Biologically Based Methods for Pest Management in Agriculture under Changing Climates: Challenges and Future Directions
Abstract
:1. Introduction
2. Biologically-Based Pest Control Methods
3. Challenges in Biologically-Based Pest Management in Relation to Climate Change
3.1. Habitat Fragmentation and Natural Enemy Diversity or Abundance
3.2. Insect Biology and Physiology in Relation to Environmental Change
3.3. Chemical Ecology and Tritrophic Interactions in Agroecosystems
3.4. Complexity in the Outcome of Climate Change Impacts on Natural Enemy Abundance and Population Dynamics
4. Future Directions
4.1. Environmental Stress Biology, Evolutionary Resilience and Ecologically Relevant Measures for Organism Response to Changes in Climates
4.2. Monitoring, Ecological Assessments and Ecosystem Management
5. Conclusion
Acknowledgements
References
- Deutsch, C.A.; Tewksbury, J.J.; Huey, R.B.; Sheldon, K.S.; Ghalambor, C.K.; Haak, D.C.; Martin, P.R. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. USA 2008, 105, 6668–6672. [Google Scholar]
- Huey, R.B.; Deutsch, C.A.; Tewksbury, J.J.; Vitt, L.J.; Hertz, P.E.; Pérez, H.J.A.; Garland, T., Jr. Why tropical forest lizards are vulnerable to climate warming. Proc. R. Soc. London B 467 2009, 276, 1939–1948. [Google Scholar] [CrossRef]
- Dillon, M.E.; Wang, G.; Huey, R.B. Global metabolic impacts of recent climate warming. Nature 2010, 476, 704–707. [Google Scholar]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef]
- Colwell, R.K.; Brehm, G.; Cardelus, C.L.; Gilman, A.C.; Longino, J.T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 2008, 322, 258–261. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Easterling, D.R.; Meehl, G.A.; Parmesan, C.; Changnon, S.A.; Karl, T.R.; Mearns, L.O. Climate extremes: Observations, modelling, and impacts. Science 2000, 289, 2068–2074. [Google Scholar] [CrossRef]
- Frich, P.; Alexander, L.V.; Della-Marta, P.; Gleason, B.; Haylock, M.; Tank, A.M.K.; Peterson, T. Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 2002, 3, 193–212. [Google Scholar]
- Battisti, A.; Stastny, M.; Buffo, E.; Larson, S. A rapid altitudinal range expansion in the pine processionary moth produced by the 2003 climatic anomaly. Glob. Change Biol. 2006, 12, 662–671. [Google Scholar] [CrossRef]
- Tomozeiu, R.; Pavan, V.; Cacciamani, C.; Amici, M. Observed temperature changes in Emilia-Romagna: Mean values and extremes. Clim. Res. 2006, 31, 217–225. [Google Scholar] [CrossRef]
- Tebaldi, C.; Sansó, B. Joint projections of temperature and precipitation change from multiple climate models: A hierarchical Bayesian approach. J. R. Stat. Soc. 2009, 172, 83–106. [Google Scholar] [CrossRef]
- Im, E.S.; Jung, I.W.; Bae, D.H. The temporal and spatial structures of recent and future trends in extreme indices over Korea from a regional climate projection. Int. J. Clim. 2011, 31, 72–86. [Google Scholar] [CrossRef]
- Kiritani, K. Predicting impacts of global warming on population dynamics and distribution of arthropods in Japan. Pop. Ecol. 2006, 48, 5–12. [Google Scholar] [CrossRef]
- Musolin, D.H. Insects in a warmer world: ecological, physiological and life history responses of true bugs (Heteroptera) to climate change. Glob. Change Biol. 2007, 13, 1565–1585. [Google Scholar] [CrossRef]
- Denlinger, D.L.; Lee, R.E. Low Temperature Biology of Insects; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Stevenson, R.D. The relative importance of behavioural and physiological adjustments controlling body temperature in terrestrial ectotherms. Am. Nat. 1985, 3, 362–386. [Google Scholar]
