J.; Gorostiaga, E.M. Effects of long-term training specificity on maximal strength and power of the upper and lower extremities in athletes from different sports. Eur. J. Appl. Phys. 2002, 87, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, D.S.; Reiman, M.P.; Lehecka, B.J.; Naylor, A. What performance characteristics determine elite versus nonelite athletes in the same sport? J. Sports. Health 2013, 5, 542–547. [Google Scholar] [CrossRef] [PubMed]
- Loturco, I.; Contreras, B.; Kobal, R.; Fernandes, V.; Moura, N.; Siqueira, F.; Winckler, C.; Suchomel, T.; Pereira, L.A. Vertically and horizontally directed muscle power exercises: Relationships with top-level sprint performance. PLoS ONE 2018, 13, e0201475. [Google Scholar] [CrossRef]
- Stone, M.H.; O’Bryant, H.S.; McCoy, L.; Coglianese, R.; Lehmkuhl, M.; Schilling, B. Power and maximum strength relationships during performance of dynamic and static weighted jumps. J. Strength Cond. Res. 2003, 17, 140–147. [Google Scholar]
- Baker, D.G.; Newton, R.U. Adaptations in upper-body maximal strength and power output resulting from long-term resistance training in experienced strength-power athletes. J. Strength Cond. Res. 2006, 20, 541–546. [Google Scholar]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Developing Maximal Neuromuscular Power. J. Sports Med. 2011, 41, 17–38. [Google Scholar] [CrossRef]
- Norrbrand, L.; Pozzo, M.; Tesch, P.A. Flywheel resistance training calls for greater eccentric muscle activation than weight training. Eur. J. Appl. Phys. 2010, 110, 997–1005. [Google Scholar] [CrossRef]
- Duchateau, J.; Enoka, R.M. Neural control of lengthening contractions. J. Exp. Biol. 2016, 219, 197–204. [Google Scholar] [CrossRef]
- Douglas, J.; Pearson, S.; Ross, A.; McGuigan, M. Chronic adaptations to eccentric training: A systematic review. J. Sports Med. 2017, 47, 917–941. [Google Scholar] [CrossRef]
- Komi, P.V. Training of muscle strength and power: Interaction of neuromotoric, hypertrophic, and mechanical factors. Int. J. Sports Med. 1986, 7, S10–S15. [Google Scholar] [CrossRef] [PubMed]
- De Hoyo, M.; Pozzo, M.; Sañudo, B.; Carrasco, L.; Gonzalo-Skok, O.; Domínguez-Cobo, S.; Morán-Camacho, E. Effects of a 10-week in-season eccentric-overload training program on muscle-injury prevention and performance in junior elite soccer players. Int. J. Sports Physiol. Perform. 2015, 10, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Beato, M.; De Keijzer, K.L.; Muñoz-Lopez, A.; Raya-González, J.; Pozzo, M.; Alkner, B.A.; Dello Iacono, A.; Vicens-Bordas, J.; Coratella, G.; Maroto-Izquierdo, S.; et al. Current guidelines for the implementation of flywheel resistance training technology in sports: A consensus statement. J. Sports Med. 2024, 54, 541–556. [Google Scholar] [CrossRef] [PubMed]
