Evolution of Key Factors Influencing Performance Across Phases in Junior Short Sprints
Abstract
1. Introduction
2. Method
2.1. Study Design
2.2. Participants
2.3. Short Sprint
2.4. Body Composition
2.5. Flexibility
2.6. Muscle Strength
2.7. Physical Fitness Test
2.8. Statistical Analysis
3. Result
4. Discussion
5. Limitations and Prospects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kovacs, M.S. Applied physiology of tennis performance. Br. J. Sports Med. 2006, 40, 381–385; discussion 386. [Google Scholar] [CrossRef] [PubMed]
- Kramer, T.; Valente-Dos-Santos, J.; Visscher, C.; Coelho, E.S.M.; Huijgen, B.C.H.; Elferink-Gemser, M.T. Longitudinal development of 5 m sprint performance in young female tennis players. J. Sports Sci. 2021, 39, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Matthys, S.P.; Vaeyens, R.; Fransen, J.; Deprez, D.; Pion, J.; Vandendriessche, J.; Vandorpe, B.; Lenoir, M.; Philippaerts, R. A longitudinal study of multidimensional performance characteristics related to physical capacities in youth handball. J. Sports Sci. 2013, 31, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Elferink-Gemser, M.T.; Visscher, C.; Lemmink, K.A.; Mulder, T.W. Relation between multidimensional performance characteristics and level of performance in talented youth field hockey players. J. Sports Sci. 2004, 22, 1053–1063. [Google Scholar] [CrossRef]
- Elferink-Gemser, M.T.; Visscher, C.; Lemmink, K.A.; Mulder, T. Multidimensional performance characteristics and standard of performance in talented youth field hockey players: A longitudinal study. J. Sports Sci. 2007, 25, 481–489. [Google Scholar] [CrossRef]
- Frost, D.M.; Cronin, J.B.; Levin, G. Stepping backward can improve sprint performance over short distances. J. Strength. Cond. Res. 2008, 22, 918–922. [Google Scholar] [CrossRef]
- Cronin, J.B.; Green, J.P.; Levin, G.T.; Brughelli, M.E.; Frost, D.M. Effect of starting stance on initial sprint performance. J. Strength. Cond. Res. 2007, 21, 990–992. [Google Scholar] [CrossRef]
- Meyers, R.W.; Oliver, J.L.; Hughes, M.G.; Cronin, J.B.; Lloyd, R.S. Maximal sprint speed in boys of increasing maturity. Pediatr. Exerc. Sci. 2015, 27, 85–94. [Google Scholar] [CrossRef]
- Meyers, R.W.; Oliver, J.L.; Hughes, M.G.; Lloyd, R.S.; Cronin, J.B. Influence of Age, Maturity, and Body Size on the Spatiotemporal Determinants of Maximal Sprint Speed in Boys. J. Strength. Cond. Res. 2017, 31, 1009–1016. [Google Scholar] [CrossRef]
- Gale-Watts, A.S.; Nevill, A.M. From endurance to power athletes: The changing shape of successful male professional tennis players. Eur. J. Sport. Sci. 2016, 16, 948–954. [Google Scholar] [CrossRef]
- Marques, M.C.; Izquierdo, M. Kinetic and kinematic associations between vertical jump performance and 10-m sprint time. J. Strength. Cond. Res. 2014, 28, 2366–2371. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Shen, J.; Zhang, J.; Zhou, A.; Guo, W. Correlations between horizontal jump and sprint acceleration and maximal speed performance: A systematic review and meta-analysis. PeerJ 2023, 11, e14650. [Google Scholar] [CrossRef] [PubMed]
- Washif, J.A.; Kok, L.-Y. Relationships Between Vertical Jump Metrics and Sprint Performance, and Qualities that Distinguish Between Faster and Slower Sprinters. J. Sci. Sport. Exerc. 2021, 4, 135–144. [Google Scholar] [CrossRef]
- Comfort, P.; Bullock, N.; Pearson, S.J. A comparison of maximal squat strength and 5-, 10-, and 20-meter sprint times, in athletes and recreationally trained men. J. Strength. Cond. Res. 2012, 26, 937–940. [Google Scholar] [CrossRef]
