Influence of Freeze-Drying and Oven-Drying Post Blanching on the Nutrient Composition of the Edible Insect Ruspolia differens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Acquisition and Preparation
2.2. Drying Methods
2.3. Chemical Analyses
2.3.1. Proximate Composition
2.3.2. Amino Acid Analysis
2.3.3. Fatty Acid Analysis
2.3.4. Mineral and Trace Elemental Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition
3.2. Fatty Acid Composition
3.3. Mineral Composition
3.4. Amino Acid Composition
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Van Huis, A. Insects as food in sub-Saharan Africa. Int. J. Trop. Insect Sci. 2003, 23, 163–185. [Google Scholar] [CrossRef]
- Belluco, S.; Losasso, C.; Maggioletti, M.; Alonzi, C.C.; Paoletti, M.G.; Ricci, A. Edible insects in a food safety and nutritional perspective: A critical review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 296–313. [Google Scholar] [CrossRef]
- Parry, M.; Rosenzweig, C.I. Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob Environ. Chang. 2004, 14, 53–67. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Food Security and Agricultural Development in Sub-Saharan Africa Building a Case for More Public Support Food Security in Sub-Saharan Africa Policy Assistance Division; Subregional Office for Southern and East Africa: Rome, Italy, 2006. [Google Scholar]
- Von Grebmer, K.; Bernstein, J.; Nabarro, D.; Prasai, N.; Amin, S.; Yohannes, Y.; Sonntag, A.; Patterson, F.; Towey, O.; Thompson, J. 2016 Global hunger index: Getting to zero hunger; Intl Food Policy Res Inst.: Washington, DC, USA, 2016. [Google Scholar]
- Van Huis, A. Potential of insects as food and feed in assuring food security. Annu. Rev. Entomol. 2013, 58, 563–583. [Google Scholar] [CrossRef] [PubMed]
- Verkerk, M.C.; Tramper, J.; Van Trijp, J.C.M.; Martens, D.E. Insect cells for human food. Biotechnol. Adv. 2007, 25, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Anand, H.; Ganguly, A.; Haldar, P. Potential value of acridids as high protein supplement for poultry feed. Int. J. Poult. Sci. 2008, 7, 722–725. [Google Scholar]
- Lomer, C.J.; Prior, C. Biological Control of Locusts and Grasshoppers. In Proceedings of the workshop held at the International Institute of Tropical Agriculture, Cotonou, Republic of Benin, 29 April–1 May 1991. [Google Scholar]
- Ananthakrishnan, T.N.; Dheelipan, K.; Padmanabhan, B. Behavioral responses in terms of feeding and reproduction in some grasshoppers (Orthoptera: Insecta). Proceedings 1985, 94, 443–461. [Google Scholar]
- Aman, P.; Frederich, M.; Uyttenbroeck, R.; Hatt, S. Grasshoppers as a food source? A review. Biotechnol. Agron. Soc. Environ. 2016, 20, 337–352. [Google Scholar]
- Agea, J.; Biryomumaisho, D.; Buyinza, M.; Nabanoga, G. Commercialization of Ruspolia nitidula (nsenene grasshoppers) in central Uganda. Afr. J. Food Agric. Nutr. Dev. 2008, 8, 319–332. [Google Scholar] [CrossRef]