- Maroto-Izquierdo, S.; García-López, D.; Fernandez-Gonzalo, R.; Moreira, O.C.; González-Gallego, J.; de Paz, J.A. Skeletal muscle functional and structural adaptations after eccentric overload flywheel resistance training: A systematic review and meta-analysis. J. Sci. Med. Sports 2017, 20, 943–951. [Google Scholar] [CrossRef]
- De Keijzer, K.L.; Gonzalez, J.R.; Beato, M. The effect of flywheel training on strength and physical capacities in sporting and healthy populations: An umbrella review. PLoS ONE 2022, 17, e0264375. [Google Scholar] [CrossRef]
- Berg, H.E.; Tesch, P.A. Force and power characteristics of a resistive exercise device for use in space. Acta Astronaut. 1998, 42, 219–230. [Google Scholar] [CrossRef]
- Beato, M.; McErlain-Naylor, S.A.; Halperin, I.; Iacono, A.D. Current evidence and practical applications of flywheel eccentric overload exercises as postactivation potentiation protocols: A brief review. Int. J. Sports Physiol. Perform. 2020, 15, 154–161. [Google Scholar] [CrossRef]
- Tesch, P.A.; Fernandez-Gonzalo, R.; Lundberg, T.R. Clinical applications of iso- inertial, eccentric-overload (YoYo™) resistance exercise. Front. Physiol. 2017, 8, 241. [Google Scholar] [CrossRef]
- Muñoz-López, A.; de Souza Fonseca, F.; Ramírez-Campillo, R.; Gantois, P.; Nuñez, F.J.; Nakamura, F.Y. The use of real-time monitoring during flywheel resistance training programmes: How can we measure eccentric overload? A systematic review and meta-analysis. Biol. Sports 2021, 38, 639–652. [Google Scholar] [CrossRef]
- Martinez-Aranda, L.M.; Fernandez-Gonzalo, R. Effects of inertial setting on power, force, work, and eccentric overload during flywheel resistance exercise in women and men. J. Strength Cond. Res. 2017, 31, 1653–1661. [Google Scholar] [CrossRef]
- Raeder, C.; Wiewelhove, T.; Westphal-Martinez, M.P.; Fernandez-Fernandez, J.; de Paula Simola, R.A.; Kellmann, M.; Meyer, T.; Pfeiffer, M.; Ferrauti, A. Neuromuscular fatigue and physiological responses after five dynamic squat exercise protocols. J. Strength Cond. Res. 2016, 30, 953–965. [Google Scholar] [CrossRef] [PubMed]
- Sabido, R.; Hernández-Davó, J.L.; Pereyra-Gerber, G.T. Influence of Different Inertial Loads on Basic Training Variables during the Flywheel Squat Exercise. Int. J. Sports Physiol. Perform. 2018, 13, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Haff, G.G.; Hobbs, R.T.; Haff, E.E.; Sands, W.A.; Pierce, K.C.; Stone, M.H. Cluster training: A novel method for introducing training program variation. J. Strength Cond. Res. 2008, 30, 67–76. [Google Scholar] [CrossRef]
- Haff, G.G.; Whitley, A.; McCoy, L.B.; O’Bryant, H.S.; Kilgore, J.L.; Haff, E.E.; Pierce, K.; Stone, M.H. Effects of different set configurations on barbell velocity and displacement during a clean pull. J. Strength Cond. Res. 2003, 17, 95–103. [Google Scholar] [PubMed]
