Characterization of Chemical Defensive Behavior and Associated Glands in the Destructive Invasive Longhorn Beetle Aromia bungii
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Sources
2.2. Spray Process Recording
2.3. Environmental Scanning Electron Microscopy
2.4. Gland Dissection
2.5. Micro-CT Imaging of the Defensive Gland
2.6. Weights of Defensive Substances Ejected
2.7. Statistical Analysis
3. Results
3.1. Spray Behavior
3.2. The Gland Opening
3.3. Defensive Gland
3.4. Weights of Defensive Substances Ejected
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Russo, E.; Nugnes, F.; Vicinanza, F.; Garonna, A.P.; Bernardo, U. Biological and molecular characterization of Aromia bungii (Faldermann, 1835) (Coleoptera: Cerambycidae), an emerging pest of stone fruits in Europe. Sci. Rep. 2020, 10, 7112. [Google Scholar] [CrossRef]
- Tadahisa, U.; Hisatomo, T.; Etsuko, S. Comparison of the ecological traits and boring densities of Aromia bungii (Faldermann, 1835) (Coleoptera: Cerambycidae) in two host tree species. Insects 2022, 13, 151. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Ye, J.; Qian, J.; Purba, E.R.; Zhang, Q.; Zhang, L.; Mang, D. Identification and expression profile of chemosensory receptor genes in Aromia bungii (Faldermann) antennal transcriptome. Insects 2022, 13, 96. [Google Scholar] [CrossRef] [PubMed]
- EPPO. 2022. Available online: https://gd.eppo.int/taxon/AROMBU/distribution (accessed on 29 July 2025).
- Burmeister, E.G.; Hendrich, L.; Balke, M. Der asiatische mos chusbock Aromia bungii (Faldermann, 1835)—Erstfund für Deutschland (Coleoptera: Cerambycidae). Nachrichtenblatt Bayer. Entomol. 2012, 61, 29–31. [Google Scholar]
- Kano, M.; Nonaka, T.; Kiriyama, S.; Iwata, R. Aromia bungii (Coleoptera: Cerambycidae), an invasive cerambycid, found at Soka, Saitama Pref., Japan, infesting cherry trees, Cerasus × yedoensis ‘Somei-yoshino’. For. Pests 2014, 63, 101–105. [Google Scholar]
- Germinara, G.S.; Pistillo, M.; Griffo, R.; Garonna, A.P.; Di Palma, A. Electroantennographic responses of Aromia bungii (Faldermann, 1835) (Coleoptera, Cerambycidae) to a range of volatile compounds. Insects 2019, 10, 274. [Google Scholar] [CrossRef]
- Yasui, H.; Fujiwara-Tsujii, N.; Kugimiya, S.; Haruyama, N. Exten sion of sustained pheromone release for monitoring an emerging invader, red-necked longhorn beetle Aromia bungii (Coleoptera: Cerambycidae). Appl. Entomol. Zool. 2021, 56, 291–297. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Fujiwara, Y. Calcium storage in Malpighian tubules and the putative use for pupal chamber formation in a wood-feeding insect. J. Insect Physiol. 2023, 148, 104534. [Google Scholar] [CrossRef]
- Peng, X.; Li, S.; Yang, X.; Zhou, Y.; Kong, Y.; Wei, J.; Cao, D. Behavioural response of Aromia bungii adults to volatile compounds emitted by Prunus persica at different physiological statuses. J. Appl. Entomol. 2025, 149, 47–55. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Kaneko, S. Seasonal prevalence of the invasive longhorn beetle Aromia bungii in Osaka prefecture, Japan. Insects 2022, 13, 222. [Google Scholar] [CrossRef]
- Horrocks, K.J.; Zhang, J.; Haye, T.; Seehausen, M.L.; Maggini, R.; Xian, X.; Chen, J.; Nugnes, F.; Collatz, J.; Gruber, A.; et al. Biology, impact, management and potential distribution of Aromia bungii, a major threat to fruit crops around the world. J. Pest Sci. 2024, 97, 1725–1747. [Google Scholar] [CrossRef]
- Iwata, R. Aromia bungii (Coleoptera: Cerambycidae): Taxonomy, distribution, biology and eradication. For. Pests 2018, 67, 189–216. [Google Scholar]
