Sustainable Management of Potato Tuber Moths Using Eco-Friendly Dust Formulations During Storage in the Andean Highlands
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Plant Material
2.3. Experimental Design
2.4. Experimental Management
2.5. Storage Variables Evaluated
2.5.1. Incidence of Moth Attack (%)
2.5.2. Severity of Moth Damage (%)
2.5.3. Number of Live Larvae
2.6. Statistical Analysis
3. Results
3.1. Incidence of Moth Attack (%) in Sulluscocha and Cochapampa
3.2. Severity of Month Damage (%) in Sulluscocha and Cochapampa
3.3. Number of Live Larvae in Sulluscocha and Cochapampa
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. El Estado Mundial de la Agricultura y la Alimentación 2021; Organización de las Naciones Unidas para la Alimentación y la Agricultura: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Spooner, D.M.; McLean, K.; Ramsay, G.; Waugh, R.; Bryan, G.J. A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. Proc. Natl. Acad. Sci. USA 2005, 102, 14694–14699. [Google Scholar] [CrossRef] [PubMed]
- Muñoz Rojas, R. Efectos del Secado y Fritura en las Características Organolépticas de Hojuelas Fritas de Papa (Solanum tuberosum) Variedad Canchán. Bacherlor’s Thesis, Universidad Nacional Agraria La Molina, Lima, Peru, 2022. [Google Scholar]
- Triveño, G. Estudio de potencial demanda de variedades de papa biofortificadas y variedades para procesamiento. CIP 2024, 12, 16. [Google Scholar] [CrossRef]
- Ministerio de Agricultura y Riego (MINAGRI). Perfil Productivo y Competitivo de los Principales Cultivos del Sector; MINAGRI: Lima, Peru, 2024.
- Fernández, A.P.H.; Seminario-Cunya, A.; Vásquez-Velásquez, A.; Seminario, J.F.; Acosta, M.H.; Fernández, A.H. Productividad de Quince Cultivares Tradicionales de Papa Phureja en Ocho Ambientes Distintos. Rev. Mex. Cienc. Agríc. 2021, 12, 949–960. [Google Scholar] [CrossRef]
- Seminario, J.F.; Concha-Tupayachi, L.S.; Seminario-Cunya, A.; Medina-Hinostrosa, T.; Silva, W. Cultivar Loss and Conservation of Genetic Resources of the Phureja Potato (Solanum phureja L., Phureja Group) in Peru. Genet. Resour. 2025, 6, 1–13. [Google Scholar] [CrossRef]
- Thiele, G.; Hareau, G.; Suárez, V.; Chujoy, E.; Bonierbale, M.; Maldonado, L. Varietal Change in Potatoes in Developing Countries and the Contribution of the International Potato Center: 1972–2007; International Potato Center (CIP): Lima, Peru, 2008; Available online: https://cipotato.org/wp-content/uploads/2014/08/004721.pdf (accessed on 3 October 2025).
- Maldonado, L.; Suárez, V.; Thiele, G. Estudio de la Adopción de Variedades de Papa en Zonas Pobres de Peru; International Potato Center (CIP): Lima, Peru, 2008; Available online: https://www.cipotato.org/publications/pdf/004259.pdf (accessed on 3 October 2025).
- Salazar, L.; Winters, P.; Maldonado, L.; Hareau, G.; Thiele, G. Assessing the Impact of Late Blight Resistant Varieties on Smallholders′ Potato Production in the Peruvian Andes; International Potato Center (CIP): Lima, Peru, 2009; Available online: https://www.researchgate.net/publication/291971614 (accessed on 3 October 2025).
- Levaj, B.; Pelaić, Z.; Galić, K.; Kurek, M.; Ščetar, M.; Poljak, M.; Dite Hunjek, D.; Pedisić, S.; Balbino, S.; Čošić, Z.; et al. Maintaining the quality and safety of fresh-cut potatoes (Solanum tuberosum): Overview of recent findings and approaches. Agronomy 2023, 13, 2002. [Google Scholar] [CrossRef]
- Kushala, G.; Babu, H.R.; Rajeshwari, N.; Chandrashekar, G.S.; Kiran, A.S. Management of potato tuber moth, Phthorimaea operculella (Zeller) of rabi harvested potato crop under storage condition in Hassan district of Karnataka. Agric. Biol. J. 2022, 8, 231–234. Available online: https://agribioj.com/wp-content/uploads/2019/11/231-234.pdf (accessed on 3 October 2025).
