Phytochemical Profiling and Larvicidal Activity of Ethanolic Extracts from Persea americana Mill. (Var. Lorena) Against Aedes aegypti
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Collection of Plant Material
2.2. Preparation of Extracts
2.3. Preliminary Phytochemical Screening
2.4. UV-Vis Analysis
2.5. UHPLC Analysis
2.6. Bioassays
2.6.1. Biological Material
2.6.2. Larvicidal Activity
2.6.3. Median Lethal Concentration (LC50)
2.6.4. Statistical Analysis
3. Results
3.1. Phytochemical Screening
3.2. The UV-Vis Profile
3.3. UHPLC Profile
3.4. Larvicidal Screening and LC50 Determination
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Reports on Epidemic Outbreaks—Dengue in the Region of the Americas 2025. Available online: https://www.who.int/es/emergencies/disease-outbreak-news/item/2023-DON475 (accessed on 15 September 2025).
- Trajer, A.J. Aedes Aegypti in the Mediterranean Container Ports at the Time of Climate Change: A Time Bomb on the Mosquito Vector Map of Europe. Heliyon 2021, 7, e07981. [Google Scholar] [CrossRef]
- Abud, D.A.; Santos, C.Y.; Neto, A.A.; Senra, J.T.; Tuboi, S. Real World Data Study of Prevalence and Direct Costs Related to Dengue Management in Brazil’s Private Healthcare from 2015 to 2020. Braz. J. Infect. Dis. 2022, 26, 102718. [Google Scholar] [CrossRef]
- Cabrera, M.; Leake, J.; Naranjo-Torres, J.; Valero, N.; Cabrera, J.C.; Rodríguez-Morales, A.J. Dengue Prediction in Latin America Using Machine Learning and the One Health Perspective: A Literature Review. Trop. Med. Infect. Dis. 2022, 7, 322. [Google Scholar] [CrossRef]
- Bennett, S.N.; Drummond, A.J.; Kapan, D.D.; Suchard, M.A.; Munoz-Jordán, J.L.; Pybus, O.G.; Holmes, E.C.; Gubler, D.J. Epidemic Dynamics Revealed in Dengue Evolution. Mol. Biol. Evol. 2010, 27, 811. [Google Scholar] [CrossRef]
- Pan American Health Organization. Epidemiological Update: Dengue in the Americas 2025. Available online: https://www.paho.org/en/documents/dengue-epidemiological-situation-region-americas-epidemiological-week-48-2025 (accessed on 6 October 2025).
- Malavige, G.N.; Sjö, P.; Singh, K.; Piedagnel, J.M.; Mowbray, C.; Estani, S.; Lim, S.C.; Siquierra, A.M.; Ogg, G.S.; Fraisse, L.; et al. Facing the Escalating Burden of Dengue: Challenges and Perspectives. PLoS Glob. Public Health 2023, 3, e0002598. [Google Scholar] [CrossRef]
- De Almeida, M.T.; Merighi, D.G.; Visnardi, A.B.; Boneto Gonçalves, C.A.; Amorim, V.M.; Ferrari, A.S.; De Souza, A.S.; Guzzo, C.R. Latin America’s Dengue Outbreak Poses a Global Health Threat. Viruses 2025, 17, 57. [Google Scholar] [CrossRef]
- Demirak, M.S.; Canpolat, E. Plant-Based Bioinsecticides for Mosquito Control: Impact on Insecticide Resistance and Disease Transmission. Insects 2022, 13, 162. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Chowdhury, N.; Chandra, G. Plant Extracts as Potential Mosquito Larvicides. Indian J. Med. Res. 2012, 135, 581. [Google Scholar] [PubMed]