- Shoda-Kagaya, E. Invasion of the red-necked longicorn beetle, Aromia bungii: Damages of Rosaceae trees and practical control methods. Tree For. Health 2018, 22, 68–72. (In Japanese) [Google Scholar]
- Wang, J.; Sun, L.; Liu, T.; Zhang, L. Research on the occurance character and control measure of Aromia bungii. J. Hebei Agric. Sci. 2007, 02, 41–43+79. (In Chinese) [Google Scholar] [CrossRef]
- Urano, T.; Kagaya, E. Lifespan and lifetime fecundity of the reared Aromia bungii. Kanto For. Res. 2017, 68, 25–28. (In Japanese) [Google Scholar]
- Billen, J. Exocrine glands and their key function in the communication system of social insects. Formos. Entomol. 2011, 31, 75–84. [Google Scholar]
- Krall, B.S.; Bartelt, R.J.; Lewis, C.J.; Whitman, D.W. Chemical defense in the stink bug Cosmopepla bimaculata. J. Chem. Ecol. 1999, 25, 2477–2494. [Google Scholar] [CrossRef]
- Palma-Onetto, V.; Bergmann, J.; González-Teuber, M. Mode of action, chemistry and defensive efficacy of the osmeterium in the caterpillar Battus polydamas archidamas. Sci Rep. 2023, 13, 6644. [Google Scholar] [CrossRef]
- Di Giulio, A.; Muzzi, M.; Romani, R. Functional anatomy of the explosive defensive system of bombardier beetles (Coleoptera, Carabidae, Brachininae). Arthropod Struct. 2015, 44, 468–490. [Google Scholar] [CrossRef]
- Bonacci, T. Unveiling the Defenses: A Current and Comprehensive Review of Coleoptera Carabidae Strategies. Biology 2025, 14, 709. [Google Scholar] [CrossRef]
- Millar, J.G.; Hanks, L.M. Chemical Ecology of Cerambycids. In Cerambycidae of the World, 1st ed.; Wang, Q., Ed.; CRC Press: Boca Raton, FL, USA, 2017; p. 190. [Google Scholar]
- Vidari, G.; De Bernardi, M.; Pavan, M.; Ragozzino, L. Rose oxide and iridodial from Aromia moschata L. (Coleoptera: Cerambycidae). Tetrahedron Lett. 1973, 14, 4065–4068. [Google Scholar]
- Chen, R.; Chen, C.; Zhao, X.; Chen, L.; Xu, T.; Hao, D. Identification and potential application of a putative allomone component in the defensive secretion of a destructive invasive species: The red-necked longhorn beetle, Aromia bungii. J. Pest Sci. 2024, 97, 993–1004. [Google Scholar] [CrossRef]
- Moore, B.P.; Brown, W.V. The chemistry of the metasternal gland secretion of the common eucalypt longicorn, Phoracantha semipunctata (Coleoptera: Cerambycidae). Aust. J. Chem. 1972, 25, 591–598. [Google Scholar] [CrossRef]
- Ohmura, W.; Hishiyama, S.; Nakashima, T.; Kato, A.; Makihara, H.; Ohira, T.; Irei, H. Chemical composition of the defensive secretion of the longhorned beetle, Chloridolum loochooanum. J. Chem. Ecol. 2009, 35, 250–255. [Google Scholar] [CrossRef]
- Vives, E. Coleoptera Cerambycidae. In Fauna Iberica; Ramos, M.A., Ed.; Museo Cacional de Ciencias Naturales; CSIC: Madrid, Spain, 2000; p. 716. [Google Scholar]
- Beran, F.; Petschenka, G. Sequestration of plant defense compounds by insects: From mechanismsto insect–plant coevolution. Annu. Rev. Entomol. 2022, 67, 163–180. [Google Scholar] [CrossRef]
- Fürstenberg-Hägg, J.; Zagrobelny, M.; Jorgensen, K.; Vogel, H.; Møller, B.L.; Bak, S. Chemical defense balanced by sequestration and de novo biosynthesis in a lepidopteran specialist. PLoS ONE 2014, 10, e108756. [Google Scholar] [CrossRef]
- Pentzold, S.; Zagrobelny, M.; Khakimov, B.; Engelsen, S.B.; Clausen, H.; Petersen, L.B.; Borch, J.; Møller, B.L.; Bak, S. Lepidopteran defence droplets: A composite physical and chemical weapon against potential predators. Sci. Rep. 2016, 6, 22407. [Google Scholar] [CrossRef]
- Bramer, C.; Friedrich, F.; Dobler, S. Defence by plant toxins in milkweed bugs (Heteroptera: Lygaeinae) through the evolution of a sophisticated storage compartment. Syst. Entomol. 2017, 42, 15–30. [Google Scholar] [CrossRef]