- Huey, R.B.; Bennett, A.F. Physiological adjustments to fluctuating thermal environments: An ecological and evolutionary perspective. In Stress Proteins in Biology and Medicine; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1990; pp. 37–59. [Google Scholar]
- Chown, S.L.; Terblanche, J.S. Physiological diversity in insects: Ecological and evolutionary contexts. Adv. Insect Physiol. 2007, 33, 50–152. [Google Scholar]
- Huey, R.B.; Pascual, M. Partial thermoregulatory compensation by a rapidly evolving invasive species along a latitudinal cline. Ecology 2009, 90, 1715–1720. [Google Scholar] [CrossRef]
- Chown, S.L.; Nicolson, S.W. Insect Physiological In Ecology: Mechanisms and Patterns; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Bowler, K. Acclimation, heat shock and hardening. J. Therm. Biol. 2005, 30, 125–130. [Google Scholar] [CrossRef]
- Lagerspetz, K.Y.H. What is thermal acclimation? J. Therm. Biol. 2006, 31, 332–336. [Google Scholar] [CrossRef]
- Huey, R.B.; Berrigan, D. Testing evolutionary hypothesis of acclimation. In Phenotypic and Evolutionary Adaptation to Temperatures; Johnston, I.A., Bennett, A.F., Eds.; Cambridge University Press: Cambridge, UK, 1996; pp. 205–237. [Google Scholar]
- Hoffmann, A.A.; Sørensen, J.G.; Loeschcke, V. Adaptation of Drosophila to temperature extremes: Bringing together quantitative and molecular approaches. J. Therm. Biol. 2003, 28, 175–216. [Google Scholar] [CrossRef]
- Fischer, K.; Eenhoorn, E.; Bot, A.N.M.; Brakefield, P.M.; Zwaan, B.J. Cooler butterflies lay larger eggs: Developmental plasticity versus acclimation. Proc. R. Soc. London B 2003, 270, 2051–2056. [Google Scholar] [CrossRef]
- Terblanche, J.S.; Chown, S.L. The relative contributions of developmental plasticity and adult acclimation to physiological variation in tsetse fly, Glossina pallidipes (Diptera: Glossinidae)J. Exp. Biol. 2006, 209, 1064–1073. [Google Scholar] [CrossRef]
- Martinat, P.J. The Role of Climatic Variation and Weather in Fores. In Insect Outbreaks; Barbosa, P., Schultz, J.C., Eds.; Academic Press: San Diego, CA, USA, 1987; pp. 241–268. [Google Scholar]
- Lafferty, K.D. The ecology of climate change and infectious diseases. Ecology 2009, 90, 888–900. [Google Scholar] [CrossRef]
- Nyamukondiwa, C.; Terblanche, J.S. Within-generation variation of critical thermal limits in adult Mediterranean and Natal fruit flies Ceratitis capitata and Ceratitis rosa: thermal history affects short term responses to temperature. Physiol. Entomol. 2010, 35, 255–264. [Google Scholar] [CrossRef]
- Marshall, K.E.; Sinclair, B.J. Repeated stress exposure results in a survival-reproduction trade-off in Drosophila melanogaster. Proc. R. Soc. London B 2010, 277, 963–969. [Google Scholar] [CrossRef]
- Hoy, M.A. Parasitoids and Predators in Management of Arthropod Pests. In Introduction to Insect Pest Management; Metcalf, R.L., Luckman, W.H., Eds.; John Wiley Sons: New York, NY, USA, 1994. [Google Scholar]
- Cammell, M.E.; Knight, J.D. Effects of climatic change on the population dynamics of crop pests. Adv. Ecol. Res. 1992, 22, 117–162. [Google Scholar] [CrossRef]
- Southwood, T.R.E.; Henderson, P.A. Ecological Methods; Blackwell Science: Oxford, UK, 2000. [Google Scholar]
- Duale, A.H. Effect of temperature and relative humidity on the biology of the stem borer parasitoid Pediobius furvus (Gahan) (Hymenoptera: Eulophidae) for the management of stem borers. Environ. Entomol. 2005, 34, 1–5. [Google Scholar] [CrossRef]