- Bhuyan, D.J.; Alsherbiny, M.A.; Perera, S.; Low, M.; Basu, A.; Devi, O.A.; Barooah, M.S.; Li, C.G.; Papoutsis, K. The Odyssey of Bioactive Compounds in Avocado (Persea americana) and Their Health Benefits. Antioxidants 2019, 8, 426. [Google Scholar] [CrossRef]
- Nascimento, A.P.; Duarte, M.E.; Rocha, A.P.; Barros, A.N. Bioactive Compounds, Technological Advances, and Sustainable Applications of Avocado (Persea americana Mill.): A Critical Review. Foods 2025, 14, 2746. [Google Scholar] [CrossRef] [PubMed]
- Do, D.T.; Bui, T.H.; Phan, D.T. Persea americana Mill Seed Extracts: Understanding Insights into the Antioxidant and Antityrosinase Activities and Effects on Preserving Qualities of Whiteleg Shrimp (Litopenaus vannamei) During Refrigerated Storage. Food Chem. 2022, 373, 131469. [Google Scholar] [CrossRef] [PubMed]
- Ekom, S.E.; Tamokou, J.D.; Kuete, V. Methanol Extract from the Seeds of Persea americana Displays Antibacterial and Wound Healing Activities in Rat Model. J. Ethnopharmacol. 2022, 282, 114573. [Google Scholar] [CrossRef]
- Adesola, A.; Abiodun, M.; Steve, I. Nutritional, Phytochemical and Functional Properties of Avocado (Persea americana Mill) Leaf: Evaluation of Its Derivative Extraction. Food Chem. Adv. 2025, 6, 100869. [Google Scholar] [CrossRef]
- Olas, B. The Pulp, Peel, Seed, and Food Products of Persea americana as Sources of Bioactive Phytochemicals with Cardioprotective Properties: A Review. Int. J. Mol. Sci. 2024, 25, 13622. [Google Scholar] [CrossRef]
- Wu, Y.H.; Tseng, C.K.; Wu, H.C.; Wei, C.K.; Lin, C.K.; Chen, I.S.; Chang, H.S.; Lee, J.C. Avocado (Persea americana) Fruit Extract (2R,4R)-1,2,4-Trihydroxyheptadec-16-Yne Inhibits Dengue Virus Replication via Upregulation of NF-ΚB–Dependent Induction of Antiviral Interferon Responses. Sci. Rep. 2019, 9, 3243. [Google Scholar] [CrossRef]
- Dabas, D.; Shegog, R.; Ziegler, G.; Lambert, J. Avocado (Persea americana) Seed as a Source of Bioactive Phytochemicals. Curr. Pharm. Des. 2013, 19, 6133. [Google Scholar] [CrossRef]
- Miramontes-Corona, C.; Torres-Santiago, G.; Rodriguez, M.M.; Corona-González, R.I.; Toriz, G. Phenolic Profile, Antioxidant Activity and Antimicrobial Properties of Avocado (Persea americana) Seed Extracts. Chem. Pap. 2024, 78, 5061. [Google Scholar] [CrossRef]
- Agrela, I.F.; Hidalgo, Y.; Herrera, F. Larvicide Effect of Methanolic Extracts from Seeds and Leaves Persea americana (Laurales: Lauraceae) (Avocado) on Aedes Aegypti (Diptera: Culicidae). Boletín De Malariol. Y Salud Ambient. 2014, 54, 199. [Google Scholar]
