Implicating Cryptic and Novel Anophelines as Malaria Vectors in Africa
Abstract
:1. Anopheles Mosquitoes as Vectors of Malaria
2. Incrimination of Malaria Vectors
3. Species Identification
4. Bionomic Traits of Vector Species
5. Cryptic Species and Novel Vectors
6. Challenges and Options for Malaria Vector Control in the Future
7. Conclusions
Acknowledgments
Conflicts of Interest
References
- World Health Organization. World Malaria Report 2015; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Bhatt, S.; Weiss, D.J.; Cameron, E.; Bisanzio, D.; Mappin, B.; Dalrymple, U.; Battle, K.E.; Moyes, C.L.; Henry, A.; Eckhoff, P.A.; et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 2015, 526, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Krzywinski, J.; Besansky, N.J. Molecular systematics of Anopheles: From subgenera to subpopulations. Annu. Rev. Entomol. 2003, 48, 111–139. [Google Scholar] [CrossRef] [PubMed]
- Harbach, R.E. The classification of the genus Anopheles (Diptera: Culicidae): A working hypothesis of phylogenetic relationships. Bull. Entomol. Res. 2004, 94, 537–553. [Google Scholar] [CrossRef] [PubMed]
- Norris, L.C.; Norris, D.E. Phylogeny of anopheline (Diptera: Culicidae) species in southern Africa, based on nuclear and mitochondrial genes. J. Vector Ecol. 2015, 40, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Sinka, M.E.; Bangs, M.J.; Manguin, S.; Coetzee, M.; Mbogo, C.M.; Hemingway, J.; Patil, A.P.; Temperley, W.H.; Gething, P.W.; Kabaria, C.W.; et al. The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: Occurrence data, distribution maps and bionomic précis. Parasites Vectors 2010. [Google Scholar] [CrossRef] [PubMed]
- Della Torre, A.; Tu, Z.; Petrarca, V. On the distribution and genetic differentiation of Anopheles gambiae s.s. molecular forms. Insect Biochem. Mol. Biol. 2005, 35, 755–769. [Google Scholar] [CrossRef] [PubMed]
- Coetzee, M.; Hunt, R.H.; Wilkerson, R.; Della Torre, A.; Coulibaly, M.B.; Besansky, N.J. Anopheles coluzzii and Anopheles amharicus, new members of the Anopheles gambiae complex. Zootaxa 2013, 3619, 246–274. [Google Scholar] [CrossRef] [PubMed]
- Drake, J.M.; Beier, J.C. Ecological niche and potential distribution of Anopheles arabiensis in Africa in 2050. Malar. J. 2014. [Google Scholar] [CrossRef] [PubMed]
- Moffett, A.; Shackelford, N.; Sarkar, S. Malaria in Africa: Vector species’ niche models and relative risk maps. PLoS ONE 2007, 2, e824. [Google Scholar] [CrossRef] [PubMed]
- Coetzee, M.; Fontenille, D. Advances in the study of Anopheles funestus, a major vector of malaria in Africa. Insect Biochem. Mol. Biol. 2004, 34, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Antonio-Nkondjio, C.; Simard, F. Highlights on Anopheles nili and Anopheles moucheti, malaria vectors in Africa. In Anopheles Mosquitoes—New Insights into Malaria Vectors; InTech: Rijeka, Croatia, 2013. [Google Scholar]
- Beier, J.C. Vector incrimination and entomological inoculation rates. In Malaria Methods and Protocols: Methods and Protocols; Doolan, D.L., Ed.; Humana Press: Totowa, NJ, USA, 2002; pp. 3–11. [Google Scholar]
- Beier, J.; Perkins, P.; Wirtz, R.; Koros, J.; Diggs, D.; Gargan, T.; Koech, D. Blood meal identification by direct enzyme-linked immunosorbent assay (ELISA), tested on Anopheles (Diptera: Culicidae) in Kenya. J. Med. Entomol. 1988, 25, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Kent, R.; Norris, D. Identification of mammalian blood meals in mosquitoes by a multiplexed polymerase chain reaction targeting cytochrome B. Am. J. Trop. Med. Hyg. 2005, 73, 336–342. [Google Scholar] [PubMed]
- Fornadel, C.; Norris, D. Increased endophily by the malaria vector Anopheles arabiensis in southern Zambia and identification of digested blood meals. Am. J. Trop. Med. Hyg. 2008, 79, 876–880. [Google Scholar] [PubMed]
- Gillies, M.T.; de Meillon, B. The Anophelinae of Africa South of the Sahara, 2nd ed.; South African Institute of Medical Research: Johannesburg, South Africa, 1968. [Google Scholar]
- Burkot, T.R.; Williams, J.L.; Schneider, I. Identification of Plasmodium falciparum-infected mosquitoes by a double antibody enzyme-linked immunosorbent assay. Am. J. Trop. Med. Hyg. 1984, 33, 783–788. [Google Scholar] [PubMed]
- Gillies, T.; Coetzee, M. A Supplement to the Anophelinae of Africa South of the Sahara: Afrotropical Region; South African Institute for Medical Research: Johannesburg, South Africa, 1987. [Google Scholar]
- Gillies, M.T. A new species of the Anopheles funestus complex (Diptera: Culicidae) from East Africa. Sys. Entomol. 1962, 31, 81–86. [Google Scholar] [CrossRef]
- White, G.B. Anopheles gambiae complex and disease transmission in Africa. Trans. R. Soc. Trop. Med. Hyg. 1974, 68, 278–301. [Google Scholar] [CrossRef]