- Sorribas, J.; van Baaren, J.; Garcia-Marí, F. Effects of climate on the introduction, distribution and biotic potential of parasitoids: Applications to biological control in California red scale. Biol. Control 2012, in press. [Google Scholar]
- Liu, S.S.; Zhang, G.M.; Zhu, J. Influence of temperature variations on rate development in insects analysis of case studies from entomological literature. Ann. Entomol. Soc. Am. 1995, 88, 107–119. [Google Scholar]
- Kalyebi, A.; Sithanantham, S.; Overholt, W.A.; Hassan, S.A.; Mueke, J.M. Parasitism, longevity and progeny production of six indigenous Kenyan trichogrammatid egg parasitoids (Hymenoptera: Trichogrammatidae) at different temperature and relative humidity regimes. Biocontrol. Sci. Technol. 2005, 15, 255–270. [Google Scholar] [CrossRef]
- Hance, T.; van Baaren, J.; Vernon, P.; Boivin, G. Impact of extreme temperatures on parasitoids in a climate change perspective. Ann. Rev. Entomol. 2007, 52, 107–126. [Google Scholar] [CrossRef]
- Porter, J.H.; Parry, M.L.; Carter, T.R. The potential effects of climate change on agricultural insect pests. Agric. Forest Meteorol. 1991, 57, 221–240. [Google Scholar] [CrossRef]
- Cannon, R.J.C. The implications of predicted climate change for insect pests in the UK, with emphasis on non-indigenous species. Global Change Biol. 1998, 4, 785–796. [Google Scholar] [CrossRef]
- Estay, S.A.; Lima, M.; Labra, F.A. Predicting insect pest status under climate change scenarios: combining experimental data and population dynamics modelling. J. Appl. Entomol. 2009, 133, 491–499. [Google Scholar] [CrossRef]
- Klok, C.J.; Chown, S.L. Critical thermal limits, temperature tolerance and water balance of a sub-Antarctic kelp fly, Paractora dreuxi (Diptera: Helcomyzidae). J. Insect Physiol. 2001, 47, 95–101. [Google Scholar] [CrossRef]
- Sasson, A. Food security in Africa: An urgent global challenge. Agric. Food Sec. 2012. [Google Scholar] [CrossRef]
- Lynch, S. Measuring progress in the transition to biologically-based IPM. In Proceedings of the OECD/FAO Workshop on Integrated Pest Management and Pesticide Risk Reduction, Neuchâtel, Switzerland, 28 June-2 July 1998.
- Lockwood, J.A.; Ewen, A.B. Biological control of rangeland grasshoppers and locusts. In The Bionomics of Grasshoppers,Katydids and their Kin; Gangwere, S.K., Muralingan, M.C., Muralingan, M., Eds.; CABI International: Wallingford, UK, 1997; pp. 421–442. [Google Scholar]
- Van Lenteren, J.C. The state of commercial augmentative biological control: Plenty of natural enemies, but a frustrating lack of uptake. BioControl 2011, 57, 1–20. [Google Scholar] [CrossRef]
- Eilenberg, J.; Hajek, A.; Lomer, C. Suggestions for unifying the terminology in biological control. BioControl 2001, 46, 387–400. [Google Scholar] [CrossRef]
- Landis, D.A.; Wratten, S.D.; Gurr, G.M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Ann. Rev. Entomol. 2000, 45, 175–201. [Google Scholar] [CrossRef]
- Jonsson, M.; Wratten, S.D.; Landis, D.A.; Gurr, G.M. Recent advances in conservation biological control of arthropods by arthropods. Biol. Control 2008, 45, 172–175. [Google Scholar] [CrossRef]
- Khan, Z.R.; James, D.G.; Midega, C.A.O.; Pickett, J.A. Chemical ecology and conservation biological control. Biol. Control 2008, 45, 210–224. [Google Scholar] [CrossRef]
- Cook, S.M.; Khan, Z.R.; Pickett, J.A. The use of ‘push-pull’ strategies in integrated pest management. Ann. Rev. Entomol. 2007, 52, 375–400. [Google Scholar] [CrossRef]