- Kinyuru, J.N.; Kenji, G.M.; Simon, N.; Muhoho, M.A. Nutritional potential of longhorn grasshopper (Ruspolia differens) consumed in Siaya district, Kenya. J. Agric. Sci. Technol. 2010, 12, 32–46. [Google Scholar]
- Matojo, N.D.; Hosea, K.M. Phylogenetic relationship of the longhorn grasshopper Ruspolia differens Serville (Orthoptera: Tettigoniidae) from northwest Tanzania based on 18S ribosomal nuclear sequences. J. Insects 2013. [Google Scholar] [CrossRef]
- Kinyuru, J.N.; Kenji, G.M.; Njoroge, S.M.; Ayieko, M. Effect of processing methods on the in vitro protein digestibility and vitamin content of edible winged termite (Macrotermes subhylanus) and grasshopper (Ruspolia differens). Food Bioprocess Technol. 2010, 3, 778–782. [Google Scholar] [CrossRef]
- Bailey, W.J.; Mccrae, A.W.R. The general biology and phenology of swarming in the east African tettigoniid Ruspolia differens (Serville) (Orthoptera). J. Nat. Hist. 1978, 12, 259–288. [Google Scholar] [CrossRef]
- Owen, D.F. Swarming and polymorphism in the African edible grasshopper, “Homorocoryphus nitidulus” (Tettigonioidea, Conocephalidae). Acta Trop. 1965, 22, 55–61. [Google Scholar]
- Ssepuuya, G.; Mukisa, I.M.; Nakimbugwe, D. Nutritional composition, quality, and shelf stability of processed Ruspolia nitidula (edible grasshoppers). Food Sci. Nutr. 2016, 5, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Grabowski, N.T.; Klein, G. Microbiology of cooked and dried edible Mediterranean field crickets (Gryllus bimaculatus) and superworms (Zophobas atratus) submitted to four different heating treatments. Food Sci. Technol. Int. 2016, 23, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Chukwu, O. Influences of drying methods on nutritional properties of tilapia fish (Oreochromis nilotieus). World J. Agric. Sci. 2009, 5, 256–258. [Google Scholar]
- Euromonitor International Consumer Lifestyles in Kenya. Available online: http://www.euromonitor.com/consumer-lifestyles-in-kenya/report (accessed on 29 May 2017).
- Vandeweyer, D.; Lenaerts, S.; Callens, A.; Van Campenhout, L. Effect of blanching followed by refrigerated storage or industrial microwave drying on the microbial load of yellow mealworm larvae (Tenebrio molitor). Food Control 2017, 71, 311–314. [Google Scholar] [CrossRef]
- Chang, S.K.C. Protein analysis. In Food Analysis, 4th ed.; Nielsen, S.S., Ed.; Springer: New York, NY, USA, 2010; Chapter 9; pp. 133–146. [Google Scholar]
- Min, D.B.; Ellefson, W.C. Fat analysis. In Food Analysis, 4th ed.; Nielsen, S.S., Ed.; Springer: New York, NY, USA, 2010; Chapter 8; pp. 117–132. [Google Scholar]
- Marshall, M.R. Ash analysis. In Food Analysis, 4th ed.; Nielsen, S.S., Ed.; Springer: New York, NY, USA, 2010; Chapter 7; pp. 105–115. [Google Scholar]