- Sporleder, M.; Kroschel, J.; Gutiérrez, M.; Lagnaoui, A. A temperature-based simulation model for the potato tuberworm, Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae). Environ. Entomol. 2004, 33, 477–486. [Google Scholar] [CrossRef]
- Peñafiel Cejido, J.P. Daño y Control de la Polilla de la Papa Phthorimaea Operculella, Zeller en el Cultivo de la Papa Solanum tuberosum L. Bachelor′s Thesis, Universidad Técnica de Babahoyo, Babahoyo, Ecuador, 2024. Available online: https://dspace.utb.edu.ec/handle/49000/16045 (accessed on 3 October 2025).
- Gautam, S.; Pandey, R.; Yadav, R.K. Eco-friendly management of potato tuber moth (Phthorimaea operculella Zeller) under storage and field condition in Dailekh, Nepal. Fundam. Appl. Agric. 2023, 8, 706–716. [Google Scholar] [CrossRef]
- Moawad, S.; Ebadah, I.M.A. Impact of some natural plant oils on some biological aspects of the potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae). Res. J. Agric. Biol. Sci. 2007, 3, 119–123. [Google Scholar]
- Chandel, R.S.; Kumar, R.; Kashyap, N.P. Bioecology of Potato Tuber Moth, Phthorimaea operculella (Zeller) in Mid Hills of Himachal Pradesh. J. Entomol. Res. 2001, 25, 195–203. [Google Scholar]
- Meyer-Baron, M.; Knapp, G.; Schäper, M.; von Thriel, C. Meta-Analysis on Occupational Exposure to Pesticides: Neurobehavioral Impact and Dose–Response Relationships. Environ. Res. 2015, 136, 234–245. [Google Scholar] [CrossRef] [PubMed]
- Atehortúa, C.M.M.; Londoño, Z.M.E. Efecto de algunos agroquímicos en el crecimiento y esporulación del hongo Metarhizium anisopliae. Rev. Colomb. Entomol. 1994, 20, 255–260. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, C.; Zheng, C.; Wang, X.; Yang, G.; Wang, Q.; Zhang, Z. Residues of chlorpyrifos and cypermethrin in vegetables and probabilistic exposure assessment for consumers in Zhejiang Province, China. Food Control 2014, 36, 63–68. [Google Scholar] [CrossRef]
- Kroschel, J.; Zegarra, O. Attract-and-kill as a new strategy for the management of the potato tuber moths Phthorimaea operculella (Zeller) and Symmetrischema tangolias (Gyen) in potato: Evaluation of its efficacy under potato field and storage conditions. Pest Manag. Sci. 2013, 69, 1205–1215. [Google Scholar] [CrossRef] [PubMed]
- Ricaldi Collachagua, J.L.R. Evaluación de la Eficiencia del Talco con Bacillus thuringiensis (Talco-BT) como Controlador de las Polillas de la Papa en Almacenamiento en la Comunidad Campesina de Huaylahuichan-Acobamba-Tarma-Junín-2013. Bachelor’s Thesis, Universidad Nacional de Huancavelica, Huancavelica, Peru, 2013. Available online: https://hdl.handle.net/20.500.12692/138862 (accessed on 3 October 2025).
- Giri, Y.; Maharjan, R.; Dochen, T.; Nidup, K.; Sporleder, M.; Kroschel, J. Efficacy of Botanicals and Bacillus thuringiensis to Control Potato Tuber Moth, Phthorimaea operculella (Zeller), in Potato Stores in Nepal. In Proceedings of the 15th Triennial Symposium of the International Society for Tropical Root Crops; ISTRC: Lima, Peru, 2013; pp. 163–170. [Google Scholar]
- Kroschel, J.; Koch, W. Studies on the use of chemicals, botanicals and Bacillus thuringiensis in the management of the potato tuber moth in potato stores. Crop Prot. 1996, 15, 197–203. [Google Scholar] [CrossRef]
- Golob, P. Current Status and Future Perspectives for Inert Dusts for Control of Stored Product Insects. J. Stored Prod. Res. 1997, 33, 69–79. [Google Scholar] [CrossRef]
- Gay, F.J.; Ratcliffe, F.N.; McCulloch, R.N. Studies on the control of wheat insects by dusts. I. Field tests of various mineral dusts against grain weevils. Counc. Sci. Ind. Res. Bull. 1947, 182, 7–20. [Google Scholar]
- Jenkins, C.F.H. Notes on Control of Weevils in Wheat. J. Dep. Agric. 1940, 17, 411–417. [Google Scholar]
- Curk, M.; Bohinc, T.; Trdan, S. Efficacy of Wood Ash and Diatomaceous Earth against Sitophilus granarius: Influence of Dose, Environmental Conditions, and Geomorphological Composition. J. Econ. Entomol. 2025, 118, 1972–1980. [Google Scholar] [CrossRef]
- Wahedi, J.A.; Rebecca, Z.; Elkanah, O.; Ishuwa, M.; Vincent, V.M.; Enoch, T.G. Activities of Neem and Wood Ash as Biopesticides in the Control of Insect Pests on Vegetable Crops in Mubi. GSC Biol. Pharm. Sci. 2017, 1, 6–10. [Google Scholar] [CrossRef][Green Version]
