Tennis Specialization and Consequence of Injury/Illness Following Retirement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Procedure
2.2. Participants
2.3. Demographic Information, Injuries, and Early Specialization
2.4. Quality of Life and Injury/Illness Severity Scores
2.5. Data Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fu, M.C.; Ellenbecker, T.S.; Renstrom, P.A.; Windler, G.S.; Dines, D.M. Epidemiology of injuries in tennis players. Curr. Rev. Musculoskelet. Med. 2018, 11, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Ruegsegger, G.N.; Booth, F.W. Health Benefits of Exercise. Cold Spring Harb. Perspect. Med. 2017, 8, a029694. [Google Scholar] [CrossRef] [PubMed]
- Rice, R.P.; Roach, K.; Kirk-Sanchez, N.; Waltz, B.; Ellenbecker, T.S.; Jayanthi, N.; Raya, M. Age and Gender Differences in Injuries and Risk Factors in Elite Junior and Professional Tennis Players. Sports Health 2022, 14, 466–477. [Google Scholar] [CrossRef]
- Kabiri, S.; Choi, J.; Shadmanfaat, S.M.; Ponnet, K.; Lee, J.; Lee, S.; Donner, C.M. Learning to Play Through Pain and Injury: An Examination of Social Learning Theory Among Iranian Athletes. Soc. Sci. Q. 2021, 102, 343–361. [Google Scholar] [CrossRef]
- Simon, J.E.; Docherty, C.L. Current Health-Related Quality of Life Is Lower in Former Division I Collegiate Athletes Than in Non–Collegiate Athletes. Am. J. Sports Med. 2014, 42, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Arliani, G.G.; Astur, D.C.; Yamada, R.K.F.; Yamada, A.F.; Miyashita, G.K.; Mandelbaum, B.; Cohen, M. Early osteoarthritis and reduced quality of life after retirement in former professional soccer players. Clinics 2014, 69, 589–594. [Google Scholar] [CrossRef]
- Frontiers|What Defines Early Specialization: A Systematic Review of Literature. Available online: https://www.frontiersin.org/articles/10.3389/fspor.2020.596229/full (accessed on 22 November 2022).
- Malina, R.M. Early Sport Specialization: Roots, Effectiveness, Risks. Curr. Sports Med. Rep. 2010, 9, 364–371. [Google Scholar] [CrossRef]
- LaPrade, R.F.; Agel, J.; Baker, J.; Brenner, J.S.; Cordasco, F.A.; Côté, J.; Engebretsen, L.; Feeley, B.T.; Gould, D.; Hainline, B.; et al. AOSSM Early Sport Specialization Consensus Statement. Orthop. J. Sports Med. 2016, 4, 2325967116644241. [Google Scholar] [CrossRef] [PubMed]
- Ginsburg, R.D.; Smith, S.R.; Danforth, N.; Ceranoglu, T.A.; Durant, S.A.; Kamin, H.; Babcock, R.; Robin, L.; Masek, B. Patterns of Specialization in Professional Baseball Players. J. Clin. Sport Psychol. 2014, 8, 261–275. [Google Scholar] [CrossRef]
- Jayanthi, N.; Dechert, A.; Durazo, R.; Dugas, L.; Luke, A. Training and Specialization Risks in Junior Elite Tennis Players. J. Med. Sci. Tennis 2011, 16, 14–20. [Google Scholar]
- Kliethermes, S.A.; Nagle, K.; Côté, J.; Malina, R.M.; Faigenbaum, A.; Watson, A.; Feeley, B.; Marshall, S.W.; Labella, C.R.; Herman, D.C.; et al. Impact of youth sports specialisation on career and task-specific athletic performance: A systematic review following the American Medical Society for Sports Medicine (AMSSM) Collaborative Research Network’s 2019 Youth Early Sport Specialisation Summit. Br. J. Sports Med. 2020, 54, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Ben Kibler, W.; Safran, M. Tennis Injuries. Med. Sport Sci. 2005, 48, 120–137. [Google Scholar] [CrossRef]
- Moreira, N.B.; Mazzardo, O.; Vagetti, G.C.; De Oliveira, V.; De Campos, W. Quality of life perception of basketball master athletes: Association with physical activity level and sports injuries. J. Sports Sci. 2016, 34, 988–996. [Google Scholar] [CrossRef] [PubMed]
- McDonald, C.; Deitch, J.; Bush, C. Early Sports Specialization in Elite Wrestlers. Sports Health 2019, 11, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Sinkovic, F.; Novak, D.; Foretic, N.; Zemková, E. The Effects of Biological Age on Speed-Explosive Properties in Young Tennis Players. J. Funct. Morphol. Kinesiol. 2023, 8, 48. [Google Scholar] [CrossRef]
- Clarsen, B.; Bahr, R.; Myklebust, G.; Andersson, S.H.; Docking, S.I.; Drew, M.; Finch, C.F.; Fortington, L.V.; Harøy, J.; Khan, K.M.; et al. Improved reporting of overuse injuries and health problems in sport: An update of the Oslo Sport Trauma Research Center questionnaires. Br. J. Sports Med. 2020, 54, 390–396. [Google Scholar] [CrossRef]
- Healthy Days Core Module: HRQOL-14 Measure|HRQOL|CDC. Available online: https://www.cdc.gov/hrqol/hrqol14_measure.htm (accessed on 11 November 2021).