- Liu, S.; Sun, J.; Yu, L.; Zhang, C.; Bi, J.; Zhu, F.; Qu, M.; Jiang, C.; Yang, Q. Extraction and characterization of chitin from the beetle Holotrichia parallela Motschulsky. Molecules 2012, 17, 4604–4611. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization. Food energy—Methods of analysis and conversion factors. Report of a technical workshop. In Food and Agriculture Organization of the United Nations Technical Workshop Report 77; Food and Nutrition Paper; FAO: Rome, Italy, 2003. [Google Scholar]
- Finke, M.D. Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biol. 2002, 21, 269–285. [Google Scholar] [CrossRef]
- Sealey, W.M.; Gaylord, T.G.; Barrows, F.T.; Tomberlin, J.K.; McGuire, M.A.; Ross, C.; St-Hilaire, S. Sensory analysis of rainbow trout, Oncorhynchus mykiss, fed enriched black soldier fly prepupae, Hermetia illucens. J. World Aquac. Soc. 2011, 42, 34–45. [Google Scholar] [CrossRef]
- Hewitson, H.; Wheat, T.; Diehl, D. Amino acid analysis of pure protein hydrolysate with waters UPLC amino acid analysis solution; Waters: Milford, MA, USA, 2007. [Google Scholar]
- Joseph, J.D.; Ackman, R.G. Capillary column gas chromatographic method for analysis of encapsulated fish oils and fish oil ethyl esters: Collaborative study. J. AOAC Int. 1992, 75, 488–506. [Google Scholar]
- McQuaker, N.R.; Kluckner, P.D.; Chang, G.N. Calibration of an inductively coupled plasma-atomic emission spectrometer for the analysis of environmental materials. Anal. Chem. 1979, 51, 888–895. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schluter, K.O. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef] [PubMed]
- Womeni, M.A.; Tiencheu, B.; Linder, M.; Nabayo, C.M.E.; Tentang, N.; Mbiapo, T.F.; Pierre Villeneuve, P.; Fanni, J.; Parmentier, M. Nutritional value and effect of cooking, drying and storage process on some functional properties of Rhynchophorus phoenicis. Int. J. Life Sci. Pharm. Res. 2012, 2, 203–219. [Google Scholar]
- Food and Agriculture Organization. West African Food Composition Table/Table De Composition Des Aliments D’afrique De L’ouest; FAO: Rome, Italy, 2012; p. 171. ISBN 978-92-5-007207-4. [Google Scholar]
- Food and Agriculture Organization. Fats and fatty acids in human nutrition. In Report of an Expert Consultation; FAO Food and Nutrition Paper 91; FAO: Geneva, Switzerland, 2008; p. 180. ISSN 0254-4725. [Google Scholar]
- Quaye, W.; Yawson, R.; Ayeh, E.; Yawson, I. Climate change and food security: The role of biotechnology. Afr. J. Food Agric. Nutr. Dev. 2012, 12, 6354–6364. [Google Scholar]
- Finke, M.D.; DeFoliart, G.R.; Benevenga, N.J. Use of a four-parameter logistic model to evaluate the quality of the protein from three insect species when fed to rats. J. Nutr. 1989, 119, 864–871. [Google Scholar] [PubMed]
- Food and Agriculture Organization. Protein and amino acid requirements in human nutrition. Report of a Joint WHO/FAO/UNU Expert Consultation. World Health Organ. Tech. Rep. Series 2007, 935, 1–265. [Google Scholar]