- Idris, A.B.; Grafius, E. Wildflowers as nectar sources for Diadegma insulare (Hymenoptera: Ichneumonidae), a parasitoid of diamondback moth, Plutella xylostella, (Lepidoptera: Plutellidae). Environ. Entomol. 1995, 24, 1726–1735. [Google Scholar]
- Idris, A.B.; Grafius, E. Nectar-collecting behavior of Diadegma insulare (Hymenoptera: Ichneumonidae), a parasitoid of diamondback moth (Lepidoptera: Plutellidae). Environ. Entomol. 1997, 26, 114–120. [Google Scholar]
- Johanowicz, D.; Mitchell, E.R. Effects of sweet alyssum flowers on the longevity of the parasitoid wasps Cotesia marginiventris (Hymenoptera: Braconidae) and Diadegma insulare (Hymenoptera: Ichneumonidae). Florida Entomol. 2000, 83, 41–47. [Google Scholar] [CrossRef]
- Talekar, N.S.; Shelton, A.M. Biology, ecology and management of diamondback moth. Ann. Rev. Entomol. 1993, 38, 275–302. [Google Scholar] [CrossRef]
- Perdikis, D.; Fantinou, A.; Lykouressis, D. Enhancing pest control in annual crops by conservation of predatory Heteroptera. Biol. Control 2011, 59, 13–21. [Google Scholar] [CrossRef]
- Gutierrez, A.P.; Ponti, L.; d’Oultremont, T.; Ellis, C.K. Climate change effects on poikilotherm tritrophic interactions. Clim. Change 2008, 87, S167–S192. [Google Scholar] [CrossRef]
- Colliera, T.; van Steenwyk, R. A critical evaluation of augmentative biological control. Biol. Control 2004, 31, 245–256. [Google Scholar] [CrossRef]
- Lomer, C.J.; Bateman, R.P.; Johnson, D.L.; Langewald, J.; Thomas, M. Biological control of locusts and grasshoppers. Ann. Rev. Entomol. 2001, 46, 667–702. [Google Scholar] [CrossRef]
- Macedo, N. Método de criação do parasitóide Cotesia flavipes (Cameron). In Controle,Biológico de Pragas: Produção massal e controle de qualidade; Bueno, V.H.P., Ed.; Editora UFLA: Lavras, Minas Gerais, Brazil, 2000; pp. 161–174. [Google Scholar]
- Daane, K.M.; Yokota, G.Y.; Zheng, Y.; Hagen, K.S. Inundative release of common green lacewings (Neuroptera: Chrysopidae) to suppress Erythroneura variabilis and E. elegantula (Homoptera: Cicadellidae) in vineyards. Environ. Entomol. 1996, 25, 1224–1234. [Google Scholar]
- Klein Koch, C.A. Proyectos de control biológico en curso en Ecuador. In M.C. Zapater El Control Biológico en América Latina; IOBC: Buenos Aires, Argentina, 1996; pp. 41–47. [Google Scholar]
- Corrêa-Ferreira, B.S. Utilização do parasitóide de ovos Trissolcus basalis (Wollaston) no controle de percevejos da soja. In Circular Técnica 11; Embrapa-CNPSo: Londrina, Brazil, 1993; p. 40. [Google Scholar]
- Corrêa-Ferreira, B.S.; Moscardi, F. Biological control of soybean stink bugs by inoculative releases of Trissolcus basalis. Entomol. Exp. Appl. 2011, 79, 1–7. [Google Scholar] [CrossRef]
- Fargues, J.; Ouedraogo, A.; Goettel, M.S.; Lomer, C.J. Effect of temperature, humidity and inoculation method on susceptibility of Schistocerca gregaria to Metarhizium flavoviride. Biocontrol. Sci. Technol. 1997, 7, 345–356. [Google Scholar] [CrossRef]
- Jonsson, D.L.; Huang, H.C.; Harper, A.M. Mortality of grasshoppers (Orthoptera: Acrididae) inoculated with a Canadian isolate of the fungus Verticillium lecanii. J. Invertebr. Pathol. 1988, 52, 335–342. [Google Scholar] [CrossRef]
- Chown, S.L.; Sørenson, J.G.; Terblanche, J.S. Water loss in insects: An environmental change perspective. J. Insect Physiol. 2011, 57, 1070–1084. [Google Scholar] [CrossRef]
- Parmesan, C.; Ryrholm, N.; Stefanescu, C.; Hill, J.K.; Thomas, C.D.; Descimon, H.; Huntley, B.; Kaila, L.; Kullberg, J.; Tammaru, T.; et al. Pole ward shifts in geographical ranges of butterfly species associated with regional warming. Nature 1999, 399, 579–583. [Google Scholar]