- Louis, M.R.; Rani, V.P.; Krishnan, P.; Reegan, A.D.; Balakrishna, K.; Ignacimuthu, S.; Packiam, S.M.; Maheswaran, R.; Shirota, O. Mosquito Larvicidal Activity of Compounds from Unripe Fruit Peel of Avocado (Persea americana Mill.). Appl. Biochem. Biotechnol. 2023, 195, 2636. [Google Scholar] [CrossRef] [PubMed]
- Serejo, A.P.; Everton, G.O.; Lacerda, H.; Do, C.C.; Pereira, A.P.; Oliveira, J.P.; Lima, T.P.; Felizardo, M.G.; Coutinho, D.F. Larvicidal Activity of Hydroalcoholic Extracts of Persea americana Mill. Seeds Against Aedes Aegypti. Res. Soc. Dev. 2021, 10, e89101018144. [Google Scholar] [CrossRef]
- Torres, R.C.; Garbo, A.G.; Walde, R.Z. Larvicidal Activity of Persea americana Mill. Against Aedes Aegypti. Asian Pac. J. Trop. Med. 2014, 7, 167. [Google Scholar] [CrossRef]
- Folly, M.L.; Ferreira, G.F.; Salvador, M.R.; Sathler, A.A.; Da Silva, G.F.; Santos, J.C.; Santos, J.R.; Nunes-Neto, W.R.; Rodrigues, J.F.; Fernandes, E.S.; et al. Evaluation of In Vitro Antifungal Activity of Xylosma prockia (Turcz.) Turcz. (Salicaceae) Leaves Against Cryptococcus spp. Front. Microbiol. 2020, 10, 3114. [Google Scholar]
- Brito-Tapia, L.; Pimienta-Daza, L.; Barragán-Avilez, C.M.; Flórez-Santiago, J.; Espitia-Almeida, F. Caracterización Fitoquímica Preliminar y Cuantificación de Fenoles Totales de Extractos Etanólicos Obtenidos de Hylocereus Undatus y Hylocereus Megalanthus; Universidad Simón Bolívar: Barranquilla, Colombia, 2023; Available online: https://bonga.unisimon.edu.co/items/54a8385b-f334-46c9-a962-e0d1151b9849 (accessed on 15 April 2025).
- Díaz-Theran, M.; Nieto-Tomases, A.; Cabrera-Barraza, J.; Valle-Molinares, R.; Espitia-Almeida, F. Evaluación de La Actividad Antibacteriana de Extractos Etanólicos Obtenidos de Las Flores de Crescentia Cujete L. frente a Patógenos de Importancia Clínica; Universidad Simón Bolívar: Barranquilla, Colombia, 2023; Available online: https://bonga.unisimon.edu.co/items/ff1c676a-2ce2-48f3-96f6-8b767b93d92d (accessed on 15 April 2025).
- World Health Organization (WHO). Guidelines for Laboratory and Field Testing of Mosquito Larvicides. Available online: https://apps.who.int/iris/bitstream/10665/69101/1/WHO_CDS_WHOPES_GCDPP_2005.13.pdf (accessed on 25 July 2025).
- Abbott, W.S. A method for computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265. [Google Scholar] [CrossRef]
- Kupnik, K.; Primožič, M.; Kokol, V.; Knez, Ž.; Leitgeb, M. Enzymatic, Antioxidant, and Antimicrobial Activities of Bioactive Compounds from Avocado (Persea americana L.) Seeds. Plants 2023, 12, 1201. [Google Scholar] [CrossRef]
- Kavya, P.; Theijeswini, R.C.; Gayathri, M. Phytochemical Analysis, Identification of Bioactive Compounds Using GC-MS, In Vitro and In Silico Hypoglycemic Potential, In Vitro Antioxidant Potential, and In Silico ADME Analysis of Chlorophytum Comosum Root and Leaf. Front. Chem. 2024, 12, 1458505. [Google Scholar] [CrossRef]