- Finke, M.D. Nutrient content in insects. In Encyclopedia of Entomology; Springer: Amsterdam, The Netherlands, 2008; pp. 2623–2654. [Google Scholar]
- Ramos-Elorduy, J.B.; Moreno, J.M.P.; Camacho, V.H.M. Could grasshoppers be a nutritive meal? Food Nutr. Sci. 2012, 3, 164–175. [Google Scholar]
- Banjo, A.D.; Lawal, O.A.; Songonuga, E.A. The nutritional value of fourteen species of edible insects in southwestern Nigeria. Afr. J. Biotechnol. 2006, 5, 298–301. [Google Scholar]
- Bukkens, S.G.F. The nutritional value of edible insects. Ecol. Food Nutr. 1997, 36, 287–319. [Google Scholar] [CrossRef]
- Charrondière, U.R.; Stadlmayr, B.; Rittenschober, D.; Mouille, B.; Nilsson, E.; Medhammar, E.; Olango, T.; Eisenwagen, S.; Persijn, D.; Ebanks, K.; et al. FAO/INFOODS food composition database for biodiversity. Food Chem. 2013, 140, 408–412. [Google Scholar] [CrossRef] [PubMed]
- Finke, M.D. Complete nutrient content of four species of feeder insects. Zoo Biol. 2013, 32, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Ekpo, K.E.; Onigbinde, A.O.; Asia, I.O. Pharmaceutical potentials of the oils of some popular insects consumed in southern Nigeria. Afr. J. Pharm. Pharmacol. 2009, 3, 051–057. [Google Scholar]
- Yang, L.-F.; Siriamornpun, S.; Li, D. Polyunsaturated fatty acid content of edible insects in Thailand. J. Food Lipids 2006, 13, 277–285. [Google Scholar] [CrossRef]
- Mann, J. Disease of the heart and circulation: The role of dietary factors in aetiology and management. In Human Nutrition and Dietetics; Garrow, J.S., James, W.P.T., Eds.; Churchill, Livingstone: London, UK, 1993; pp. 619–650. [Google Scholar]
- Simopoulos, A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Aman, P.; Frederich, M.; Megido, R.C.; Alabi, T.; Malik, P.; Uyttenbroeck, R.; Francis, F.; Blecker, C.; Haubruge, E.; Lognay, G.; et al. Insect fatty acids: A comparison of lipids from three orthopterans and Tenebrio molitor L. larvae. J. Asia-Pac. Entomol. 2017, 20, 337–340. [Google Scholar]
- Nowak, V.; Persijn, D.; Rittenschober, D.; Charrondiere, U.R. Review of food composition data for edible insects. Food Chem. 2016, 193, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Oonincx, D.G.A.B.; Dierenfeld, E.S. An Investigation into the chemical composition of alternative invertebrate prey. Zoo Biol. 2012, 31, 40–54. [Google Scholar] [CrossRef] [PubMed]
- Christensen, D.L.; Orech, F.O.; Mungai, M.N.; Larsen, T.; Friis, H.; Aagaard-Hansen, J. Entomophagy among the Luo of Kenya: A potential mineral source? Int. J. Food Sci. Nutr. 2006, 57, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Joint, F.A.O. Energy and protein requirements: Report of a joint FAO/WHO/UNU Expert Consultation. In FAO Technical Report Series; World Health Organization: Geneva, Switzerland, 1985; Volume 2012. [Google Scholar]