- Tufano, J.J.; Brown, L.E.; Haff, G.G. Theoretical and practical aspects of different cluster set structures: A systematic review. J. Strength Cond. Res. 2017, 31, 848–867. [Google Scholar] [CrossRef] [PubMed]
- Ryan, S.; Ramirez-Campillo, R.; Browne, D.; Moody, J.; Byrne, P. Intra- and Inter-Day Reliability of Inertial Loads with Cluster Sets When Performed during a Quarter Squat on a Flywheel Device. Sports 2023, 11, 121. [Google Scholar] [CrossRef]
- Ryan, S.; Ramirez-Campillo, R.; Browne, D.; Moody, J.; Byrne, P.J. Flywheel Romanian Deadlift: Intra-and Inter-Day Kinetic and Kinematic Reliability of Four Inertial Loads Using Cluster Sets. J. Funct. Morphol. Kinesiol. 2024, 9, 1. [Google Scholar] [CrossRef]
- Clarkson, P.M.; Newham, D.J. Associations between muscle soreness, damage, and fatigue. In Fatigue; Springer: Berlin/Heidelberg, Germany, 1995; pp. 457–469. [Google Scholar]
- Davies, T.B.; Tran, D.L.; Hogan, C.M.; Haff, G.G.; Latella, C. Chronic effects of altering resistance training set configurations using cluster sets: A systematic review and meta-analysis. J. Sports Med. 2021, 51, 707–736. [Google Scholar] [CrossRef]
- Tansel, R.B.; Salci, Y.; Yildirim, A.; Kocak, S.; Korkusuz, P.F. Effects of eccentric hamstring strength training on lower extremity strength of 10–12 year old male basketball players. Isokinet. Exerc. Sci. 2008, 16, 81–85. [Google Scholar] [CrossRef]
- Turki, O.; Chaouachi, A.; Behm, D.G.; Chtara, H.; Chtara, M.; Bishop, D.; Chamari, K.; Amri, M. The effect of warm-ups incorporating different volumes of dynamic stretching on 10- and 20-m sprint performance in highly trained male athletes. J. Strength Cond. Res. 2012, 26, 63–72. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Wagle, J.P.; Douglas, J.; Taber, C.B.; Harden, M.; Haff, G.G.; Stone, M.H. Implementing eccentric resistance training—Part 1: A brief review of existing methods. J. Funct. Morphol. Kinesiol. 2019, 4, 38. [Google Scholar] [CrossRef] [PubMed]
- Weakley, J.; Fernández-Valdés, B.; Thomas, L.; Ramirez-Lopez, C.; Jones, B. Criterion validity of force and power outputs for a commonly used flywheel resistance training device and bluetooth app. J. Strength Cond. Res. 2019, 33, 1180–1184. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G. Measures of reliability in sports medicine and science. J. Sports Med. 2000, 30, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, T.A.; Jackson, A.S.; Mahar, M.T.; Rowe, D.A. Measurement for Evaluation in Physical Education and Exercise Science, 8th ed.; McGraw-Hill: Boston, MA, USA, 2007. [Google Scholar]
- Cohen, J. The Concepts of Power Analysis: The Effect Size. In Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Erlbaum Associates: Hillside, NJ, USA, 1988; pp. 8–14. [Google Scholar]
- Petré, H.; Wernstål, F.; Mattsson, C.M. Effects of flywheel training on strength-related variables: A meta-analysis. J. Sports Med. 2018, 4, 55. [Google Scholar] [CrossRef]