- Guillén-Andrade, H.; Escalera-Ordaz, A.; Torres-Gurrola, G.; García-Rodríguez, Y.; Espinosa García, F.; Tapia-Vargas, L. Identificación de Nuevos Metabolitos Secundarios En Persea americana Miller Variedad Drymifolia. Rev. Mex. De Cienc. Agrícolas 2019, 23, 253. [Google Scholar] [CrossRef]
- Ramos, A.L.; Silva, M.R.; Mendonça, H.; Mazzinghy, A.C.; Silva, V.D.; Botelho, B.G.; Augusti, R.; Ferreira, R.M.; Sousa, I.M.; Batista-Santos, P.; et al. Use of Pulp, Peel, and Seed of Annona Crassiflora Mart. in Elaborating Extracts for Fingerprint Analysis Using Paper Spray Mass Spectrometry. Food Res. Int. 2022, 160, 111687. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Wei, G.; Liang, X.; Tang, M.; He, H.; Tang, D.; Lin, Y.; Li, L.; Qin, S.; Wei, F. Genes Involved in the Regulation of Alkaloid and Flavonoid Biosynthesis in Different Tissues of Sophora Tonkinensis via Transcriptomics and Metabolomics. BMC Plant Biol. 2025, 25, 480. [Google Scholar] [CrossRef]
- Lv, H.; Guo, S. Comparative Analysis of Flavonoid Metabolites from Different Parts of Hemerocallis Citrina. BMC Plant Biol. 2023, 23, 491. [Google Scholar] [CrossRef] [PubMed]
- Cseke, L.J.; Kirakosyan, A.; Kaufman, P.B.; Warber, S.; Duke, J.A.; Brielmann, H.L. Natural Products from Plants; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar] [CrossRef]
- Gaunt, J.K.; Stowe, B.B. Analysis and Distribution of Tocopherols and Quinones in the Pea Plant. Plant Physiol. 1967, 42, 851. [Google Scholar] [CrossRef]
- Dulo, B.; Phan, K.; Githaiga, J.; Raes, K.; De Meester, S. Natural Quinone Dyes: A Review on Structure, Extraction Techniques, Analysis and Application Potential. Waste Biomass Valorization 2021, 12, 6339. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770. [Google Scholar] [CrossRef]
- Dias, D.A.; Urban, S.; Roessner, U. A Historical Overview of Natural Products in Drug Discovery. Metabolites 2012, 2, 303. [Google Scholar] [CrossRef]
- Bourgaud, F.; Twyman, R.M.; Oksman-Caldentey, K.M. From Plant Genetic Resources to Cosmetic Active Ingredients: When Science Meets Regulation and Market Rules. Open Res. Eur. 2025, 5, 165. [Google Scholar] [CrossRef]
- Kumar, P.K.; Rajam, R.; Raj, A.S.; Avinash, K.; Karthik, P.; Sanjana, R. Phytochemicals in Nutraceutical-Development, Regulation and Market Trends. In Phytoceuticals in Food for Health and Wellness; Academic Press: Cambridge, MA, USA, 2026; Chapter 26; p. 531. [Google Scholar]
- Mabasa, X.E.; Mathomu, L.M.; Madala, N.E.; Musie, E.M.; Sigidi, M.T. Molecular Spectroscopic (FTIR and UV-Vis) and Hyphenated Chromatographic (UHPLC-QTOF-MS) Analysis and In Vitro Bioactivities of the Momordica Balsamina Leaf Extract. Biochem. Res. Int. 2021, 2021, 2854217. [Google Scholar] [CrossRef] [PubMed]