- Barker, D.; Fitzpatrick, M.P.; Dierenfeld, E.S. Nutrient composition of selected whole invertebrates. Zoo Biol. 1998, 17, 123–134. [Google Scholar] [CrossRef]
- Ademolu, K.O.; Idowu, A.B.; Olatunde, G.O. Nutritional value assessment of variegated grasshopper, Zonocerus variegatus (L.) (Acridoidea: Pygomorphidae), during post-embryonic development. Afr. Entomol. 2010, 18, 360–364. [Google Scholar] [CrossRef]
- Anderson, S.J. Increasing calcium levels in cultured insects. Zoo Biol. 2000, 19, 1–9. [Google Scholar] [CrossRef]
- DeFoliart, G.R. Insects as human food. Crop. Prot. 1992, 11, 395–399. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Human vitamin and mineral requirements. In Report of a Joint FAO/WHO Expert Consultation, Bangkok, Thailand. Food and Nutrition Division; FAO: Rome, Italy, 2001; pp. 235–247. [Google Scholar]
- Williams, P. Nutritional composition of red meat. Nutr. Diet. 2007, 64, 113–119. [Google Scholar] [CrossRef]
- European Food Safety Authority. Annual report of the EFSA journal. In EFSA Journal Report 2012; Technical report EN-418; European Food Safety Authority: Parma, Italy, 2012; p. 9. [Google Scholar]
Parameter | Settings |
---|---|
Volume sample injected | 1.0 µL |
Ratio split injector | 10:1 |
Carrier gas | Helium |
Temperature | 40 °C |
Pressure | 12 psi |
Capillary column | Sigma-Aldrich SLB-IL60 |
Stationary phase (SP) | 1,12-di(tripropylphosphonium)dodecane-bis-(trifluoromethylsulfonyl)imide |
Length | 30 m |
Diameter | 0.25 mm |
Thickness SP | 0.2 µm |
Oven | Start: 4 minutes at 40 °C | during analyses: increase of 5°C/minute | end: 280 °C |
Ion source MS | Electron impact |
Scan type MS | Single ion monitoring |
Software | MassHunter |
Sampler | Spectrometer | ||
---|---|---|---|
Parameter | Setting | Parameter | Setting |
Plasma conditions | Same for each element | Pulsed gas flow | Normal |
Type Aerosol | Wet | Spectral profiling | No |
Start nebulizer | Directly | Resolution | Fixed (normal) |
Sample flow (mL/min) | 1.5 | Reading time (s) | Automatic |
Plasma sight (all) | Radial | Break time (s) | 30 |
Plasma sight (element) | Axial | Replicas (#) | 3 |
Source delay (s) | 30 | Software | WinLab 32 |
Flush time (s) | 10 |
Samples | Green OD | Brown OD | Mean OD | Green FD | Brown FD | Purple FD a | Mean FD b | Orthoptera c |
---|---|---|---|---|---|---|---|---|
Moisture content | 4.33 | 4.50 | 4.42 | 4.55 | 4.91 | 4.24 | 4.42 | Not available |
Crude fat | 34.95 ± 1.01 | 36.11 ± 0.34 | 35.53 ± 0.82 | 33.28 ± 0.38 | 36.84 ± 0.62 | 38.8 ± 0.40 | 35.56 ± 1.82 | 13.41 |
Crude protein | 45.53 ± 0.84 | 52.90 ± 0.86 | 47.7 ± 3.09 | 44.99 ± 0.74 | 47.83 ± 1.62 | 50.50 ± 0.35 | 46.41 ± 2.01 | 61.32 |
Chitin | 14.86 ± 0.58 | 14.22 ± 0.73 | 13.4 ± 1.13 | 9.79 ± 1.06 | 10.81 ± 1.17 | 11.2 ± 1.11 | 11.33 ± 0.74 | 9.55 |