- Haff, G.G.; Nimphius, S. Training principles for power. Strength Cond. J. 2012, 34, 2–12. [Google Scholar] [CrossRef]
- Cuevas-Aburto, J.; Jukic, I.; González-Hernández, J.M.; Janicijevic, D.; Barboza-González, P.; Chirosa-Ríos, L.J.; García-Ramos, A. Effect of resistance-training programs differing in set configuration on maximal strength and explosive-action performance. Int. J. Sports Physiol. Perform. 2020, 16, 243–249. [Google Scholar] [CrossRef]
- Allen, W.J.; De Keijzer, K.L.; Raya-González, J.; Castillo, D.; Coratella, G.; Beato, M. Chronic effects of flywheel training on physical capacities in soccer players: A systematic review. Res. Sports Med. 2021, 31, 228–248. [Google Scholar] [CrossRef]
- Tufano, J.J.; Rial-Vázquez, J.; Mayo, X.; Fariñas, J.; Rúa-Alonso, M.; Iglesias-Soler, E. Cluster vs. traditional training programmes: Changes in the force–velocity relationship. J. Sports Biol. 2022, 21, 85–103. [Google Scholar]
Quarter-Squat | ||||
Mean Power (Watts) | Set 1 | Set 2 | Set 3 | Set 4 |
15 s | 577.00 ± 53.04 | 551.67 ± 43.68 | 537.58 ± 41.39 | 506.00 ± 46.66 |
30 s | 595.74 ± 47.90 | 609.81 ± 43.02 | 621.47 ± 44.38 | 629.06 ± 43.65 |
45 s | 586.19 ± 58.00 | 610.11 ± 47.99 | 626.92 ± 35.76 | 620.84 ± 37.49 |
Peak CON Power (Watts) | ||||
15 s | 1273.58 ± 124.94 | 1237.67 ± 132.12 | 1229.75 ± 127.61 | 1148.33 ± 147.42 |
30 s | 1354.66 ± 155.53 | 1387.83 ± 173.72 | 1389.05 ± 166.94 | 1413.27 ± 145.73 |
45 s | 1279.75 ± 164.22 | 1384.32 ± 161.32 | 1372.30 ± 141.10 | 1378.35 ± 149.67 |
Peak ECC Power (Watts) | ||||
15 s | 1288.17 ± 135.31 | 1214.58 ± 110.36 | 1191.75 ± 105.97 | 1099.67 ± 130.90 |
30 s | 1384.69 ± 153.10 | 1483.24 ± 152.05 | 1497.21 ± 170.83 | 1509.45 ± 155.10 |
45 s | 1335.41 ± 128.54 | 1449.98 ± 147.12 | 1452.77 ± 131.44 | 1487.09 ± 141.69 |
CON/ECC Ratio (Watts) | ||||
15 s | 1.00 ± 0.14 | 0.97 ± 0.13 | 0.95 ± 0.16 | 0.95 ± 0.17 |
30 s | 1.01 ± 0.17 | 1.07 ± 0.19 | 1.08 ± 0.17 | 1.07 ± 0.14 |
45 s | 1.04 ± 0.18 | 1.04 ± 0.14 | 1.05 ± 0.14 | 1.07 ± 0.15 |
Romanian Deadlift | ||||
Mean Power (Watts) | Set 1 | Set 2 | Set 3 | Set 4 |
15 s | 403.92 ± 39.96 | 402.33 ± 33.79 | 394.75 ± 41.53 | 380.83 ± 39.13 |
30 s | 397.04 ± 37.54 | 427.27 ± 36.15 | 444.47 ± 37.93 | 452.85 ± 37.09 |
45 s | 402.98 ± 39.79 | 433.26 ± 36.44 | 438.84 ± 41.13 | 467.69 ± 38.41 |
Peak CON Power (Watts) | ||||
15 s | 683.69 ± 55.80 | 670.58 ± 56.70 | 657.42 ± 64.13 | 657.08 ± 65.76 |
30 s | 695.10 ± 56.26 | 730.84 ± 52.22 | 753.79 ± 48.88 | 764.61 ± 46.11 |
45 s | 696.81 ± 57.06 | 732.95 ± 49.71 | 752.31 ± 50.10 | 770.71 ± 52.93 |
Peak ECC Power (Watts) | ||||
15 s | 688.33 ± 70.64 | 685.08 ± 58.18 | 658.92 ± 62.13 | 660.00 ± 71.34 |
30 s | 683.29 ± 64.71 | 720.16 ± 66.31 | 738.07 ± 67.25 | 751.55 ± 61.49 |
45 s | 699.64 ± 70.35 | 740.85 ± 58.03 | 751.74 ± 55.19 | 773.70 ± 52.30 |