- Zachariassen, K.E. The water conserving physiological compromise of desert insects. Eur. J. Entomol. 1996, 93, 359–367. [Google Scholar]
- Nair, U.S.; Lawton, R.O.; Welch, R.M.; Pielke, R.A., Sr. Impact of land use on Costa Rican tropical montane cloud forests: Sensitivity of cumulus cloud field characteristics to lowland deforestation. J. Geog. Res. 2003. [Google Scholar] [CrossRef]
- Webb, T.J.; Woodward, F.J.; Hannah, L.; Gaston, K.J. Forest cover-rainfall relationships in a biodiversity hotspot: the Atlantic forest of Brazil. Ecol. Appl. 2005, 15, 1968–1983. [Google Scholar] [CrossRef]
- Markarieva, A.M.; Gorshkov, V.G. Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hyd. Earth Sys. Sci. 2007, 11, 1013–1033. [Google Scholar] [CrossRef]
- Nicholls, C.I.; Parrella, M.; Altieri, M.A. Reducing the abundance of leafhoppers and thrips in a northern California organic vineyard through maintenance of full season floral diversity with summer cover crops. Agric. Forest Entomol. 2000, 2, 107–113. [Google Scholar] [CrossRef]
- Wilby, A.; Thomas, M.B. Are the ecological concepts of assembly and function of biodiversity useful frameworks for understanding natural pest control? Agric. Forest Entomol. 2002, 4, 237–243. [Google Scholar] [CrossRef]
- Letourneau, D.K.; Armbrecht, I.; Rivera, B.S.; Lerma, J.M.; Carmona, E.J.; Daza, M.C.; Escobar, S.; Galindo, V.; Gutierrez, C.; Lopez, S.D.; et al. Does plant diversity benefit agroecosystems? A synthetic review. Ecol. Appl. 2011, 21, 9–21. [Google Scholar] [CrossRef]
- Dyer, J.M. Implications of habitat fragmentation on climate change-induced forest migration. Prof. Geog. 2005, 46, 449–459. [Google Scholar] [CrossRef]
- Opdam, P.; Wascher, D. Climate change meets habitat fragmentation: Linking landscape and biogeographical scale levels in research and conservation. Biol. Conserv. 2004, 117, 285–297. [Google Scholar] [CrossRef]
- Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. S. 2003, 34, 487–515. [Google Scholar] [CrossRef]
- Cossins, A.; Bowler, K. Temperature Biology of Animals; Chapman and Hall: London, UK, 1987. [Google Scholar]
- Angilletta, M.J. Thermal Adaptation. In A Theoretical and Empirical Synthesis; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Basson, C.H.; Nyamukondiwa, C.; Terblanche, J.S. Fitness costs of rapid cold-hardening in Ceratitis capitata. Evolution 2011, 66, 296–304. [Google Scholar]
- Kristensen, T.N.; Hoffmann, A.A.; Overgaard, J.; Sørensen, J.G.; Hallas, R.; Loeschcke, V. Costs and benefits of cold acclimation in field-released Drosophila. Proc. Natl. Acad. Sci. USA 2008, 105, 216–221. [Google Scholar]
- Chidawanyika, F.; Terblanche, J.S. Costs and benefits of thermal acclimation for codling moth, Cydia pomonella (Lepidoptera: Tortricidae): implications for pest control and the sterile insect release programme. Evol. Appl. 2011, 4, 534–544. [Google Scholar] [CrossRef]
- Chidawanyika, F.; Terblanche, J.S. Rapid thermal responses and thermal tolerance in adult codling moth Cydia pomonella (Lepidoptera: Tortricidae). J. Insect Physiol. 2010, 57, 108–117. [Google Scholar] [CrossRef]
- Bowler, K.; Terblanche, J.S. Insect thermal tolerance: What is the role of ontogeny, ageing and senescence? Biol. Rev. 2008, 83, 339–355. [Google Scholar]
- Sørenson, J.G.; Addison, M.F.; Terblanche, J.S. Mass-rearing of insects for pest management: Challenges, synergies and advances from evolutionary physiology. Crop Prot. 2012, 38, 87–94. [Google Scholar] [CrossRef]