- Qalatobzany, H.S.; Muhammad, K.A.; Lateef, D.D.; Rasul, K.S.; Ibrahim, A.S.; Parreira, M.C.; Weisany, W. Analysis of the Metabolic Profile and Biological Activity of Hawthorn Species Twigs: Crataegus Azarolus and Crataegus Monogyna. Kurd. J. Appl. Res. 2025, 10, 116. [Google Scholar] [CrossRef]
- Anouar, E.H.; Osman, C.P.; Weber, J.F.; Ismail, N.H. UV/Visible Spectra of a Series of Natural and Synthesised Anthraquinones: Experimental and Quantum Chemical Approaches. Springerplus 2014, 3, 233. [Google Scholar] [CrossRef]
- Atchan, A.P.; Monthe, O.C.; Tchamgoue, A.D.; Singh, Y.; Shivashankara, S.T.; Selvi, M.K.; Agbor, G.A.; Magni, P.; Piazza, S.; Manjappara, U.V.; et al. Anti-Inflammatory, Antioxidant Activities, and Phytochemical Characterization of Edible Plants Exerting Synergistic Effects in Human Gastric Epithelial Cells. Antioxidants 2023, 12, 591. [Google Scholar] [CrossRef]
- Obata, T. Metabolons in Plant Primary and Secondary Metabolism. Phytochem. Rev. 2019, 18, 1483. [Google Scholar] [CrossRef]
- Yang, C.Q.; Fang, X.; Wu, X.M.; Mao, Y.B.; Wang, L.J.; Chen, X.Y. Transcriptional Regulation of Plant Secondary Metabolism. J. Integr. Plant Biol. 2012, 54, 703. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Arcos, A.; López-Martínez, S.; Velázquez-Martínez, J.R.; Gómez-Aguirre, Y.A.; Cabañas-García, E.; Morales-Bautista, C.M.; Hernandez-Gallegos, M.A. Phytochemicals and Bioactivities of Tradescantia Zebrina Bosse: A Southern Mexican Species with Medicinal Properties. J. Food Nutr. Res. 2023, 11, 564. [Google Scholar] [CrossRef]
- Arora, P.; Garg, M.; Gera, T.; Vaid, L.; Sood, P.; Kaur, L.; Kaur, P.; Sahu, S.K. Antimicrobial Activity of Secondary Metabolites in Medicinal Plants: An Update. BIO Web Conf. 2024, 86, 01040. [Google Scholar] [CrossRef]
- Molina-Bertrán, S.D.; Chil-Núñez, I.; Escalona-Arranz, J.C.; Picanço-Souto, R.N.; Felipe-González, A.; García-Díaz, J.; Cos, P.; Llauradó-Maury, G.; Morris-Quevedo, H.J. Bioinsecticide potential of ethanol extracts from Persea americana (Lauraceae) seeds on Aedes aegypti mosquitoes. Acta Biol. Colomb. 2023, 28, 404. [Google Scholar] [CrossRef]
- Ramos-Casillas, F.; Oranday-cardenas, A.; Rodriguez-Tovar, M.L.; Verde-Star, M.J.; Flores-Suarez, A.; Ponce-Garcia, G. Efecto Larvicida Del Extracto de Hueso de Persea americana Var. Hass, en Aedes aegypti (L.). Cienc. UNAL 2007, 10, 23. [Google Scholar]
- Rodriguez-Saona, C.; Millar, J.G.; Maynard, D.F.; Trumble1, J.T. Novel antifeedant and insecticidal compounds from avocado idioblast cell oil. J. Chem. Ecol. 1998, 24, 867. [Google Scholar] [CrossRef]
| Metabolite | Test | Seeds | Flowers | Pulp | Leaves | Root | Bark | Fruit Peel |
|---|---|---|---|---|---|---|---|---|
| Alkaloids | D | ++ | ++ | ++ | ++ | - | - | ++ |
| W | ++ | ++ | ++ | ++ | - | - | ++ | |
| Coumarins | Bt | ++ | ++ | - | - | + | + | - |
| F | ++ | ++ | - | - | + | + | - | |
| Tannins | CF | ++ | + | ++ | ++ | ++ | + | + |