CON/ECC Ratio (Watts) | ||||
15 s | 1.00 ± 0.11 | 1.01 ± 0.12 | 0.99 ± 0.11 | 0.99 ± 0.13 |
30 s | 0.98 ± 0.08 | 0.99 ± 0.08 | 0.98 ± 0.09 | 0.99 ± 0.09 |
45 s | 1.01 ± 0.11 | 1.01 ± 0.09 | 1.00 ± 0.09 | 1.01 ± 0.11 |
Quarter-Squat | ||||
Mean Power (Watts) | Set 1 | Set 2 | Set 3 | Set 4 |
15 s vs. 30 s | 0.37 | 1.34 | 1.96 | 2.72 |
15 s vs. 45 s | 0.17 | 1.27 | 2.31 | 2.71 |
30 s vs. 45 s | −0.18 | 0.07 | 0.14 | −0.20 |
Peak CON Power (Watts) | ||||
15 s vs. 30 s | 0.57 | 0.97 | 1.07 | 1.81 |
15 s vs. 45 s | 0.04 | 0.99 | 1.06 | 1.55 |
30 s vs. 45 s | −0.47 | −0.02 | −0.11 | −0.24 |
Peak ECC Power (Watts) | ||||
15 s vs. 30 s | 0.67 | 2.02 | 2.15 | 2.86 |
15 s vs. 45 s | 0.36 | 1.81 | 2.19 | 2.84 |
30 s vs. 45 s | −0.35 | −0.22 | −0.29 | −0.15 |
CON/ ECC Ratio (Watts) | ||||
15 s vs. 30 s | 0.06 | 0.61 | 0.79 | 0.77 |
15 s vs. 45 s | 0.25 | 0.52 | 0.67 | 0.75 |
30 s vs. 45 s | 0.17 | −0.18 | −0.19 | 0.00 |
Romanian Deadlift | ||||
Mean Power (Watts) | Set 1 | Set 2 | Set 3 | Set 4 |
15 s vs. 30 s | −0.18 | 0.71 | 1.25 | 1.89 |
15 s vs. 45 s | −0.02 | 0.88 | 1.07 | 2.24 |
30 s vs. 45 s | 0.15 | 0.17 | −0.14 | 0.39 |
Peak CON Power (Watts) | ||||
15 s vs. 30 s | 0.20 | 1.11 | 1.69 | 1.89 |
15 s vs. 45 s | 0.23 | 1.17 | 1.65 | 2.24 |
30 s vs. 45 s | 0.03 | 0.04 | −0.30 | 0.12 |
Peak ECC Power (Watts) | ||||
15 s vs. 30 s | −0.07 | 0.56 | 1.22 | 1.37 |
15 s vs. 45 s | 0.18 | 0.96 | 1.58 | 1.82 |
30 s vs. 45 s | 0.27 | 0.33 | 0.22 | 0.39 |
CON/ECC Ratio (Watts) | ||||
15 s vs. 30 s | −0.21 | −0.20 | −0.10 | 0.00 |
15 s vs. 45 s | 0.09 | 0.00 | 0.10 | 0.17 |
30 s vs. 45 s | 0.31 | 0.23 | 0.22 | 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryan, S.; Browne, D.; Ramirez-Campillo, R.; Moody, J.; Byrne, P.J. The Acute Effect of Different Cluster Set Intra-Set Rest Interval Configurations on Mechanical Power Measures During a Flywheel Resistance Training Session. Sports 2024, 12, 324. https://doi.org/10.3390/sports12120324
Ryan S, Browne D, Ramirez-Campillo R, Moody J, Byrne PJ. The Acute Effect of Different Cluster Set Intra-Set Rest Interval Configurations on Mechanical Power Measures During a Flywheel Resistance Training Session. Sports. 2024; 12(12):324. https://doi.org/10.3390/sports12120324
Chicago/Turabian StyleRyan, Shane, Declan Browne, Rodrigo Ramirez-Campillo, Jeremy Moody, and Paul J. Byrne. 2024. "The Acute Effect of Different Cluster Set Intra-Set Rest Interval Configurations on Mechanical Power Measures During a Flywheel Resistance Training Session" Sports 12, no. 12: 324. https://doi.org/10.3390/sports12120324
APA StyleRyan, S., Browne, D., Ramirez-Campillo, R., Moody, J., & Byrne, P. J. (2024). The Acute Effect of Different Cluster Set Intra-Set Rest Interval Configurations on Mechanical Power Measures During a Flywheel Resistance Training Session. Sports, 12(12), 324. https://doi.org/10.3390/sports12120324