Ash | 3.93 ± 0.03 | 5.38 ± 0.00 | 4.66 ± 1.03 | 4.92 ± 0.07 | 4.66 ± 0.13 | 4.32 ± 0.32 | 4.79 ± 0.18 | 3.85 |
NFE | 1.39 | 0.01 | 0.7 ± 0.98 | 3.97 | 0.01 | 0.01 | 1.99 ± 2.80 | 12.98 |
Energy (Kcal/g) | 510 | 539 | 524 ± 20.6 | 501 | 537 | 566 | 519 ± 25 | 426.25 |
Fatty Acid | Type | Green FD | Brown FD | Mean FD * | Brown OD | Green OD | Mean OD * |
---|---|---|---|---|---|---|---|
Decanoic Acid (C10:0) | SFA | 0.07 ± 0.04 | 0.07 ± 0.03 | 0.07 ± 0.01 | 0.06 ± 0.01 | 0.07 ± 0.04 | 0.07 ± 0.01 |
Lauric acid (C12:0) | SFA | 0.19 ± 0.01 | 0.19 ± 0.01 | 0.19 ± 0.01 | 0.17 ± 0.01 | 0.16 ± 0.02 | 0.17 ± 0.01 |
Myristic Acid (C14:0) | SFA | 1.14 ± 0.10 | 1.13 ± 0.07 | 1.14 ± 0.01 | 1.11 ± 0.06 | 1.08 ± 0.09 | 1.10 ± 0.02 |
Kyriologic acid (C14:1) | MUFA | 0.07 ± 0.04 | 0.08 ± 0.03 | 0.08 ± 0.01 | 0.07 ± 0.01 | 0.07 ± 0.04 | 0.07 ± 0.01 |
Pentadecanoic acid (C15:0) | SFA | 0.11 ± 0.04 | 0.12 ± 0.03 | 0.12 ± 0.01 | 0.11 ± 0.01 | 0.12 ± 0.04 | 0.12 ± 0.01 |
Palmitic acid (C16:0) | SFA | 28.2 ± 0.79 | 28.1 ± 0.65 | 28.2 ± 0.11 | 27.3 ± 0.70 | 28.2 ± 1.09 | 27.8 ± 0.62 |
Palmitoleic acid (C16:1) | MUFA | 1.71 ± 0.16 | 1.68 ± 0.09 | 1.70 ± 0.02 | 1.64 ± 0.11 | 1.62 ± 0.11 | 1.63 ± 0.01 |
Heptadecanoic acid (C17:0) | SFA | 0.15 ± 0.04 | 0.15 ± 0.03 | 0.15 ± 0.01 | 0.14 ± 0.01 | 0.15 ± 0.05 | 0.15 ± 0.01 |
Stearic acid (C18:0) | SFA | 7.92 ± 0.67 | 7.84 ± 0.43 | 7.88 ± 0.06 | 8.60 ± 0.63 | 8.30 ± 0.46 | 8.45 ± 0.21 |
Oleic Acid (C18:1) | MUFA | 44.4 ± 1.86 | 44.3 ± 0.72 | 44.3 ± 0.11 | 43.7 ± 1.03 | 44.3 ± 1.48 | 44.0 ± 0.42 |
Linoleic acid (C18:2) [n6] | PUFA | 14.0 ± 1.50 | 14.0 ± 1.41 | 14.0 ± 0.04 | 14.4 ± 1.63 | 13.9 ± 0.67 | 14.1 ± 0.32 |
Linolenic Acid (C18:3) [n3] | PUFA | 1.39 ± 0.14 | 1.44 ± 1.08 | 1.42 ± 0.04 | 1.47 ± 1.16 | 1.43±0.13 | 1.45 ± 0.03 |
Arachidonic acid (C20:4) [n6] | PUFA | 0.39 ± 0.01 | 0.72 ± 0.56 | 0.56 ± 0.23 | 0.93 ± 0.43 | 0.44 ± 0.02 | 0.69 ± 0.35 |
EPA (C20:5) [n3] | PUFA | 0.14 ± 0.09 | 0.23 ± 0.14 | 0.19 ± 0.06 | 0.30 ± 0.17 | 0.15 ± 0.10 | 0.23 ± 0.11 |
TOTAL SFA | 37.82 | 37.58 | 37.7 | 37.52 | 38.08 | 37.8 | |
TOTAL MUFA | 46.19 | 46.02 | 46.11 | 45.43 | 46.00 | 45.72 | |
TOTAL PUFA | 15.99 | 16.4 | 16.20 | 17.05 | 15.92 | 16.49 | |
TOTAL UFA | 62.18 | 62.42 | 62.3 | 62.48 | 61.92 | 62.2 | |
PUFA/SFA ratio | 0.42 | 0.44 | 0.43 | 0.45 | 0.42 | 0.44 | |
Total n6 | 14.46 | 14.73 | 14.60 | 15.28 | 14.34 | 14.81 | |
Total n3 | 1.53 | 1.67 | 1.60 | 1.77 | 1.58 | 1.68 | |
n6/n3 ratio | 9.45 | 8.82 | 9.12 | 8.63 | 9.08 | 8.84 | |
EFA | 15.39 | 15.44 | 15.42 | 15.87 | 15.33 | 15.6 |
Mineral | OB | OG | Mean OD | FG | FB | Mean FD |
---|---|---|---|---|---|---|
Na | 50.79 ± 0.02 | 57.2 ± 0.01 | 54.01 ± 4.55 | 78 ± 0.01 | 60.2 ± 0.01 | 69.1 ± 12.64 |
K | 834.4 ± 0.04 | 724.0 ± 0.06 | 779.19 ± 78.0 | 806 ± 0.08 | 826.5 ± 0.06 | 816.4 ± 14.27 |
Ca | 1124 ± 0.05 | 967.6 ± 0.06 | 895.67 ± 323 | 1023 ± 0.08 | 1047 ± 0.10 | 1034.7 ± 17.18 |