- Robinet, C.; Roques, A. Direct impacts of recent climate warming on insect populations. Integr. Zool. 2010, 2, 132–142. [Google Scholar] [CrossRef]
- Stacey, D. Climate and biological control in organic crops. Int. J. Pest Manage. 2003, 49, 205–214. [Google Scholar] [CrossRef]
- Janzen, D.H. Why mountain passes are higher in tropics. Am. Nat. 1967, 101, 233–249. [Google Scholar]
- Ghalambor, C.K.; Huey, R.B.; Martin, P.R.; Tewksbury, J.J.; Wang, G. Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr Comp. Biol. 2007, 46, 5–17. [Google Scholar]
- Chown, S.L.; Slabber, S.; McGeoch, M.A.; Janion, C.; Leinaas, H.P. Phenotypic plasticity mediates climate change responses among invasive and indigenous arthropods. Proc. R. Soc. London. Ser. B 2007, 274, 2661–2667. [Google Scholar] [CrossRef]
- Nyamukondiwa, C.; Kleynhans, E.; Terblanche, J.S. Phenotypic plasticity of thermal tolerance contributes to the invasion potential of Mediterranean fruit flies (Ceratitis capitata). Ecol. Entomol. 2010, 35, 565–575. [Google Scholar] [CrossRef]
- Sithole, S.Z. Status and control of the Stem Borer, Chilo partellus Swinhoe (Lepidoptera: Pyralidae) in Southern Africa. Int. J. Trop. Sci. 1990, 11, 479–488. [Google Scholar] [CrossRef]
- Ong’amo, G.O.; Le Rü, B.P.; Dupas, S.; Moyal, P.; Calatayud, P.A.; Silvain, J.F. Distribution, pest status and agro-climatic preferences of lepidopteran stem borers of maize in Kenya. Ann. de la Société Entomol. de France 2006, 42, 171–177. [Google Scholar]
- Thomson, L.J.; Macfadyen, S.; Hoffmann, A.A. Predicting the effects of climate change on natural enemies of agricultural pests. Biol. Control 2010, 52, 296–306. [Google Scholar] [CrossRef]
- Hilker, M.; Meiners, T. Early herbivore alert: insect eggs induce plant defence. J. Chem. Ecol. 2006, 32, 1379–1397. [Google Scholar] [CrossRef]
- Rodriguez-Saona, C.R.; Frost, C.J. New evidence for a multi-functional role of herbivore-induced plant volatiles in defense against herbivores. Plant Signaling Behav. 2010, 5, 58–60. [Google Scholar] [CrossRef]
- Vickers, C.E.; Gershenzon, J.; Lerdau, M.T.; Loreto, F. A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat. Chem. Biol. 2009, 5, 283–290. [Google Scholar] [CrossRef]
- Gershenzon, J. Insects turn up their noses at sweating plants. Proc. Natl. Acad. Sci. USA 2008, 105, 17211–172212. [Google Scholar] [CrossRef]
- Loivamäki, M.; Mumm, R.; Dicke, M.; Schnitzler, J.P. Isoprene interferes with the attraction of bodyguards by herbaceous plants. Proc. Natl. Acad. Sci. USA 2008, 105, 17430–17435. [Google Scholar] [CrossRef]
- Laothawornkitkul, J.; Paul, N.D.; Vicker, C.E.; Possell, M.; Taylor, J.E.; Mullineaux, P.M.; Hewitti, C.N. Isoprene emissions influence herbivore feeding decisions. Plant Cell Environ. 2008, 31, 1410–1415. [Google Scholar] [CrossRef]
- Bruce, T.J.A.; Picket, J.A. Perception of volatile blends by herbivorous insects-Finding the right mix. Phytochemistry 2011, 72, 1605–1611. [Google Scholar] [CrossRef]
- Riveron, J.; Boto, T.; Alcorta, E. The effect of environmental temperature on olfactory perception in Drosophila melanogaster. J. Insect Physiol. 2009, 55, 943–951. [Google Scholar] [CrossRef]
- Pearson, R.G.; Dawson, T.P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecol. Biogeogr. 2003, 12, 361–371. [Google Scholar] [CrossRef]
- Wiens, J.A.; Stralberg, D.; Jongsomjit, D.; Howell, C.A.; Snyder, M.A. Niches, models, and climate change: Assessing the assumptions and uncertainties. Proc. Natl. Acad. Sci. USA 2009, 106, 19729–19736. [Google Scholar]