- Scudder, G.G.E.; Meredith, J. Morphological basis of cardiac glycoside sequestration by Oncopeltus fasciatus (Dallas) (Hemiptera, Lygaeidae). Zoomorphology 1982, 2, 87–101. [Google Scholar] [CrossRef]
- Dettner, K. Chemosystematica and evolution of beetle chenmical defenses. Annu. Rev. Entomol. 1987, 32, 17–48. [Google Scholar] [CrossRef]
- Wigglesworth, V.B. Insect Physiology. Annu. Rev. Entomol. 1959, 4, 99–138. [Google Scholar]
- Rahfeld, P.; Haeger, W.; Kirsch, R.; Pauls, G.; Becker, T.; Schulze, E.; Wielsch, N.; Wang, D.; Groth, M.; Brandt, W.; et al. Glandular beta-glucosidases in juvenile Chrysomelina leaf beetles support the evolution of a host-plant-dependent chemical defense. Insect Biochem. Mol. Biol. 2015, 58, 28–38. [Google Scholar] [PubMed]
- Rahfeld, P.; Kirsch, R.; Kugel, S.; Wielsch, N.; Stock, M.; Groth, M.; Boland, W.; Burse, A. Independently recruited oxidases from the glucose-methanol-choline oxidoreductase family enabled chemical defences in leaf beetle larvae (subtribe Chrysomelina) to evolve. Proc. Biol. Sci. 2014, 1788, 20140842. [Google Scholar]
- Eisner, T.; Aneshansley, D.J. Spray aiming in the bombardier beetle: Photographic evidence. Proc. Natl. Acad. Sci. USA 1999, 96, 9705–9709. [Google Scholar] [CrossRef] [PubMed]
- Niekampf, M.; Meyer, P.; Quade, F.S.C.; Schmidt, A.R.; Salditt, T.; Bradler, S. High disparity in repellent gland anatomy across major lineages of stick and leaf insects (Insecta: Phasmatodea). BMC Zool. 2024, 9, 1. [Google Scholar] [CrossRef]
- Eisner, T. Defensive spray of aphasmid insect. Science 1965, 148, 966–968. [Google Scholar] [CrossRef]
- Eisner, T.; Meinwald, J. Defensive secretions of arthropods. Science 1966, 153, 1341–1350. [Google Scholar] [CrossRef]
- Foster, S.P.; Casas, J. How insect exocrine glands work. Annu. Rev. Entomol. 2025, 70, 65–82. [Google Scholar] [CrossRef]
- Baldwin, I.T.; Dusenbery, D.B.; Eisner, T. Squirting and refilling: Dynamics of p-benzoquinone production in defensive glands of Diploptera punctata. J. Chem. Ecol. 1990, 16, 2823–2834. [Google Scholar] [CrossRef]
- Eisner, T. Chemical defense against predation in arthropods. In Chemical Ecology; Sondheimer, E., Simeone, J.B., Eds.; Academic Press: Pittsburgh, PA, USA, 1970; pp. 157–217. [Google Scholar]
- Linsley, E.G. Ecology of Cerambycidae. Annu. Rev. Entomol. 1959, 1, 99–138. [Google Scholar]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Chen, R.; Hong, L.; Gao, J.; Wang, W.; Wen, Q.; Wang, G.; Zhang, T.; Xu, T. Characterization of Chemical Defensive Behavior and Associated Glands in the Destructive Invasive Longhorn Beetle Aromia bungii. Insects 2026, 17, 89. https://doi.org/10.3390/insects17010089
Chen R, Hong L, Gao J, Wang W, Wen Q, Wang G, Zhang T, Xu T. Characterization of Chemical Defensive Behavior and Associated Glands in the Destructive Invasive Longhorn Beetle Aromia bungii. Insects. 2026; 17(1):89. https://doi.org/10.3390/insects17010089
Chicago/Turabian StyleChen, Ruixu, Lisheng Hong, Jie Gao, Wenbo Wang, Quanmin Wen, Guangyu Wang, Tong Zhang, and Tian Xu. 2026. "Characterization of Chemical Defensive Behavior and Associated Glands in the Destructive Invasive Longhorn Beetle Aromia bungii" Insects 17, no. 1: 89. https://doi.org/10.3390/insects17010089
APA StyleChen, R., Hong, L., Gao, J., Wang, W., Wen, Q., Wang, G., Zhang, T., & Xu, T. (2026). Characterization of Chemical Defensive Behavior and Associated Glands in the Destructive Invasive Longhorn Beetle Aromia bungii. Insects, 17(1), 89. https://doi.org/10.3390/insects17010089