Mg | 168.5 ± 0.01 | 123.0 ± 0.01 | 145.75 ± 32.1 | 160 ± 0.01 | 161.8 ± 0.01 | 161.0 ± 1.06 |
Zn | 14.24 ± 0.01 | 15.0 ± 0.01 | 14.63 ± 0.56 | 13 ± 0.01 | 15.2 ± 0.01 | 14.2 ± 1.46 |
Fe | 258.7 ± 0.01 | 174.4 ± 0.01 | 216.56 ± 59.6 | 217 ± 0.05 | 222.8 ± 0.01 | 220.1 ± 3.83 |
P | 693.9 ± 0.03 | 610.7 ± 0.06 | 652.31 ± 58.8 | 680 ± 0.05 | 692.1 ± 0.06 | 685.9 ± 8.73 |
Cu | 1.67 ± 0.01 | 1.6 ± 0.01 | 1.66 ± 0.01 | 1 ± 0.01 | 1.8 ± 0.01 | 1.66 ± 0.23 |
Mn | 8.77 ± 0.01 | 6.0 ± 0.01 | 7.40 ± 1.94 | 8 ± 0.01 | 8.4 ± 0.01 | 8.29 ± 0.21 |
Se | 0.05 ± 0.01 | <LOQ | <LOQ | <LOQ | 0.04 ± 0.02 | <LOQ |
Amino acid | Green | Brown | Purple | WHO/FAO+ |
---|---|---|---|---|
His | 24.66 ± 0.12 | 25.80 ± 0.36 | 27.00 ± 0.43 | 15.0 |
Ser | 48.05 ± 0.90 | 48.92 ± 0.63 | 50.59 ± 0.20 | -- |
Arg | 57.31 ± 3.49 | 55.04 ± 3.04 | 61.77 ± 3.99 | -- |
Gly | 60.72 ± 0.90 | 64.86 ± 0.79 | 59.38 ± 0.03 | -- |
Asp | 96.79 ± 3.20 | 92.95 ± 3.14 | 95.00 ± 3.67 | -- |
Glu | 123.3 ± 4.71 | 124.7 ± 4.22 | 122.6 ± 4.10 | -- |
Thr | 41.75 ± 0.58 | 42.98 ± 0.38 | 42.78 ± 0.45 | 23 |
Ala | 117.0 ± 4.96 | 117.3 ± 4.46 | 104.73 ± 4.56 | -- |
Pro | 62.61 ± 1.65 | 64.63 ± 1.74 | 61.34 ± 1.64 | -- |
Cys | 5.18 ± 2.13 | 2.86 ± 2.53 | 6.88 ± 2.69 | 6.0 |
Lys | 54.77 ± 3.89 | 53.80 ± 3.26 | 53.16 ± 3.29 | 45 |
Tyr | 52.53 ± 4.46 | 49.57 ± 4.16 | 55.19 ± 4.15 | -- |
Met | 6.99 ± 8.76 | 1.39 ± 8.26 | 13.83 ± 8.82 | 16 |
Val | 65.75 ± 0.89 | 67.06 ± 0.40 | 63.48 ± 0.07 | 39 |
Ile | 47.61 ± 1.04 | 49.17 ± 1.20 | 46.91 ± 1.81 | 30 |
Leu | 92.48 ± 1.84 | 95.22 ± 1.09 | 90.30 ± 1.52 | 59 |
Phe | 33.79 ± 0.62 | 35.48 ± 0.83 | 36.88 ± 0.52 | -- |
Trp | 8.66 ± 0.28 | 8.26 ± 0.14 | 9.38 ± 0.32 | 6.0 |
E | 376 | 379 | 384 | |
N | 624 | 621 | 617 | |
E/N | 0.60 | 0.61 | 0.62 | |
E + N | 1000 | 1000 | 1001 | |
E/(E + N) | 0.38 | 0.38 | 0.38 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fombong, F.T.; Van Der Borght, M.; Vanden Broeck, J. Influence of Freeze-Drying and Oven-Drying Post Blanching on the Nutrient Composition of the Edible Insect Ruspolia differens. Insects 2017, 8, 102. https://doi.org/10.3390/insects8030102
Fombong FT, Van Der Borght M, Vanden Broeck J. Influence of Freeze-Drying and Oven-Drying Post Blanching on the Nutrient Composition of the Edible Insect Ruspolia differens. Insects. 2017; 8(3):102. https://doi.org/10.3390/insects8030102
Chicago/Turabian StyleFombong, Forkwa Tengweh, Mik Van Der Borght, and Jozef Vanden Broeck. 2017. "Influence of Freeze-Drying and Oven-Drying Post Blanching on the Nutrient Composition of the Edible Insect Ruspolia differens" Insects 8, no. 3: 102. https://doi.org/10.3390/insects8030102
APA StyleFombong, F. T., Van Der Borght, M., & Vanden Broeck, J. (2017). Influence of Freeze-Drying and Oven-Drying Post Blanching on the Nutrient Composition of the Edible Insect Ruspolia differens. Insects, 8(3), 102. https://doi.org/10.3390/insects8030102