| G-S | ++ | + | ++ | ++ | ++ | + | + | |
| Flavonoids | Shi | ++ | + | + | + | + | + | + |
| Cit | ++ | + | + | + | + | + | + | |
| Saponins | T-E | ++ | + | + | ++ | + | + | + |
| A-N | ++ | + | + | ++ | + | + | + | |
| Triterpenes/Esterols | L-B | ++ | ++ | ++ | ++ | - | + | - |
| S | ++ | ++ | ++ | ++ | - | + | - | |
| Quinones | Bt | + | - | - | - | - | - | - |
| Me | + | - | - | - | - | - | - | |
| Extraction yield (% w/w) | 16.4 | 8.8 | 12.7 | 20.5 | 11.5 | 6.2 | 4.7 |
| Bands | Extracts | ||||||
|---|---|---|---|---|---|---|---|
| Seeds | Flowers | Pulp | Leaves | Root | Bark | Fruit Peel | |
| 2 | 284 (1.45) | 258 (1.23) | 232 (0.63) | 264 (1.18) | 252 (1.14) | 244 (0.52) | 256 (1.34) |
| 3 | 266 (1.25) | 244 (0.72) | 266 (1.17) | 272 (1.18) | 262 (1.50) | 272 (1.38) | |
| 4 | 278 (1.12) | 260 (1.28) | 270 (1.15) | 280 (1.34) | 284 (1.45) | 280 (1.45) | |
| 5 | 282 (1.10) | 268 (1.25) | 278 (1.09) | 414 (0.07) | 402 (0.38) | 518 (0.06) | |
| 6 | 312 (0.69) | 272 (1.24) | 400 (0.35) | 510 (0.04) | 500 (0.03) | ||
| 7 | 414 (0.07) | 282 (1.17) | 502 (0.03) | 544 (0.02) | |||
| 8 | 428 (0.01) | 544 (0.02) | 618 (0.02) | ||||
| 9 | 602 (0.02) | 668 (0.10) | |||||
| 10 | 662 (0.09) | ||||||
| Extract | Peak | RT (min) | Area | Intensity (105) |
|---|---|---|---|---|
| Seeds | 2 | 0.5 | 747,359 | 1.54 |
| 18 | 7.1 | 1,768,170 | 3.37 | |
| 22 | 7.7 | 481,779 | 1.54 | |
| 24 | 7.9 | 275,551 | 1.06 | |
| 29 | 8.3 | 248,568 | 1.72 | |
| 30 | 8.4 | 1,312,707 | 2.45 | |
| 36 | 9.0 | 744,656 | 2.44 | |
| 38 | 9.2 | 566,583 | 2.46 | |
| 52 | 10.5 | 421,491 | 1.12 | |
| 56 | 11.0 | 679,891 | 2.90 | |
| 59 | 11.6 | 339,576 | 2.02 | |
| Flowers | 5 | 0.8 | 821,363 | 1.06 |
| 17 | 6.0 | 930,265 | 1.07 | |
| 21 | 6.6 | 505,343 | 1.05 | |
| 27 | 7.4 | 493,015 | 1.60 | |
| 28 | 7.5 | 652,578 | 2.10 | |
| 29 | 7.6 | 135,597 | 1.80 | |
| 32 | 8.2 | 180,459 | 2.0 | |
| 33 | 8.4 | 397,614 | 1.60 | |
| 35 | 8.6 | 428,385 | 1.40 | |
| 38 | 8.8 | 854,658 | 1.30 | |
| 39 | 9.0 | 988,646 | 2.30 | |
| 46 | 9.6 | 254,503 | 1.30 | |
| 47 | 9.7 | 411,742 | 1.80 | |
| 48 | 9.8 | 406,669 | 2.0 | |
| 49 | 9.9 | 775,668 | 2.30 | |
| 51 | 10.0 | 190,148 | 1.05 | |
| 52 | 10.1 | 354,853 | 1.50 | |
| 55 | 10.2 | 768,829 | 2.50 | |
| 69 | 11.3 | 314,755 | 1.30 | |
| 72 | 11.6 | 237,197 | 1.30 | |
| Pulp | 2 | 0.5 | 640,142 | 3.32 |
| 19 | 8.2 | 326,182 | 1.40 | |
| 22 | 8.4 | 246,246 | 1.13 | |
| 24 | 8.6 | 1,367,766 | 3.44 | |
| 28 | 8.9 | 313,610 | 1.42 | |
| 29 | 9.0 | 294,552 | 1.26 | |
| 35 | 9.6 | 452,148 | 2.14 | |
| 36 | 9.7 | 592,966 | 2.57 | |
| 37 | 9.8 | 847,903 | 4.08 | |
| 38 | 9.9 | 1,703,647 | 4.79 | |
| 39 | 10.0 | 548,805 | 2.98 | |
| 40 | 10.1 | 1,353,463 | 4.68 | |
| 41 | 10.2 | 454,132 | 1.59 | |
| 42 | 10.3 | 262,107 | 7.62 | |
| 43 | 10.4 | 973,921 | 3.79 | |
| 45 | 10.5 | 683,630 | 2.82 | |