- Fanello, C.; Santolamazza, F.; Della Torre, A. Simultaneous identification of species and molecular forms of the Anopheles gambiae complex by PCR-RFLP. Med. Vet. Entomol. 2002, 16, 461–464. [Google Scholar] [CrossRef] [PubMed]
- White, G.B. Anopheles bwambae sp. n., a malaria vector in the Semliki Valley, Uganda, and its relationships with other sibling species of the An. gambiae complex (Diptera: Culicidae). Syst. Entomol. 1985, 10, 501–522. [Google Scholar] [CrossRef]
- Hervy, J.; Le Goff, G.; Geoffroy, J.; Hervé, L.; Manga, L.; Brunhes, J. Les Anopheles de la Région Afro-Tropicale. Logiciel D’Identification et D’Enseignement; ORSTOM, Série Didactiques: Paris, France, 1998. [Google Scholar]
- Koekemoer, L.L.; Misiani, E.A.; Hunt, R.H.; Kent, R.J.; Norris, D.E.; Coetzee, M. Cryptic species within Anopheles longipalpis from southern Africa and phylogenetic comparison with members of the An. funestus group. Bull. Entomol. Res. 2009, 99, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Cohuet, A.; Simard, F.; Toto, J.C.; Kengne, P.; Coetzee, M.; Fontenille, D. Species identification within the Anopheles funestus group of malaria vectors in Cameroon and evidence for a new species. Am. J. Trop. Med. Hyg. 2003, 69, 200–205. [Google Scholar] [PubMed]
- Awono-Ambene, H.; Kengne, P.; Simard, F.; Antonio-Nkondjio, C.; Fontenille, D. Description and bionomics of Anopheles (cellia) ovengensis (Diptera: Culicidae), a new malaria vector species of the Anopheles nili group from south Cameroon. J. Med. Entomol. 2004, 41, 561–568. [Google Scholar] [CrossRef] [PubMed]
- St. Laurent, B.; Cooke, M.; Krishnankutty, S.M.; Asih, P.; Mueller, J.D.; Kahindi, S.; Ayoma, E.; Oriango, R.M.; Thumloup, J.; Drakeley, C.; et al. Molecular characterization reveals diverse and unknown malaria vectors in the western Kenyan highlands. Am. J. Trop. Med. Hyg. 2016, 94, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Brunhes, J.; Le Goff, G.; Geoffroy, B. Afro-tropical anopheline mosquitoes. III. Description of three new species: Anopheles carnevalei sp. nov., An. hervyi sp. nov., and An. dualaensis sp. nov., and resurrection of An. rageaui Mattingly and Adam. J. Am. Mosq. Control Assoc. 1999, 15, 552–558. [Google Scholar] [PubMed]
- Carlson, D.A.; Service, M.W. Identification of mosquitoes of Anopheles gambiae species complex A and B by analysis of cuticular components. Science 1980, 207, 1089–1091. [Google Scholar] [CrossRef] [PubMed]
- Anyanwu, G.I.; Davies, D.H.; Molyneux, D.H.; Phillips, A.; Milligan, P.J. Cuticular hydrocarbon discrimination/variation among strains of the mosquito, Anopheles (cellia) stephensi Liston. Ann. Trop. Med. Parasitol. 1993, 87, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Anyanwu, G.I.; Molyneux, D.H.; Phillips, A. Variation in cuticular hydrocarbons among strains of the Anopheles gambiae sensu stricto by analysis of cuticular hydrocarbons using gas liquid chromatography of larvae. Mem. Inst. Oswaldo Cruz 2000, 95, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Coluzzi, M.; Sabatini, A.; Petrarca, V.; Di Deco, M.A. Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex. Trans. R. Soc. Trop. Med. Hyg. 1979, 73, 483–497. [Google Scholar] [CrossRef]
- Coluzzi, M.; Sabatini, A.; Della Torre, A.; Di Deco, M.A.; Petrarca, V. A polytene chromosome analysis of the Anopheles gambiae species complex. Science 2002, 298, 1415–1418. [Google Scholar] [CrossRef] [PubMed]
- Della Torre, A.; Costantini, C.; Besansky, N.J.; Caccone, A.; Petrarca, V.; Powell, J.R.; Coluzzi, M. Speciation within Anopheles gambiae—The glass is half full. Science 2002, 298, 115–117. [Google Scholar] [CrossRef] [PubMed]
- Stump, A.D.; Pombi, M.; Goeddel, L.; Ribeiro, J.M.; Wilder, J.A.; della Torre, A.; Besansky, N.J. Genetic exchange in 2la inversion heterokaryotypes of Anopheles gambiae. Insect Mol. Biol. 2007, 16, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Ayala, D.; Caro-Riano, H.; Dujardin, J.P.; Rahola, N.; Simard, F.; Fontenille, D. Chromosomal and environmental determinants of morphometric variation in natural populations of the malaria vector Anopheles funestus in Cameroon. Infect. Genet. Evol. 2011, 11, 940–947. [Google Scholar] [CrossRef] [PubMed]
- Green, C.; Hunt, R. Interpretation of variation in ovarian polytene chromosomes of Anopheles funestus Giles, A. parensis Gillies, and A. aruni? Genetica 1980, 51, 187–195. [Google Scholar] [CrossRef]
- Sharakhov, I.; Braginets, O.; Grushko, O.; Cohuet, A.; Guelbeogo, W.M.; Boccolini, D.; Weill, M.; Costantini, C.; Sagnon, N.; Fontenille, D.; et al. A microsatellite map of the African human malaria vector Anopheles funestus. J. Hered. 2004, 95, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Spillings, B.; Brooke, B.; Koekemoer, L.; Chiphwanya, J.; Coetzee, M.; Hunt, R. A new species concealed by Anopheles funestus Giles, the major malaria vector in Africa. Am. J. Trop. Med. Hyg. 2009, 81, 510–515. [Google Scholar] [PubMed]