- Davis, A.J.; Jenkinson, L.S.; Lawton, J.H.; Shorrocks, B.; Wood, S. Making mistakes when predicting shifts in species range in response to global warming. Nature 1998, 391, 783–786. [Google Scholar] [CrossRef]
- Heikinnen, R.K.; Luoto, M.; Araujo, M.B.; Virkkala, R.; Thuiller, W.; Sykes, M.T. Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog. Phys. Geog. 2006, 6, 1–27. [Google Scholar]
- Mikkelsen, T.N.; Beier, C.; Jonasson, S.; Holmstrup, M.; Schmidt, I.K.; Ambus, P.; Pilegaard, K.; Michelsen, A.; Albert, K.; Andresen, L.C.; et al. Experimental design of multifactor climate change experiments with elevated CO2 warming and drought: the CLIMAITE project. Funct. Ecol. 2008, 22, 185–195. [Google Scholar]
- Patori, G.M.; Foyer, C.H. Common components, networks, and pathways of cross-tolerance to stress. The central role of “Redox” and abscisic acid-mediated controls. Plant Physiol. 2002, 129, 460–468. [Google Scholar] [CrossRef]
- Hoffmann, A.A.; Chown, S.L.; Clusella-Trullas, S. Upper thermal limits in terrestrial ectotherms: How constrained are they? Funct. Ecol. 2012, in press. [Google Scholar]
- Hanski, I.; Mononen, T. Eco-evolutionary dynamics of dispersal in spatially heterogeneous environments. Ecol. Lett. 2011, 14, 1025–1034. [Google Scholar] [CrossRef]
- Kellermann, V.; Heerwaarden, B.; Sgró, C.M.; Hoffmann, A.A. Fundamental evolutionary limits in ecological traits drive Drosophila species distributions. Science 2009, 325, 1244–1246. [Google Scholar] [CrossRef]
- Hoffmann, A.A. Physiological climatic limits in Drosophila: patterns and implications. J. Exp. Biol. 2010, 213, 870–880. [Google Scholar] [CrossRef]
- Chown, S.L.; Hoffmann, A.A.; Kristensen, T.; Angilletta, M.; Strenseth, N. Adapting to climate change: a perspective from evolutionary physiology. Clim. Res. 2010, 43, 3–15. [Google Scholar] [CrossRef]
- Parmesan, C. Ecological and evolutionary responses to recent climate change. Ann. Rev. Ecol. Evol. Syst. 2006, 37, 637–669. [Google Scholar] [CrossRef]
- Williams, S.E.; Shoo, L.P.; Isaac, J.L.; Hoffmann, A.A.; Langham, G. Towards and integrated framework for assessing the vulnerability of species to climate change. PLoS Biol. 2008. [Google Scholar] [CrossRef]
- Lutterschmidt, W.I.; Hutchison, V.H. The critical thermal maximum: Data to support the onset of spasms as the definitive end point. Can. J. Zool. 1997, 75, 1553–1560. [Google Scholar] [CrossRef]
- Terblanche, J.S.; Hoffmann, A.A.; Mitchell, K.A.; Rako, L.; Le Roux, P.C.; Chown, S.L. Ecologically relevant measures of tolerance to potentially lethal temperatures. J. Exp. Biol. 2011, 214, 3713–3725. [Google Scholar] [CrossRef]
- Crozier, L.; Dwyer, G. Combining population-dynamic and ecophysiological models to predict climate-induced insect range shifts. Am. Nat. 2006, 167, 853–866. [Google Scholar] [CrossRef]
- Somero, G.N. The physiology of climate change: how potentials for acclimatisation and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 2009, 213, 912–920. [Google Scholar] [CrossRef]
- Terblanche, J.S.; Nyamukondiwa, C.; Kleynhans, E. Thermal variability alters climatic stress resistance and plastic responses in a globally invasive pest, the Mediterranean fruit fly (Ceratitis capitata). Entomol. Exp. Appl. 2010, 137, 304–315. [Google Scholar] [CrossRef]
- Hendry, A.P.; Kinnison, M.T.; Heino, M.; Day, T.; Smith, T.B.; Fitt, G.; Bergstrom, C.T.; Oakeshott, J.; Jorgensen, P.S.; Zalucki, M.P.; et al. Evolutionary principles and their practical applications. Evol. Appl. 2011, 4, 159–183. [Google Scholar] [CrossRef]