| 56 | 11.3 | 877,422 | 4.01 | |
| Leaves | 10 | 7.1 | 2,234,678 | 4.26 |
| 13 | 7.9 | 413,512 | 1.04 | |
| 16 | 8.2 | 330,706 | 1.14 | |
| 17 | 8.4 | 2,027,402 | 3.21 | |
| 25 | 9.4 | 336,865 | 1.23 | |
| 26 | 9.5 | 568,168 | 1.76 | |
| Root | 5 | 6.0 | 6,127,478 | 5.13 |
| 6 | 6.3 | 3,730,287 | 3.27 | |
| 9 | 8.3 | 410,722 | 1.27 | |
| 25 | 12.7 | 752,736 | 2.09 | |
| Bark | 32 | 9.1 | 385,659 | 1.42 |
| 34 | 9.8 | 1,930,308 | 1.65 | |
| Fruit peel | 2 | 0.5 | 790,867 | 2.89 |
| 21 | 8.4 | 454,656 | 1.08 |
| Extract | n | LC50 (µg/mL) (CI 95%) | Slope ± SD | X2 (df) | p-Value |
|---|---|---|---|---|---|
| Seeds | 300 | 3.8 (3.7–4.1) a | 5.21 ± 0.4 | 13.1 (6) | 0.042 |
| Flowers | 300 | 22.4 (21.8–22.9) b | 9.2 ± 1.2 | 2.6 (6) | 0.034 |
| Pulp | 300 | 23.0 (21.5–24.6) b | 11.3 ± 1.7 | 12.9 (6) | 0.004 |
| Leaves | 300 | 29.7 (28.1–31.2) c | 14.0 ± 1.6 | 19.2 (6) | 0.042 |
| Root | 300 | 49.4 (46.4–52.5) d | 1.9 ± 0.2 | 2.4 (6) | 0.024 |
| Bark | 300 | >200 | -- | -- | -- |
| Fruit peel | 300 | >200 | -- | -- | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Barragán-Avilez, C.; Pareja-Loaiza, P.; Girón Domínguez, K.; López-Monroy, B.; Flores, A.E.; Sánchez-Bolívar, M.; Luna-Carrascal, J.; Pacheco-Londoño, L.C.; Galán-Freyle, N.J.; Navarro Quiroz, E.; et al. Phytochemical Profiling and Larvicidal Activity of Ethanolic Extracts from Persea americana Mill. (Var. Lorena) Against Aedes aegypti. Insects 2026, 17, 34. https://doi.org/10.3390/insects17010034
Barragán-Avilez C, Pareja-Loaiza P, Girón Domínguez K, López-Monroy B, Flores AE, Sánchez-Bolívar M, Luna-Carrascal J, Pacheco-Londoño LC, Galán-Freyle NJ, Navarro Quiroz E, et al. Phytochemical Profiling and Larvicidal Activity of Ethanolic Extracts from Persea americana Mill. (Var. Lorena) Against Aedes aegypti. Insects. 2026; 17(1):34. https://doi.org/10.3390/insects17010034
Chicago/Turabian StyleBarragán-Avilez, Clara, Paula Pareja-Loaiza, Katherine Girón Domínguez, Beatriz López-Monroy, Adriana E. Flores, Martha Sánchez-Bolívar, Jaime Luna-Carrascal, Leonardo C. Pacheco-Londoño, Nataly J. Galán-Freyle, Elkin Navarro Quiroz, and et al. 2026. "Phytochemical Profiling and Larvicidal Activity of Ethanolic Extracts from Persea americana Mill. (Var. Lorena) Against Aedes aegypti" Insects 17, no. 1: 34. https://doi.org/10.3390/insects17010034
APA StyleBarragán-Avilez, C., Pareja-Loaiza, P., Girón Domínguez, K., López-Monroy, B., Flores, A. E., Sánchez-Bolívar, M., Luna-Carrascal, J., Pacheco-Londoño, L. C., Galán-Freyle, N. J., Navarro Quiroz, E., Castellanos-Romero, K., Maestre-Serrano, R., Valle-Molinares, R., & Espitia-Almeida, F. (2026). Phytochemical Profiling and Larvicidal Activity of Ethanolic Extracts from Persea americana Mill. (Var. Lorena) Against Aedes aegypti. Insects, 17(1), 34. https://doi.org/10.3390/insects17010034