- Rugg, C.M.; Coughlan, M.J.; Li, J.N.; Hame, S.L.; Feeley, B.T. Early Sport Specialization Among Former National Collegiate Athletic Association Athletes: Trends, Scholarship Attainment, Injury, and Attrition. Am. J. Sports Med. 2021, 49, 1049–1058. [Google Scholar] [CrossRef]
- Fritz, C.O.; Morris, P.E.; Richler, J.J. Effect size estimates: Current use, calculations, and interpretation. J. Exp. Psychol. Gen. 2012, 141, 2–18. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Erlbaum: Hillsdale, NJ, USA, 1988. [Google Scholar]
- JASP Team. JASP, version 0.17.2; JASP Team: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Croci, J.; Nicknair, J.; Goetschius, J. Early Sport Specialization Linked to Throwing Arm Function and Upper Extremity Injury History in College Baseball Players. Sports Health 2021, 13, 230–236. [Google Scholar] [CrossRef]
- Chapelle, L.; Bishop, C.; Clarys, P.; D’hondt, E. No Relationship between Lean Mass and Functional Asymmetry in High-Level Female Tennis Players. Int. J. Environ. Res. Public Health 2021, 18, 11928. [Google Scholar] [CrossRef]
- Ellenbecker, T.S.; Roetert, E.P.; Riewald, S. Isokinetic profile of wrist and forearm strength in elite female junior tennis players. Br. J. Sports Med. 2006, 40, 411–414. [Google Scholar] [CrossRef] [PubMed]
- Sanchis-Moysi, J.; Dorado, C.; Vicente-Rodríguez, G.; Milutinovic, L.; Garces, G.; Calbet, J. Inter-arm asymmetry in bone mineral content and bone area in postmenopausal recreational tennis players. Maturitas 2004, 48, 289–298. [Google Scholar] [CrossRef]
- Sanchis-Moysi, J.; Dorado, C.; Idoate, F.; González-Henríquez, J.J.; Serrano-Sanchez, J.A.; Calbet, J.A.L. The asymmetry of pectoralis muscles is greater in male prepubertal than in professional tennis players. Eur. J. Sport Sci. 2016, 16, 780–786. [Google Scholar] [CrossRef] [PubMed]
- Rynkiewicz, M.; Rynkiewicz, T.; Żurek, P.; Ziemann, E.; Szymanik, R. Asymmetry of Muscle Mass Distribution in Tennis players. TRENDS Sport Sci. 2013, 1, 47–53. [Google Scholar]
- Kovčan, B.; Vodičar, J.; Simenko, J.; Videmšek, M.; Pori, P.; Vedran, H. Retrospective and Cross-sectional Analysis of Physical Training-Related Musculoskeletal Injuries in Slovenian Armed Forces. Mil. Med. 2019, 184, e195–e199. [Google Scholar] [CrossRef] [PubMed]
- Ng, L.; Sherry, D.; Loh, W.B.; Sjurseth, A.M.; Iyengar, S.; Wild, C.; Rosalie, S. The prevalence and severity of injuries in field hockey drag flickers: A retrospective cross-sectional study. J. Sports Sci. 2016, 34, 1746–1751. [Google Scholar] [CrossRef]
- Jayanthi, N.; Pinkham, C.; Dugas, L.; Patrick, B.; Labella, C. Sports specialization in young athletes: Evidence-based recommendations. Sports Health 2013, 5, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Emery, C.A. Risk Factors for Injury in Child and Adolescent Sport: A Systematic Review of the Literature. Clin. J. Sport Med. 2003, 13, 256–268. [Google Scholar] [CrossRef]
- Blimkie, C.J.; Lefevre, J.; Beunen, G.P.; Renson, R.; Dequeker, J.; VAN Damme, P. Fractures, physical activity, and growth velocity in adolescent Belgian boys. Med. Sci. Sports Exerc. 1993, 25, 801–808. [Google Scholar] [CrossRef]