- Mahon, R.J.; Green, C.A.; Hunt, R.H. Diagnostic allozymes for routine identification of adults of the Anopheles gambiae complex (Diptera, Culicidae). Bull. Entomol. Res. 1976, 66, 25–31. [Google Scholar] [CrossRef]
- Scott, J.A.; Brogdon, W.G.; Collins, F.H. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am. J. Trop. Med. Hyg. 1993, 49, 520–529. [Google Scholar] [PubMed]
- Fettene, M.; Koekemoer, L.L.; Hunt, R.H.; Coetzee, M. PCR assay for identification of Anopheles quadriannulatus species B from Ethiopia and other sibling species of the Anopheles gambiae complex. Med. Vet. Entomol. 2002, 16, 214–217. [Google Scholar] [CrossRef] [PubMed]
- Santolamazza, F.; Della Torre, A.; Caccone, A. Short report: A new polymerase chain reaction-restriction fragment length polymorphism method to identify Anopheles arabiensis from An. Gambiae and its two molecular forms from degraded DNA templates or museum samples. Am. J. Trop. Med. Hyg. 2004, 70, 604–606. [Google Scholar] [PubMed]
- Bass, C.; Williamson, M.S.; Wilding, C.S.; Donnelly, M.J.; Field, L.M. Identification of the main malaria vectors in the Anopheles gambiae species complex using a Taqman real-time PCR assay. Malar. J. 2007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, E.D.; Thibault, A.R.; Thelen, A.P.; Bullard, B.A.; Huang, J.; Odiere, M.R.; Bayoh, N.M.; Wilkins, E.E.; Vulule, J.M. Identification of field caught Anopheles gambiae s.s. and Anopheles arabiensis by Taqman single nucleotide polymorphism genotyping. Malar. J. 2007. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, E.E.; Howell, P.I.; Benedict, M.Q. IMP PCR primers detect single nucleotide polymorphisms for Anopheles gambiae species identification, Mopti and Savanna rDNA types, and resistance to dieldrin in Anopheles arabiensis. Malar. J. 2006. [Google Scholar] [CrossRef] [PubMed]
- Riehle, M.M.; Guelbeogo, W.M.; Gneme, A.; Eiglmeier, K.; Holm, I.; Bischoff, E.; Garnier, T.; Snyder, G.M.; Li, X.; Markianos, K.; et al. A cryptic subgroup of Anopheles gambiae is highly susceptible to human malaria parasites. Science 2011, 331, 596–598. [Google Scholar] [CrossRef] [PubMed]
- Garros, C.; Harbach, R.E.; Manguin, S. Morphological assessment and molecular phylogenetics of the Funestus and Minimus groups of Anopheles (Cellia). J. Med. Entomol. 2005, 42, 522–536. [Google Scholar] [CrossRef]
- Hackett, B.J.; Gimnig, J.; Guelbeogo, W.; Costantini, C.; Koekemoer, L.L.; Coetzee, M.; Collins, F.H.; Besansky, N.J. Ribosomal DNA internal transcribed spacer (ITS2) sequences differentiate Anopheles funestus and An. rivulorum, and uncover a cryptic taxon. Insect Mol. Biol. 2000, 9, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Koekemoer, L.L.; Kamau, L.; Hunt, R.H.; Coetzee, M. A cocktail polymerase chain reaction assay to identify members of the Anopheles funestus (Diptera: Culicidae) group. Am. J. Trop. Med. Hyg. 2002, 66, 804–811. [Google Scholar] [PubMed]
- Vezenegho, S.B.; Chiphwanya, J.; Hunt, R.H.; Coetzee, M.; Bass, C.; Koekemoer, L.L. Characterization of the Anopheles funestus group, including Anopheles funestus-like, from northern Malawi. Trans. R. Soc. Trop. Med. Hyg. 2013, 107, 753–762. [Google Scholar] [CrossRef] [PubMed]
- Vezenegho, S.B.; Bass, C.; Puinean, M.; Williamson, M.S.; Field, L.M.; Coetzee, M.; Koekemoer, L.L. Development of multiplex real-time PCR assays for identification of members of the Anopheles funestus species group. Malar. J. 2009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkes, T.; Matola, Y.; Charlwood, J. Anopheles rivulorum, a vector of human malaria in Africa. Med. Vet. Entomol. 1996, 10, 108–110. [Google Scholar] [CrossRef] [PubMed]
- De Meillon, B.; Van Eeden, G.; Coetzee, L.; Coetzee, M.; Meiswinkel, R.; Du Troit, C.; Hansford, C. Observations on a species of Anopheles funestus subgroup, a suspected exophilic vector of malaria parasites in north-eastern Transvaal, South Africa. Mosq. News 1977, 37, 657–661. [Google Scholar]
- Lobo, N.F.; Laurent, B.S.; Sikaala, C.H.; Hamainza, B.; Chanda, J.; Chinula, D.; Krishnankutty, S.M.; Mueller, J.D.; Deason, N.A.; Hoang, Q.T.; et al. Unexpected diversity of Anopheles species in eastern Zambia: Implications for evaluating vector behavior and interventions using molecular tools. Sci. Rep. 2015. [Google Scholar] [CrossRef] [PubMed]