- Chelly, M.S.; Cherif, N.; Amar, M.B.; Hermassi, S.; Fathloun, M.; Bouhlel, E.; Tabka, Z.; Shephard, R.J. Relationships of peak leg power, 1 maximal repetition half back squat, and leg muscle volume to 5-m sprint performance of junior soccer players. J. Strength. Cond. Res. 2010, 24, 266–271. [Google Scholar] [CrossRef]
- Kawama, R.; Takahashi, K.; Tozawa, H.; Obata, T.; Fujii, N.; Arai, A.; Hojo, T.; Wakahara, T. Muscle morphological changes and enhanced sprint running performance: A 1-year observational study of well-trained sprinters. Eur. J. Sport. Sci. 2024, 24, 1228–1239. [Google Scholar] [CrossRef]
- Garcia-Pinillos, F.; Ruiz-Ariza, A.; Moreno del Castillo, R.; Latorre-Roman, P.A. Impact of limited hamstring flexibility on vertical jump, kicking speed, sprint, and agility in young football players. J. Sports Sci. 2015, 33, 1293–1297. [Google Scholar] [CrossRef]
- Kibler, W.B.; Chandler, T.J.; Uhl, T.; Maddux, R.E. A musculoskeletal approach to the preparticipation physical examination. Preventing injury and improving performance. Am. J. Sports Med. 1989, 17, 525–531. [Google Scholar] [CrossRef]
- Ceroni, D.; Martin, X.E.; Delhumeau, C.; Farpour-Lambert, N.J. Bilateral and gender differences during single-legged vertical jump performance in healthy teenagers. J. Strength. Cond. Res. 2012, 26, 452–457. [Google Scholar] [CrossRef]
- Jones, P.A.; Bampouras, T.M. A comparison of isokinetic and functional methods of assessing bilateral strength imbalance. J. Strength. Cond. Res. 2010, 24, 1553–1558. [Google Scholar] [CrossRef]
- McGrath, T.M.; Waddington, G.; Scarvell, J.M.; Ball, N.B.; Creer, R.; Woods, K.; Smith, D. The effect of limb dominance on lower limb functional performance—A systematic review. J. Sports Sci. 2016, 34, 289–302. [Google Scholar] [CrossRef] [PubMed]
- Bouafif, N.; Hammami, R.; Mahmoudi, A.; Jimenez-Martinez, P.; Alix-Fages, C.; Garcia-Ramos, A.; Juesas, A.; Gene-Morales, J.; Gaied-Chortane, S.; Colado, J.C. Reliability of single-leg maximal dynamic strength performance and inter-limb asymmetries in pre-pubertal soccer players. The influence of maturity in asymmetries. Heliyon 2024, 10, e38716. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Minarro, P.A.; Andujar, P.S.; Rodrnguez-Garcna, P.L. A comparison of the sit-and-reach test and the back-saver sit-and-reach test in university students. J. Sports Sci. Med. 2009, 8, 116–122. [Google Scholar]
- Lemmink, K.A.; Kemper, H.C.; de Greef, M.H.; Rispens, P.; Stevens, M. The validity of the sit-and-reach test and the modified sit-and-reach test in middle-aged to older men and women. Res. Q. Exerc. Sport. 2003, 74, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Yasumitsu, T.; Nogawa, H. Effects of a short-term coordination exercise program during school recess: Agility of seven- to eight-year-old elementary school children. Percept. Mot. Skills 2013, 116, 598–610. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, C.; Guo, R.; Zhang, D.; Wang, S. Performances of the Canadian Agility and Movement Skill Assessment (CAMSA), and validity of timing components in comparison with three commonly used agility tests in Chinese boys: An exploratory study. PeerJ 2020, 8, e8784. [Google Scholar] [CrossRef]
- Porter, J.M.; Ostrowski, E.J.; Nolan, R.P.; Wu, W.F. Standing long-jump performance is enhanced when using an external focus of attention. J. Strength. Cond. Res. 2010, 24, 1746–1750. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, D. Effects of muscle strength in different parts of adolescent standing long jump on distance based on surface electromyography. Front. Physiol. 2023, 14, 1246776. [Google Scholar] [CrossRef]