- Pradel, W.; Hareau, G.; Quintanilla, L.; Suárez, V. Adopción e Impacto de Variedades Mejoradas de Papa en el Perú: Resultado de una Encuesta a Nivel Nacional (2013); Centro Internacional de la Papa (CIP): Lima, Peru, 2017. [Google Scholar]
- Baca, P.; Ríos Forno, F. Niveles y Umbrales de Daños Económicos de las Plagas; Escuela Agrícola Panamericana (Zamorano): Tegucigalpa, Honduras, 2006. [Google Scholar]
- Chandel, R.S.; Vashisth, S.; Soni, S.; Kumar, R.; Kumar, V. The potato tuber moth, Phthorimaea operculella (Zeller), in India: Biology, ecology, and control. Potato Res. 2020, 63, 15–39. [Google Scholar] [CrossRef]
- Adhikari, A.; Oli, D.; Pokhrel, A.; Dhungana, B.; Paudel, B.; Pandit, S.; Dhakal, A. A review on the biology and management of potato tuber moth. Agriculture 2022, 68, 97–109. [Google Scholar] [CrossRef]
- Chandel, R.S.; Chandla, V.K. Integrated control of potato tuber moth (Phthorimaea operculella) in Himachal Pradesh. Indian J. Agric. Sci. 2005, 75, 837–839. [Google Scholar]
- Lacey, L.A.; Kroschel, J.; Arthurs, S.P.; De la Rosa, F. Control microbiano de la palomilla de la papa Phthorimaea operculella (Lepidoptera: Gelechiidae). Rev. Colomb. Entomol. 2010, 36, 181–189. [Google Scholar] [CrossRef]
- Schaub, B.; Kroschel, J. Developing a biocontrol strategy to protect stored potato tubers from infestation with potato tuber moth species in the Andean region. J. Appl. Entomol. 2018, 142, 78–88. [Google Scholar] [CrossRef]
- Sharaby, A.M.F.; Fallatah, S.B. Protection of stored potatoes from infestation with the potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae) using plant powders. Bull. Natl. Res. Cent. 2019, 43, 79. [Google Scholar] [CrossRef]
- Kroschel, J.; Mujica, N.; Alcazar, J.; Canedo, V.; Zegarra, O. Developing integrated pest management for potato: Experiences and lessons from two distinct potato production systems of Peru. In Sustainable Potato Production: Global Case Studies; Springer: Dordrecht, The Netherlands, 2012; pp. 419–450. [Google Scholar] [CrossRef]
- Kroschel, J.; Alcázar, J.; Canedo, V.; Carhuapoma, P.; Miethbauer, T.; Schaub, B.; Zegarra, O. Integrated pest management (IPM) in Andean highland potato production systems under a changing climate: Lessons learned in Peru. In Papa, Alimento Ayer, Hoy y Siempre: Memorias del Evento, Proceedings of the XXVI Congreso Asociación Latinoamericana de la Papa (ALAP), Bogota, Columbia, 28 September–2 October 2014; ALAP: Lima, Peru, 2014; pp. 63–66. Available online: https://hdl.handle.net/10568/66497 (accessed on 3 October 2025).
- Hyelemad, A.; Kayode, O.I.; Christian, U.A.; Abdulazeez, A.K.; Moses, O.O. Evaluation of Critical Larval Habitat Physico-Chemical Factors on Embryonic Development and Adult Fitness of Culex quinquefasciatus Mosquitoes (Diptera: Culicidae). Malaya J. Biosci. 2018, 5, 48–56. [Google Scholar]
- Johnson, S.N.; Gregory, P.J.; McNicol, J.W.; Oodally, Y.; Zhang, X.; Murray, P.J. Effects of Soil Conditions and Drought on Egg Hatching and Larval Survival of the Clover Root Weevil (Sitona lepidus). Appl. Soil Ecol. 2010, 44, 75–79. [Google Scholar] [CrossRef]
- Pangihutan, J.; Dono, D.; Hidayat, Y. The Potency of Minerals to Reduce Oriental Fruit Fly Infestation in Chili Fruits. PeerJ 2022, 10, e13198. [Google Scholar] [CrossRef]
- Bouslama, T.; Chaieb, I.; Rhouma, A.; Laarif, A. Evaluation of a Bacillus thuringiensis Isolate-Based Formulation against the Pod Borer, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). Egypt. J. Biol. Pest Control 2020, 30, 16. [Google Scholar] [CrossRef]
- Bravo, A.; Likitvivatanavong, S.; Gill, S.S.; Soberón, M. Bacillus thuringiensis: A Story of a Successful Bioinsecticide. Insect Biochem. Mol. Biol. 2011, 41, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Chandran, M.; Loganathan, M. Use of inert materials for the management of stored product insects. In Non-Chemical Methods for Disinfestation of Stored Products, 1st ed.; CRC Press: Boca Raton, FL, USA, 2025; pp. 104–119. [Google Scholar] [CrossRef]
- Li, Y. Understanding the Physical and Biological Effects of Dust-Induced Insect Death. Ph.D. Thesis, Murdoch University, Perth, Australia, 2018. Available online: https://researchportal.murdoch.edu.au/esploro/outputs/doctoral/Understanding-the-physical-and-biological-effects/991005541608007891 (accessed on 3 October 2025).