- Temu, E.A.; Minjas, J.N.; Tuno, N.; Kawada, H.; Takagi, M. Identification of four members of the Anopheles funestus (Diptera: Culicidae) group and their role in Plasmodium falciparum transmission in Bagamoyo coastal Tanzania. Acta Trop. 2007, 102, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Kent, R.J.; Thuma, P.E.; Mharakurwa, S.; Norris, D.E. Seasonality, blood feeding behavior, and transmission of Plasmodium falciparum by Anopheles arabiensis after an extended drought in southern Zambia. Am. J. Trop. Med. Hyg. 2007, 76, 267–274. [Google Scholar] [PubMed]
- Choi, K.S.; Coetzee, M.; Koekemoer, L.L. Simultaneous identification of the Anopheles funestus group and Anopheles longipalpis type c by PCR-RFLP. Malar. J. 2010. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Muleba, M.; Stevenson, J.C.; Norris, D.E. Habitat partitioning of malarial vectors in Nchelenge district, Zambia. Am. J. Trop. Med. Hyg. 2016, 94, 1234–1244. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.C.; Powell, J.R.; Caccone, A. Short report: Phylogenetic relationships of the anthropophilic Plasmodium falciparum malaria vectors in Africa. Am. J. Trop. Med. Hyg. 2005, 73, 749–752. [Google Scholar] [PubMed]
- Mohanty, A.; Swain, S.; Kar, S.K.; Hazra, R.K. Analysis of the phylogenetic relationship of Anopheles species, subgenus Cellia (Diptera: Culicidae) and using it to define the relationship of morphologically similar species. Infect. Genet. Evol. 2009, 9, 1204–1224. [Google Scholar] [CrossRef] [PubMed]
- Pareek, C.S.; Smoczynski, R.; Tretyn, A. Sequencing technologies and genome sequencing. J. Appl. Genet. 2011, 52, 413–435. [Google Scholar] [CrossRef] [PubMed]
- Holt, R.A.; Subramanian, G.M.; Halpern, A.; Sutton, G.G.; Charlab, R.; Nusskern, D.R.; Wincker, P.; Clark, A.G.; Ribeiro, J.C.; Wides, R.; et al. The genome sequence of the malaria mosquito Anopheles gambiae. Science 2002, 298, 129–149. [Google Scholar] [CrossRef] [PubMed]
- Neafsey, D.E.; Waterhouse, R.M.; Abai, M.R.; Aganezov, S.S.; Alekseyev, M.A.; Allen, J.E.; Amon, J.; Arca, B.; Arensburger, P.; Artemov, G.; et al. Mosquito genomics. Highly evolvable malaria vectors: The genomes of 16 anopheles mosquitoes. Science 2015. [Google Scholar] [CrossRef] [PubMed]
- Feachem, R.; Phillips, A.; Hwang, J.; Cotter, C.; Wielgosz, B.; Greenwood, B.; Sabot, O.; Rodriguez, M.; Abeyasinghe, R.; Ghebreyesus, T.; et al. Shrinking the malaria map: Progress and prospects. Lancet 2010, 376, 1566–1578. [Google Scholar] [CrossRef]
- Bourtzis, K.; Lees, R.S.; Hendrichs, J.; Vreysen, M.J. More than one rabbit out of the hat: Radiation, transgenic and symbiont-based approaches for sustainable management of mosquito and tsetse fly populations. Acta Trop. 2016, 157, 115–130. [Google Scholar] [CrossRef] [PubMed]
- Burt, A. Heritable strategies for controlling insect vectors of disease. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014. [Google Scholar] [CrossRef]
- Sinka, M.; Bangs, M.; Manguin, S.; Rubio-Palis, Y.; Chareonviriyaphap, T.; Coetzee, M.; Mbogo, C.; Hemingway, J.; Patil, A.; Temperley, W.; et al. A global map of dominant malaria vectors. Parasites Vectors 2012. [Google Scholar] [CrossRef] [PubMed]
- Bayoh, M.N.; Mathias, D.K.; Odiere, M.R.; Mutuku, F.M.; Kamau, L.; Gimnig, J.E.; Vulule, J.M.; Hawley, W.A.; Hamel, M.J.; Walker, E.D. Anopheles gambiae: Historical population decline associated with regional distribution of insecticide-treated bed nets in western Nyanza Province, Kenya. Malar. J. 2010. [Google Scholar] [CrossRef] [PubMed]
- Hemingway, J.; Ranson, H.; Magill, A.; Kolaczinski, J.; Fornadel, C.; Gimnig, J.; Coetzee, M.; Simard, F.; Roch, D.K.; Hinzoumbe, C.K.; et al. Averting a malaria disaster: Will insecticide resistance derail malaria control? Lancet 2016, 387, 1785–1788. [Google Scholar] [CrossRef]
- Ranson, H.; Lissenden, N. Insecticide resistance in African Anopheles mosquitoes: A worsening situation that needs urgent action to maintain malaria control. Trends Parasitol. 2016, 32, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Russell, T.; Govella, N.; Azizi, S.; Drakeley, C.; Kachur, S.; Killeen, G. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malar. J. 2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moiroux, N.; Gomez, M.; Pennetier, C.; Elanga, E.; Djenontin, A.; Chandre, F.; Djegbe, I.; Guis, H.; Corbel, V. Changes in Anopheles funestus biting behavior following universal coverage of long-lasting insecticidal nets in Benin. J. Infect. Dis. 2012, 206, 1622–1629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moiroux, N.; Damien, G.; Egrot, M.; Djenontin, A.; Chandre, F.; Corbel, V. Human exposure to early morning Anopheles funestus biting behavior and personal protection provided by long-lasting insecticidal nets. PLoS ONE 2014, 9, e104967. [Google Scholar] [CrossRef] [PubMed]