- Laborde, S.; Guillen, F.; Mosley, E. Positive personality-trait-like individual differences in athletes from individual- and team sports and in non-athletes. Psychol. Sport Exerc. 2016, 26, 9–13. [Google Scholar] [CrossRef]
- Eime, R.M.; Young, J.A.; Harvey, J.T.; Charity, M.J.; Payne, W.R. A systematic review of the psychological and social benefits of participation in sport for children and adolescents: Informing development of a conceptual model of health through sport. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 98. [Google Scholar] [CrossRef] [PubMed]
- Filbay, S.; Pandya, T.; Thomas, B.; McKay, C.; Adams, J.; Arden, N. Quality of Life and Life Satisfaction in Former Athletes: A Systematic Review and Meta-Analysis. Sports Med. 2019, 49, 1723–1738. [Google Scholar] [CrossRef] [PubMed]
- Barlow, J.H.; Turner, A.P.; Wright, C.C. Comparison of clinical and self-reported diagnoses for participants on a community-based arthritis self-management programme. Rheumatology 1998, 37, 985–987. [Google Scholar] [CrossRef] [PubMed]
- Mostafavifar, A.M.; Best, T.M.; Myer, G.D. Early sport specialisation, does it lead to long-term problems? Br. J. Sports Med. 2013, 47, 1060–1061. [Google Scholar] [CrossRef] [PubMed]
Overall (n = 75) | Low HRQOL (n = 61) | High HRQOL (n = 14) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | ± | SD | Lower 95% CL | Upper 95% CL | Mean | ± | SD | Lower 95% CL | Upper 95% CL | Mean | ± | SD | Lower 95% CL | Upper 95% CL | |
HRQOL Score | 14.2 ± 13 | 11.2 | 17.1 | 9.2 ± 7.1 | 7.4 | 10.9 | 35.8 ± 4.4 | 30.6 | 41 | ||||||
Specialization Age (y) | 11.0 ± 4.4 | 10.0 | 12.1 | 10.9 ± 4.4 | 9.8 | 12.08 | 11.3 ± 4.6 | 8.8 | 13.6 | ||||||
Current Age (y) | 39.5 ± 15.0 | 36.3 | 42.8 | 40.7 ± 14.7 | 37.0 | 44.4 | 34.5 ± 13.0 | 27.8 | 41.2 | ||||||
Years Since Retirement | 16.7 ± 14.0 | 13.6 | 19.8 | 17.5 ± 14.0 | 14.0 | 21.0 | 13.0 ± 12.0 | 12.4 | 6.5 |
Overall (n = 120) | Low OSTRC (n = 89) | High OSTRC (n = 31) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | ± | SD | Lower 95% CL | Upper 95% CL | Mean | ± | SD | Lower 95% CL | Upper 95% CL | Mean | ± | SD | Lower 95% CL | Upper 95% CL | |
OSTRC Score | 28.9 ± 34.6 | 22.7 | 35.1 | 10.9 ± 15.9 | 7.5 | 14.2 | 80.6 ± 16.3 | 74.9 | 86.3 | ||||||
Specialization Age (years) | 11.4 ± 4.5 | 10.6 | 12.2 | 11.9 ± 4.5 | 11 | 12.9 | 9.8 ± 4.1 | 8.3 | 11.2 | ||||||
Current Age (years) | 41.5 ± 14.5 | 38.9 | 44.1 | 42.1 ± 15.2 | 38.9 | 45.2 | 39.9 ± 12.6 | 35.5 | 44.4 | ||||||
Years Since Retirement | 18.4 ± 13.9 | 15.8 | 20.8 | 18.7 ± 14.6 | 15.6 | 21.7 | 17.5 ± 12.2 | 13.2 | 21.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasenina, E.; Stout, J.R.; Fukuda, D.H. Tennis Specialization and Consequence of Injury/Illness Following Retirement. Sports 2023, 11, 106. https://doi.org/10.3390/sports11050106
Vasenina E, Stout JR, Fukuda DH. Tennis Specialization and Consequence of Injury/Illness Following Retirement. Sports. 2023; 11(5):106. https://doi.org/10.3390/sports11050106
Chicago/Turabian StyleVasenina, Ecaterina, Jeffrey R. Stout, and David H. Fukuda. 2023. "Tennis Specialization and Consequence of Injury/Illness Following Retirement" Sports 11, no. 5: 106. https://doi.org/10.3390/sports11050106