- Subramanyam, B.; Roesli, R. Inert dusts. In Alternatives to Pesticides in Stored-Product IPM; Springer: Boston, MA, USA, 2000; pp. 321–380. [Google Scholar] [CrossRef]
- Anu, B.C.; Meena, M.L. Advances in insect-pest management of potatoes. In Advances in Research on Potato Production; Springer: Cham, Switzerland, 2025; pp. 345–372. [Google Scholar] [CrossRef]
- Nagesh, M.; Sridhar, J.; Venkateswarlu, V.; Malik, K.; Bhatnagar, A.; Shah, M.A. Pests and their management in potato. In Trends in Horticultural Entomology; Springer: Singapore, 2022; pp. 1057–1080. [Google Scholar] [CrossRef]
- Von Arx, R.; Gebhardt, F. Effects of a granulosis virus and Bacillus thuringiensis on life-table parameters of the potato tuber moth, Phthorimaea operculella. Entomophaga 1990, 35, 151–159. [Google Scholar] [CrossRef]
- Lal, K.B. Prevention of damage to stored potatoes by the potato tuber moth. Curr. Sci. 1945, 14, 5. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/19450500551 (accessed on 16 December 2025).
- Dadaşoğlu, F.; Tozlu, E.; Tozlu, G.; Tatar, M.; Kotan, R. Fungal and bacterial bioagents efficiency on the control of potato pest Phthorimaea operculella via ingestion or contact. J. Agric. Prod. 2023, 4, 72–80. [Google Scholar] [CrossRef]
- Ercan, E.E.T.; Andreas, L.; Ćwirzeń, A.; Habermehl-Cwirzen, K. Wood Ash as Sustainable Alternative Raw Material for the Production of Concrete—A Review. Materials 2023, 16, 2557. [Google Scholar] [CrossRef]




| Treatment | Description | Specific Properties |
|---|---|---|
| TR-1 | Control | |
| TR-2 | Bacillus thurigiensis var. Kurstaki (15 g) plus industrial talc (1000 g) | Soft texture; particle size Ø 0.1–10 µm |
| TR-3 | industrial talc | Soft texture; particle size Ø 0.1–10 µm |
| TR-4 | Agricultural lime | Purity > 85% particle size Ø 0.1–20 µm |
| TR-5 | Wood ash | Sourced from Eucalyptus globulus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Villanueva, A.; Escobal, F.; Cántaro-Segura, H.; Diaz-Morales, L.; Matsusaka, D. Sustainable Management of Potato Tuber Moths Using Eco-Friendly Dust Formulations During Storage in the Andean Highlands. Insects 2026, 17, 86. https://doi.org/10.3390/insects17010086
Villanueva A, Escobal F, Cántaro-Segura H, Diaz-Morales L, Matsusaka D. Sustainable Management of Potato Tuber Moths Using Eco-Friendly Dust Formulations During Storage in the Andean Highlands. Insects. 2026; 17(1):86. https://doi.org/10.3390/insects17010086
Chicago/Turabian StyleVillanueva, Alex, Fernando Escobal, Héctor Cántaro-Segura, Luis Diaz-Morales, and Daniel Matsusaka. 2026. "Sustainable Management of Potato Tuber Moths Using Eco-Friendly Dust Formulations During Storage in the Andean Highlands" Insects 17, no. 1: 86. https://doi.org/10.3390/insects17010086
APA StyleVillanueva, A., Escobal, F., Cántaro-Segura, H., Diaz-Morales, L., & Matsusaka, D. (2026). Sustainable Management of Potato Tuber Moths Using Eco-Friendly Dust Formulations During Storage in the Andean Highlands. Insects, 17(1), 86. https://doi.org/10.3390/insects17010086