- Killeen, G.; Chitnis, N. Potential causes and consequences of behavioural resilience and resistance in malaria vector populations: A mathematical modelling analysis. Malar. J. 2014. [Google Scholar] [CrossRef] [PubMed]
- Govella, N.J.; Chaki, P.P.; Killeen, G.F. Entomological surveillance of behavioural resilience and resistance in residual malaria vector populations. Malar. J. 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, M.R.; Overgaard, H.J.; Abaga, S.; Reddy, V.P.; Caccone, A.; Kiszewski, A.E.; Slotman, M.A. Outdoor host seeking behaviour of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko island, Equatorial Guinea. Malar. J. 2011. [Google Scholar] [CrossRef] [PubMed]
- Kleinschmidt, I.; Sharp, B.; Benavente, L.E.; Schwabe, C.; Torrez, M.; Kuklinski, J.; Morris, N.; Raman, J.; Carter, J. Reduction in infection with Plasmodium falciparum one year after the introduction of malaria control interventions on Bioko Island, Equatorial Guinea. Am. J. Trop. Med. Hyg. 2006, 74, 972–978. [Google Scholar] [PubMed]
- Sougoufara, S.; Diedhiou, S.; Doucoure, S.; Diagne, N.; Sembene, P.; Harry, M.; Trape, J.; Sokhna, C.; Ndiath, M. Biting by Anopheles funestus in broad daylight after use of long-lasting insecticidal nets: A new challenge to malaria elimination. Malar. J. 2014. [Google Scholar] [CrossRef] [PubMed]
- McCann, R.; Ochomo, O.; Bayoh, N.; Vulule, J.; Gimnig, J.; Walker, E. Reemergence of Anopheles funestus as a vector of Plasmodium falciparum in western Kenya after long-term implementation of insecticide-treated bed nets. Am. J. Trop. Med. Hyg. 2014, 90, 597–604. [Google Scholar] [CrossRef] [PubMed]
- Derua, Y.; Alifrangis, M.; Hosea, K.; Meyrowitsch, D.; Magesa, S.; Pedersen, E.; Simonsen, P. Change in composition of the Anopheles gambiae complex and its possible implications for the transmission of malaria and lymphatic filariasis in north-eastern Tanzania. Malar. J. 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mwangangi, J.; Mbogo, C.; Orindi, B.; Muturi, E.; Midega, J.; Nzovu, J.; Gatakaa, H.; Githure, J.; Borgemeister, C.; Keating, J. Shifts in malaria vector species composition and transmission dynamics along the Kenyan coast over the past 20 years. Malar. J. 2013. [Google Scholar] [CrossRef] [PubMed]
- Ototo, E.N.; Githeko, A.K.; Wanjala, C.L.; Scott, T.W. Surveillance of vector populations and malaria transmission during the 2009/10 El Niño event in the western Kenya highlands: Opportunities for early detection of malaria hyper-transmission. Parasites Vectors 2011. [Google Scholar] [CrossRef] [PubMed]
- Ototo, E.N.; Mbugi, J.P.; Wanjala, C.L.; Zhou, G.; Githeko, A.K.; Yan, G. Surveillance of malaria vector population density and biting behaviour in western Kenya. Malar. J. 2015. [Google Scholar] [CrossRef] [PubMed]
- Cooke, M.; Kahindi, S.; Oriango, R.; Owaga, C.; Ayoma, E.; Mabuka, D.; Nyangau, D.; Abel, L.; Atieno, E.; Awuor, S.; et al. ‘A bite before bed’: Exposure to malaria vectors outside the times of net use in the highlands of western Kenya. Malar. J. 2015. [Google Scholar] [CrossRef] [PubMed]
- Geissbühler, Y.; Chaki, P.; Emidi, B.; Govella, N.J.; Shirima, R.; Mayagaya, V.; Mtasiwa, D.; Mshinda, H.; Fillinger, U.; Lindsay, S.W.; et al. Interdependence of domestic malaria prevention measures and mosquito-human interactions in urban Dar es Salaam, Tanzania. Malar. J. 2007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huho, B.; Briet, O.; Seyoum, A.; Sikaala, C.; Bayoh, N.; Gimnig, J. Consistently high estimates for the proportion of human exposure to malaria vector populations occurring indoors in rural Africa. Int. J. Epidemiol. 2013, 42, 235–247. [Google Scholar] [CrossRef] [PubMed]
- Killeen, G.F.; Kihonda, J.; Lyimo, E.; Oketch, F.R.; Kotas, M.E.; Mathenge, E.; Schellenberg, J.A.; Lengeler, C.; Smith, T.A.; Drakeley, C.J. Quantifying behavioural interactions between humans and mosquitoes: Evaluating the protective efficacy of insecticidal nets against malaria transmission in rural Tanzania. BMC Infect. Dis. 2006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seyoum, A.; Sikaala, C.; Chanda, J.; Chinula, D.; Ntamatungiro, A.; Hawela, M. Human exposure to anopheline mosquitoes occurs primarily indoors, even for users of insecticide-treated nets in Luangwa valley, south-east Zambia. Parasites Vectors 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradley, J.; Lines, J.; Fuseini, G.; Schwabe, C.; Monti, F.; Slotman, M.; Vargas, D.; Garcia, G.; Hergott, D.; Kleinschmidt, I. Outdoor biting by Anopheles mosquitoes on Bioko island does not currently impact on malaria control. Malar. J. 2015. [Google Scholar] [CrossRef] [PubMed]
- Nájera, J.A.; González-Silva, M.; Alonso, P.L. Some lessons for the future from the global malaria eradication programme (1955–1969). PLoS Med. 2011, 8, e1000412. [Google Scholar] [CrossRef] [PubMed]