- Becker, K.A.; Fairbrother, J.T.; Couvillion, K.F. The effects of attentional focus in the preparation and execution of a standing long jump. Psychol. Res. 2020, 84, 285–291. [Google Scholar] [CrossRef]
- Cordo, P.J.; Hodges, P.W.; Smith, T.C.; Brumagne, S.; Gurfinkel, V.S. Scaling and non-scaling of muscle activity, kinematics, and dynamics in sit-ups with different degrees of difficulty. J. Electromyogr. Kinesiol. 2006, 16, 506–521. [Google Scholar] [CrossRef]
- Kaster, T.; Dooley, F.L.; Fitzgerald, J.S.; Walch, T.J.; Annandale, M.; Ferrar, K.; Lang, J.J.; Smith, J.J.; Tomkinson, G.R. Temporal trends in the sit-ups performance of 9,939,289 children and adolescents between 1964 and 2017. J. Sports Sci. 2020, 38, 1913–1923. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, W.; Yoshihisa, T.; Yamada, Y. Effects of muscle quantity, muscle quality, and phase angle on whole-body reaction time in 5164 adults aged 20–91 years. Eur. J. Appl. Physiol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Aerenhouts, D.; Delecluse, C.; Hagman, F.; Taeymans, J.; Debaere, S.; Van Gheluwe, B.; Clarys, P. Comparison of anthropometric characteristics and sprint start performance between elite adolescent and adult sprint athletes. Eur. J. Sport Sci. 2011, 12, 9–15. [Google Scholar] [CrossRef]
- Lockie, R.G.; Murphy, A.J.; Schultz, A.B.; Jeffriess, M.D.; Callaghan, S.J. Influence of sprint acceleration stance kinetics on velocity and step kinematics in field sport athletes. J. Strength. Cond. Res. 2013, 27, 2494–2503. [Google Scholar] [CrossRef]
- Sandamas, P.; Gutierrez-Farewik, E.M.; Arndt, A. The effect of a reduced first step width on starting block and first stance power and impulses during an athletic sprint start. J. Sports Sci. 2019, 37, 1046–1054. [Google Scholar] [CrossRef]
- Debaere, S.; Vanwanseele, B.; Delecluse, C.; Aerenhouts, D.; Hagman, F.; Jonkers, I. Joint power generation differentiates young and adult sprinters during the transition from block start into acceleration: A cross-sectional study. Sports Biomech. 2017, 16, 452–462. [Google Scholar] [CrossRef]
- Ciacci, S.; Merni, F.; Bartolomei, S.; Di Michele, R. Sprint start kinematics during competition in elite and world-class male and female sprinters. J. Sports Sci. 2017, 35, 1270–1278. [Google Scholar] [CrossRef]
- Graham-Smith, P.; Colyer, S.L.; Salo, A.I.T. Differences in ground reaction waveforms between elite senior and junior academy sprinters during the block phase and first two steps. Int. J. Sports Sci. Coach. 2020, 15, 418–427. [Google Scholar] [CrossRef]
- Colyer, S.L.; Graham-Smith, P.; Salo, A.I.T. Associations between ground reaction force waveforms and sprint start performance. Int. J. Sports Sci. Coach. 2019, 14, 658–666. [Google Scholar] [CrossRef]
- Archacki, D.; Zielinski, J.; Pospieszna, B.; Wlodarczyk, M.; Kusy, K. The contribution of energy systems during 15-second sprint exercise in athletes of different sports specializations. PeerJ 2024, 12, e17863. [Google Scholar] [CrossRef]
0–2.5 m (r) | 2.5–5 m (r) | 5–10 m (r) | |
---|---|---|---|
0–2.5 m (0.80 ± 0.07 s) | - | 0.17 | 0.64 *** |
2.5–5 m (0.53 ± 0.04 s) | 0.17 | - | 0.24 |
5–10 m (0.89 ± 0.05 s) | 0.64 *** | 0.24 | - |
Age in month (136.46 ± 15.60 month) | −0.49 * | −0.47 * | −0.54 ** |
Height (145.73 ± 10.15 cm) | −0.23 | −0.21 | −0.45 * |
Weight (37.72 ± 9.93 kg) | −0.02 | 0.06 | −0.03 |
Fat-free mass (31.71 ± 6.48 kg) | −0.31 | −0.17 | −0.42 * |