- Hoffmann, A.A.; Sgrò, C.M. Climate change and evolutionary adaptation. Nature 2011, 470, 479–485. [Google Scholar] [CrossRef]
- Sgrò, C.M.; Lowe, A.J.; Hoffmann, A.A. Building evolutionary resilience for conserving biodiversity under climate change. Evol. Appl. 2010, 4, 326–337. [Google Scholar]
- Pörtner, H.O.; Farrell, A.P. Physiology and climate change. Science 2008, 322, 690–692. [Google Scholar] [CrossRef]
- Thrall, P.H.; Oakeshott, J.G.; Fitt, G.; Southerton, S.; Burdon, J.J.; Sheppard, A.; Russell, R.J.; Zalucki, M.; Heino, M.; Denison, F.; et al. Evolution in agriculture: The application of evolutionary approaches to the management of biotic interactions in the agro-ecosystems. Evol. Appl. 2011, 4, 200–215. [Google Scholar] [CrossRef]
- Crandal, K. A multifacted approach to species conservation. Anim. Conserv. 2009, 12, 105–106. [Google Scholar] [CrossRef]
- Berry, P.M.; Dawson, T.P.; Harrison, P.A.; Pearson, R.G. Modelling potential impacts of climate change on the bioclimatic envelope of species in Britain and Ireland. Global Ecol. Biogeogr. 2002, 11, 453–462. [Google Scholar] [CrossRef]
- Pearson, R.G.; Dawson, T.P.; Berry, P.M.; Harrison, P.A. Species: A spatial evaluation of climate impact on the envelope of species. Ecol. Modell. 2002, 154, 289–300. [Google Scholar] [CrossRef]
- Guisan, A.; Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef]
- Mustin, K.; Benton, T.G.; Dytham, C.; Travis, J.M.J. The dynamics of climate-induced range shifting; perspectives from simulation modeling. Oikos 2009, 118, 131–137. [Google Scholar] [CrossRef]
- Dale, V.H.; Suzanne, C.B. Challenges in the development and use of ecological indicators. Ecol. Indic. 2001, 1, 3–10. [Google Scholar]
- Cairns, J.; McCormick, P.V.; Niederlehner, B.R. A proposed framework for developing indicators of ecosystem health. Hydrobiologia 1993, 236, 1–44. [Google Scholar]
- Hartley, S.; Krushelnycky, P.D.; Lester, P.J. Integrating physiology, population dynamics and climate to make multi-scale predictions for the spread of an invasive insect: The Argentine ant at Haleakala National Park, Hawaii. Ecography 2010, 33, 83–94. [Google Scholar] [CrossRef]
- Bradshaw, W.E.; Holzapfel, C.M. Evolutionary response to rapid climate change. Science 2006, 312, 1477–1478. [Google Scholar] [CrossRef]
- Hoffmann, A.A.; Daborn, P.J. Towards genetic markers in animal populations as biomonitors for human-induced environmental change. Ecol. Lett. 2007, 10, 63–76. [Google Scholar] [CrossRef]
- Kearney, M.; Porter, W.P.; Williams, C.; Ritchie, S.; Hoffmann, A.A. Integrating biophysical and evolutionary theory to predict climatic impacts on species’ ranges: The dengue mosquito Aedes aegypti in Australia. Funct. Ecol. 2009, 23, 528–538. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Chidawanyika, F.; Mudavanhu, P.; Nyamukondiwa, C. Biologically Based Methods for Pest Management in Agriculture under Changing Climates: Challenges and Future Directions. Insects 2012, 3, 1171-1189. https://doi.org/10.3390/insects3041171
Chidawanyika F, Mudavanhu P, Nyamukondiwa C. Biologically Based Methods for Pest Management in Agriculture under Changing Climates: Challenges and Future Directions. Insects. 2012; 3(4):1171-1189. https://doi.org/10.3390/insects3041171
Chicago/Turabian StyleChidawanyika, Frank, Pride Mudavanhu, and Casper Nyamukondiwa. 2012. "Biologically Based Methods for Pest Management in Agriculture under Changing Climates: Challenges and Future Directions" Insects 3, no. 4: 1171-1189. https://doi.org/10.3390/insects3041171