- Molineaux, L.; Gramiccia, G.; World Health Organization. The Garki Project: Research on the Epidemiology and Control of Malaria in the Sudan Savanna of West Africa; World Health Organization: Geneva, Switzerland, 1980. [Google Scholar]
- Odiere, M.; Bayoh, M.N.; Gimnig, J.; Vulule, J.; Irungu, L.; Walker, E. Sampling outdoor, resting Anopheles gambiae and other mosquitoes (Diptera: Culicidae) in western Kenya with clay pots. J. Med. Entomol. 2007, 44, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Kent, R.J.; Coetzee, M.; Mharakurwa, S.; Norris, D.E. Feeding and indoor resting behaviour of the mosquito Anopheles longipalpis in an area of hyperendemic malaria transmission in southern Zambia. Med. Vet. Entomol. 2006, 20, 459–463. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, J.; St Laurent, B.; Lobo, N.F.; Cooke, M.K.; Kahindi, S.C.; Oriango, R.M.; Harbach, R.E.; Cox, J.; Drakeley, C. Novel vectors of malaria parasites in the western highlands of Kenya. Emerg. Infect. Dis. 2012, 18, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Bigoga, J.D.; Nanfack, F.M.; Awono-Ambene, P.H.; Patchoke, S.; Atangana, J.; Otia, V.S.; Fondjo, E.; Moyou, R.S.; Leke, R.G. Seasonal prevalence of malaria vectors and entomological inoculation rates in the rubber cultivated area of Niete, south region of Cameroon. Parasites Vectors 2012. [Google Scholar] [CrossRef] [PubMed]
- Wanji, S.; Tanke, T.; Atanga, S.N.; Ajonina, C.; Nicholas, T.; Fontenille, D. Anopheles species of the mount Cameroon region: Biting habits, feeding behaviour and entomological inoculation rates. Trop. Med. Int. Health 2003, 8, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Robert, V.; van den Broek, A.; Stevens, P.; Slootweg, R.; Petrarca, V.; Coluzzi, M.; Le Goff, G.; Di Deco, M.A.; Carnevale, P. Mosquitoes and malaria transmission in irrigated rice-fields in the Benoue Valley of northern Cameroon. Acta Trop. 1992, 52, 201–204. [Google Scholar] [CrossRef]
- Mukiama, T.K.; Mwangi, R.W. Seasonal population changes and malaria transmission potential of Anopheles pharoensis and the minor anophelines in Mwea irrigation scheme, Kenya. Acta Trop. 1989, 46, 181–189. [Google Scholar] [CrossRef]
- Antonio-Nkondjio, C.; Kerah, C.H.; Simard, F.; Awono-Ambene, P.; Chouaibou, M.; Tchuinkam, T.; Fontenille, D. Complexity of the malaria vectorial system in Cameroon: Contribution of secondary vectors to malaria transmission. J. Med. Entomol. 2006, 43, 1215–1221. [Google Scholar] [CrossRef] [PubMed]
- Carrara, G.C.; Petrarca, V.; Niang, M.; Coluzzi, M. Anopheles pharoensis and transmission of Plasmodium falciparum in the Senegal River delta, West Africa. Med. Vet. Entomol. 1990, 4, 421–424. [Google Scholar] [CrossRef] [PubMed]
- Gillies, M.T. The role of secondary vectors of malaria in north-east Tanganyika. Trans. R. Soc. Trop. Med. Hyg. 1964, 58, 154–158. [Google Scholar] [CrossRef]
- Morsy, T.A.; el Kadry, A.A.; Salama, M.M.; Sabry, A.H.; el Sharkawy, I.M. Studies on the bionomics and vector competence of adult anopheline mosquitoes in El Faiyum Governorate, Egypt. J. Egypt. Soc. Parasitol. 1995, 25, 213–244. [Google Scholar] [PubMed]
- Shehata, M.G.; Kenawy, M.A.; el Said, S.M.; Beier, J.C.; Gwadz, R.; Shaaban, M. Anopheles sergenti (Theobald) a potential malaria vector in Egypt. Ann. Parasitol. Hum. Comp. 1989, 64, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Shoukry, A.; Adham, F.K. Studies on the biology of Anopheles pharoensis Theo. in Egypt. J. Egypt. Soc. Parasitol. 1984, 14, 99–104. [Google Scholar] [PubMed]
- Molineaux, L.; Shidrawi, G.R.; Clarke, J.L.; Boulzagwet, R.; Ashkar, T.; Dietz, K. Impact of propoxur on Anopheles gambiae s.l. and some other anopheline populations, and its relationship with some pre-spraying variables. Bull. World Health Organ 1976, 54, 379–389. [Google Scholar] [PubMed]
- Sanford, M.R.; Cornel, A.J.; Nieman, C.C.; Dinis, J.; Marsden, C.D.; Weakley, A.M.; Han, S.; Rodrigues, A.; Lanzaro, G.C.; Lee, Y. Plasmodium falciparum infection rates for some Anopheles spp. from Guinea-Bissau, West Africa. F1000Research 2014. [Google Scholar] [CrossRef] [PubMed]
- Coluzzi, M. Advances in the study of afrotropical malaria vectors. Parassitologia 1993, 35, 23–29. [Google Scholar] [PubMed]
- Kerah-Hinzoumbé, C.; Péka, M.; Antonio-Nkondjio, C.; Donan-Gouni, I.; Awono-Ambene, P.; Samè-Ekobo, A.; Simard, F. Malaria vectors and transmission dynamics in Goulmoun, a rural city in south-western Chad. BMC Infect. Dis. 2009, 9, 71. [Google Scholar] [CrossRef] [PubMed]
- Abduselam, N.; Zeynudin, A.; Berens-Riha, N.; Seyoum, D.; Pritsch, M.; Tibebu, H.; Eba, K.; Hoelscher, M.; Wieser, A.; Yewhalaw, D. Similar trends of susceptibility in Anopheles arabiensis and Anopheles pharoensis Plasmodium vivax infection in Ethiopia. Parasites Vectors 2016. [Google Scholar] [CrossRef] [PubMed]