Body fat mass (6.01 ± 5.43) | 0.34 † | 0.31 | 0.45 * |
Trunk rotation (right) (59.27 ± 9.96°) | 0.04 | −0.46 * | −0.08 |
Trunk rotation (left) (58.04 ± 10.62°) | −0.17 | −0.53 ** | −0.22 |
Hip flexion angle (right) (115.50 ± 10.00°) | 0.07 | 0.27 | 0.30 |
Hip flexion angle (left) (117.27 ± 10.22°) | −0.25 | 0.13 | −0.02 |
Isometric knee extension (87.23 ± 28.70 kg) | −0.26 | −0.45 * | −0.32 |
Isometric knee flexion (39.58 ± 14.66 kg) | −0.48 * | −0.35 † | −0.60 * |
Isotonic knee extension (40.81 ± 11.46 kg) | −0.28 | −0.23 | −0.34 † |
Isotonic knee flexion (27.50 ± 7.56 kg) | −0.22 | −0.37 † | −0.44 * |
Repeated side-step (52.62 ± 5.90 times) | −0.37 † | −0.35 † | −0.39 * |
Sit-ups (29.62 ± 4.68 times) | −0.37 † | −0.28 | −0.39 † |
Standing long jump (190.50 ± 16.78 cm) | −0.59 ** | −0.41 * | −0.72 *** |
Sit-and-reach (42.81 ± 6.58 cm) | −0.10 | −0.33 † | −0.23 |
Whole-body reaction time (329.23 ± 48.12 ms) | 0.29 | 0.17 | 0.40 * |
Age in Month (r) | |
---|---|
0–2.5 m | −0.49 * |
2.5–5 m | −0.47 * |
5–10 m | −0.54 ** |
Height | 0.79 *** |
Weight | 0.53 ** |
Fat-free mass | 0.78 *** |
Body fat mass | 0.03 |
Trunk rotation (right) | 0.39 * |
Hip flexion angle (left) | 0.44 * |
Hip flexion angle (right) | −0.69 *** |
Hip flexion angle (left) | −0.44 * |
Isometric knee extension | 0.69 *** |
Isometric knee flexion | 0.78 *** |
Isotonic knee extension | 0.63 *** |
Isotonic knee flexion | 0.74 *** |
Repeated side-step | 0.67 *** |
Sit-ups | 0.57 ** |
Standing long jump | 0.78 *** |
Sit-and-reach | 0.44 * |
Whole-body reaction time | −0.77 *** |
0–2.5 m (r) | 2.5–5 m (r) | 5–10 m (r) | |
---|---|---|---|
0–2.5 m | - | −0.08 | 0.52 *** |
2.5–5 m | −0.08 | - | −0.03 |
5–10 m | 0.52 *** | −0.03 | - |
Height | 0.29 | 0.30 | −0.03 |
Weight | 0.33 | 0.41 * | 0.36 † |
Fat-free mass | 0.14 | 0.37 † | 0.01 |
Body fat mass | 0.40 * | 0.37 † | 0.55 ** |
Trunk rotation (right) | 0.30 | −0.34 † | 0.17 |
Trunk rotation (left) | 0.05 | −0.40 * | 0.03 |
Hip flexion angle (right) | −0.42 * | −0.09 | −0.12 |
Hip flexion angle (left) | −0.60 ** | −0.10 | −0.35 † |
Isometric knee extension | 0.12 | −0.19 | 0.09 |
Isometric knee flexion | −0.17 | 0.03 | −0.34 † |
Isotonic knee extension | 0.03 | 0.09 | 0.00 |
Isotonic knee flexion | 0.24 | −0.03 | −0.07 |
Repeated side-step | −0.07 | −0.05 | −0.04 |
Sit-ups | −0.13 | −0.02 | −0.11 |
Standing long jump | −0.39 † | −0.08 | −0.56 ** |
Sit-and-reach | 0.14 | −0.16 | 0.02 |
Whole-body reaction time | −0.17 | −0.34 | −0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oku, K.; Kai, Y.; Koda, H.; Gonno, M.; Tanaka, M.; Matsui, T.; Watanabe, Y.; Morihara, T.; Kida, N. Evolution of Key Factors Influencing Performance Across Phases in Junior Short Sprints. Sports 2024, 12, 321. https://doi.org/10.3390/sports12120321
Oku K, Kai Y, Koda H, Gonno M, Tanaka M, Matsui T, Watanabe Y, Morihara T, Kida N. Evolution of Key Factors Influencing Performance Across Phases in Junior Short Sprints. Sports. 2024; 12(12):321. https://doi.org/10.3390/sports12120321
Chicago/Turabian StyleOku, Kyosuke, Yoshihiro Kai, Hitoshi Koda, Megumi Gonno, Maki Tanaka, Tomoyuki Matsui, Yuya Watanabe, Toru Morihara, and Noriyuki Kida. 2024. "Evolution of Key Factors Influencing Performance Across Phases in Junior Short Sprints" Sports 12, no. 12: 321. https://doi.org/10.3390/sports12120321
APA StyleOku, K., Kai, Y., Koda, H., Gonno, M., Tanaka, M., Matsui, T., Watanabe, Y., Morihara, T., & Kida, N. (2024). Evolution of Key Factors Influencing Performance Across Phases in Junior Short Sprints. Sports, 12(12), 321. https://doi.org/10.3390/sports12120321