- Degefa, T.; Zeynudin, A.; Godesso, A.; Michael, Y.; Eba, K.; Zemene, E.; Emana, D.; Birlie, B.; Tushune, K.; Yewhalaw, D. Malaria incidence and assessment of entomological indices among resettled communities in Ethiopia: A longitudinal study. Malar. J. 2015. [Google Scholar] [CrossRef] [PubMed]
- Karch, S.; Mouchet, J. Anopheles paludis: Important vector of malaria in zaire. Bull. Soc. Pathol. Exot. 1992, 85, 388–389. [Google Scholar] [PubMed]
- Lips, M. Congo anophelines. 5. Anopheles brunnipes and A. paludis, vectors of human malaria. Riv. Parassitol. 1961, 23, 275–295. [Google Scholar]
- Nepomichene, T.N.J.J.; Tata, E.; Boyer, S. Malaria case in Madagascar, probable implication of a new vector, Anopheles coustani. Malar. J. 2015. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, J.C.; Simubali, L.; Mbambara, S.; Musonda, M.; Mweetwa, S.; Mudenda, T.; Pringle, J.C.; Jones, C.M.; Norris, D.E. Detection of Plasmodium falciparum infection in Anopheles squamosus (Diptera: Culicidae) in an area targeted for malaria elimination, southern Zambia. J. Med. Entomol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Bayoh, M.; Walker, E.; Kosgei, J.; Ombok, M.; Olang, G.; Githeko, A.; Killeen, G.; Otieno, P.; Desai, M.; Lobo, N.; et al. Persistently high estimates of late night, indoor exposure to malaria vectors despite high coverage of insecticide treated nets. Parasites Vectors 2014. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, H.M.; Dornhaus, A.; Beeche, A.; Borgemeister, C.; Gottlieb, M.; Mulla, M.S.; Gimnig, J.E.; Fish, D.; Killeen, G.F. Ecology: A prerequisite for malaria elimination and eradication. PLoS Med. 2010, 7, e1000303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Killeen, G. A second chance to tackle African malaria vector mosquitoes that avoid houses and don’t take drugs. Am. J. Trop. Med. Hyg. 2013, 88, 809–816. [Google Scholar] [CrossRef] [PubMed]
- Killeen, G. Characterizing, controlling and eliminating residual malaria transmission. Malar. J. 2014. [Google Scholar] [CrossRef] [PubMed]
- Russell, T.; Beebe, N.; Cooper, R.; Lobo, N.; Burkot, T. Successful malaria elimination strategies require interventions that target changing vector behaviours. Malar. J. 2013. [Google Scholar] [CrossRef] [PubMed]
- Duchet, C.; Allan, R.; Carnevale, P. Vector control: Some new paradigms and approaches. In Anopheles Mosquitoes—New Insights into Malaria Vectors; InTech: Rijeka, Croatia, 2013. [Google Scholar]
- Tusting, L.; Thwing, J.; Sinclair, D.; Fillinger, U.; Gimnig, J.; Bonner, K.; Bottomley, C.; Lindsay, S. Mosquito larval source management for controlling malaria. Cochrane Database Sys. Rev. 2013. [Google Scholar] [CrossRef] [Green Version]
- Okumu, F.; Madumla, E.; John, A.; Lwetoijera, D.; Sumaye, R. Attracting, trapping and killing disease-transmitting mosquitoes using odor-baited stations—the ifakara odor-baited stations. Parasites Vectors 2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matowo, N.; Moore, J.; Mapua, S.; Madumla, E.; Moshi, I.; Kaindoa, E.; Mwangungulu, S.; Kavishe, D.; Sumaye, R.; Lwetoijera, D.; et al. Using a new odour-baited device to explore options for luring and killing outdoor-biting malaria vectors: A report on design and field evaluation of the mosquito landing box. Parasites Vectors 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muller, G.; Beier, J.; Traore, S.; Toure, M.; Traore, M.; Bah, S.; Doumbia, S.; Schlein, Y. Successful field trial of attractive toxic sugar bait (atsb) plant-spraying methods against malaria vectors in the Anopheles gambiae complex in Mali, west Africa. Malar. J. 2010. [Google Scholar] [CrossRef]
- Muller, G.C.; Kravchenko, V.D.; Schlein, Y. Decline of Anopheles sergentii and Aedes caspius populations following presentation of attractive toxic (spinosad) sugar bait stations in an oasis. J. Am. Mosq. Control Assoc. 2008, 24, 147–149. [Google Scholar] [CrossRef]
- Revay, E.E.; Schlein, Y.; Tsabari, O.; Kravchenko, V.; Qualls, W.; De-Xue, R.; Beier, J.C.; Traore, S.F.; Doumbia, S.; Hausmann, A.; et al. Formulation of attractive toxic sugar bait (ATSB) with safe EPA-exempt substance significantly diminishes the Anopheles sergentii population in a desert oasis. Acta Trop. 2015, 150, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Stewart, Z.P.; Oxborough, R.M.; Tungu, P.K.; Kirby, M.J.; Rowland, M.W.; Irish, S.R. Indoor application of attractive toxic sugar bait (ATSB) in combination with mosquito nets for control of pyrethroid-resistant mosquitoes. PLoS ONE 2013, 8, e84168. [Google Scholar] [CrossRef] [PubMed]
- Alphey, L. Can CRISPR-CAS9 gene drives curb malaria? Nat. Biotechnol. 2016, 34, 149–150. [Google Scholar] [CrossRef] [PubMed]
- Alphey, L. Genetic control of mosquitoes. Annu. Rev. Entomol. 2014, 59, 205–224. [Google Scholar] [CrossRef] [PubMed]
- Phuc, H.K.; Andreasen, M.H.; Burton, R.S.; Vass, C.; Epton, M.J.; Pape, G.; Fu, G.; Condon, K.C.; Scaife, S.; Donnelly, C.A.; et al. Late-acting dominant lethal genetic systems and mosquito control. BMC Biol. 2007. [Google Scholar] [CrossRef] [PubMed]
- Gantz, V.M.; Jasinskiene, N.; Tatarenkova, O.; Fazekas, A.; Macias, V.M.; Bier, E.; James, A.A. Highly efficient cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc. Natl. Acad. Sci. USA 2015, 112, E6736–E6743. [Google Scholar] [CrossRef] [PubMed]
- Messenger, L.; Matias, A.; Manana, A.; Stiles-Ocran, J.; Knowles, S.; Boakye, D.; Coulibaly, M.; Larsen, M.-L.; Traore, A.; Diallo, B.; et al. Multicentre studies of insecticide-treated durable wall lining in Africa and south-east Asia: Entomological efficacy and household acceptability during one year of field use. Malar. J. 2012. [Google Scholar] [CrossRef] [PubMed]
- Chandre, F.; Dabire, R.K.; Hougard, J.M.; Djogbenou, L.S.; Irish, S.R.; Rowland, M.; N’Guessan, R. Field efficacy of pyrethroid treated plastic sheeting (durable lining) in combination with long lasting insecticidal nets against malaria vectors. Parasites Vectors 2010. [Google Scholar] [CrossRef] [PubMed]
- Djenontin, A.; Chabi, J.; Baldet, T.; Irish, S.; Pennetier, C.; Hougard, J.M.; Corbel, V.; Akogbeto, M.; Chandre, F. Managing insecticide resistance in malaria vectors by combining carbamate-treated plastic wall sheeting and pyrethroid-treated bed nets. Malar. J. 2009. [Google Scholar] [CrossRef] [PubMed]
- Djenontin, A.; Chandre, F.; Dabire, K.R.; Chabi, J.; N’Guessan, R.; Baldet, T.; Akogbeto, M.; Corbel, V. Indoor use of plastic sheeting impregnated with carbamate combined with long-lasting insecticidal mosquito nets for the control of pyrethroid-resistant malaria vectors. Am. J. Trop. Med. Hyg. 2010, 83, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Kirby, M.; Ameh, D.; Bottomley, C.; Green, C.; Jawara, M.; Milligan, P. Effect of two different house screening interventions on exposure to malaria vectors and on anaemia in children in the Gambia: A randomised controlled trial. Lancet 2009, 374, 998–1009. [Google Scholar] [CrossRef]
- Ogoma, S.B.; Lweitoijera, D.W.; Ngonyani, H.; Furer, B.; Russell, T.L.; Mukabana, W.R.; Killeen, G.F.; Moore, S.J. Screening mosquito house entry points as a potential method for integrated control of endophagic filariasis, arbovirus and malaria vectors. PLoS Negl. Trop. Dis. 2010, 4, e773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knols, B.G.J.; Farenhorst, M.; Andriessen, R.; Snetselaar, J.; Suer, R.A.; Osinga, A.J.; Knols, J.M.H.; Deschietere, J.; Ng’habi, K.R.; Lyimo, I.N.; et al. Eave tubes for malaria control in Africa: An introduction. Malar. J. 2016. [Google Scholar] [CrossRef] [PubMed]
- Menger, D.J.; Omusula, P.; Wouters, K.; Oketch, C.; Carreira, A.S.; Durka, M. Eave screening and push-pull tactics to reduce house entry by vectors of malaria. Am. J. Trop. Med. Hyg. 2016, 94, 868–878. [Google Scholar] [CrossRef] [PubMed]
- Ogoma, S.B.; Kannady, K.; Sikulu, M.; Chaki, P.P.; Govella, N.J.; Mukabana, W.R.; Killeen, G.F. Window screening, ceilings and closed eaves as sustainable ways to control malaria in Dar es Salaam, Tanzania. Malar. J. 2009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sternberg, E.D.; Ng’habi, K.R.; Lyimo, I.N.; Kessy, S.T.; Farenhorst, M.; Thomas, M.B.; Knols, B.G.J.; Mnyone, L.L. Eave tubes for malaria control in Africa: Initial development and semi-field evaluations in Tanzania. Malar. J. 2016. [Google Scholar] [CrossRef] [PubMed]
- Achee, N.; Bangs, M.; Farlow, R.; Killeen, G.; Lindsay, S.; Logan, J.; Moore, S.; Rowland, M.; Sweeney, K.; Torr, S.; et al. Spatial repellents: From discovery and development to evidence-based validation. Malar. J. 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stevenson, J.C.; Norris, D.E. Implicating Cryptic and Novel Anophelines as Malaria Vectors in Africa. Insects 2017, 8, 1. https://doi.org/10.3390/insects8010001
Stevenson JC, Norris DE. Implicating Cryptic and Novel Anophelines as Malaria Vectors in Africa. Insects. 2017; 8(1):1. https://doi.org/10.3390/insects8010001
Chicago/Turabian StyleStevenson, Jennifer C., and Douglas E. Norris. 2017. "Implicating Cryptic and Novel Anophelines as Malaria Vectors in Africa" Insects 8, no. 1: 1. https://doi.org/10.3390/insects8010001
APA StyleStevenson, J. C., & Norris, D. E. (2017). Implicating Cryptic and Novel Anophelines as Malaria Vectors in Africa. Insects, 8(1), 1. https://doi.org/10.3390/insects8010001