Phytochemical and Insecticidal Activity of Some Thyme Plants’ Essential Oils Against Cryptoblabes gnidiella and Scirtothrips mangiferae on Mango Inflorescences
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Instruments
2.2. Plant Materials
2.3. Essential Oil Isolation
2.4. GC-MS Method
2.5. Isolation and Characterization of Active Ingredient
2.6. Assay of Some Chemical Composition Parameters
2.6.1. Chlorophyll (a and b) and β-Carotene Determination
- The value of chlorophyll a is 0.999 A663 − 0.0989 A645
- β-Carotene = (0.216 A663 − 1.22 A645) − (0.304 A505 + 0.452 A453)
- Chlorophyll b = −0.328 A663 + 1.77 A645.
2.6.2. Total Antioxidant Capacity, Total Phenol, and Total Flavonoid Determinations
2.7. Rearing of Tested Insects
2.8. Bioassay Activity
2.9. Biochemical Investigation of C. gnidiella
2.10. Statistical Analysis
3. Results and Discussion
3.1. Identification of Compounds (37) and (38)
3.2. GC/MS Analysis
3.3. Chemical Composition Assessment
3.4. Insecticidal Activity
3.5. Effect of Thymol and Carvacrol on C. gnidiella Enzyme Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amiri, H. Essential Oils Composition and Antioxidant Properties of Three Thymus Species. Evid.-Based Complement. Altern. Med. 2012, 2012, 728065. [Google Scholar] [CrossRef]
- Surburg, H.; Panten, J. Common Fragrance and Flavor Materials, 5th ed.; Wiley: Weinheim, Germany, 2006; p. 325. [Google Scholar]
- Borugă, O.; Jianu, C.; Mişcă, C.; Goleţ, I.; Gruia, A.; Horhat, F. Thymus vulgaris essential oil: Chemical composition and antimicrobial activity. J. Med. Life 2014, 7, 56–60. [Google Scholar]
- Ali, I.B.E.H.; Chaouachi, M.; Bahri, R.; Chaieb, I.; Boussaïd, M.; Harzallah-Skhiri, F. Chemical composition and antioxidant, antibacterial, allelopathic and insecticidal activities of essential oil of Thymus algeriensis Boiss. et Reut. Ind. Crops Prod. 2015, 77, 631–639. [Google Scholar] [CrossRef]
- Wu, S.; Wei, F.; Li, H.; Liu, X.; Zhang, J.; Liu, J. Chemical composition of essential oil from Thymus citriodorus and its toxic effect on liver cancer cells. Zhong Yao Cai J. Chin. Med. Mater. 2013, 36, 756–759. [Google Scholar]
- Farhat, M.; Tóth, J.; Héthelyi, B.É.; Szarka, S.; Czigle, S. Analysis of the Essential Oil Compounds of Origanum syriacum L. Acta Fac. Pharm. Univ. Comen. 2012, 59, 6–14. [Google Scholar] [CrossRef]
- Badawy, A.A.; El-Mohandes, M.A.; Algharib, A.M.; Hatab, B.E.; Omer, E.A. The essential oil and its main constituents of Origanum syriacum ssp. sinaicum grown wild in Saint Katherine Protectorate, South Sinai, Egypt. Al-Azhar J. Agric. Res. 2020, 45, 116–131. [Google Scholar]
- Thompson, J.D. Population structure and the spatial dynamics of genetic polymorphism in thyme. In Thyme: The Genus Thymus; Stahl-Biskup, E., Sáez, F., Eds.; Taylor & Francis: London, UK; New York, NY, USA, 2002; pp. 44–74. [Google Scholar]
- Boros, B.; Jakabová, S.; Dörnyei, Á.; Horváth, G.; Pluhár, Z.; Kilár, F.; Felinger, A. Determination of polyphenolic compounds by liquid chromatography–mass spectrometry in Thymus species. J. Chromatogr. A 2010, 1217, 7972–7980. [Google Scholar] [CrossRef]
- Sostaric, I.; Arsenijevic, J.; Acic, S.; Stevanovic, Z.D. Essential Oil Polymorphism of Thymus pannonicus All. (Lamiaceae) in Serbia. J. Essent. Oil-Bear. Plants 2012, 15, 237–243. [Google Scholar] [CrossRef]
- Federici, S.; Galimberti, A.; Bartolucci, F.; Bruni, I.; De Mattia, F.; Cortis, P.; Labra, M. DNA barcoding to analyse taxonomically complex groups in plants: The case of Thymus (Lamiaceae). Bot. J. Linn. Soc. 2013, 171, 687–699. [Google Scholar] [CrossRef]
- Giron, V.; Garnatje, T.; Valles, J.; Perez-Collazos, E.; Catalan, P.; Valdes, B. Geographical distribution of diploid and tetraploid cytotypes of Thymus sect. Mastichina (Lamiaceae) in the Iberian peninsula, genome size and evolutionary implications. Folia Geobot. 2012, 47, 441–460. [Google Scholar]
- Krishnamoorthy, A.; Visalakshi, P.N.G. Record of Thrips on Mango. J. Hortic. Sci. 2012, 7, 110–111. [Google Scholar] [CrossRef]
- Kareim, A.I.A.; Ragab, M.E.; Ghanim, N.M.; El-Salam, S.A.A. Seasonal Activity, Natural Enemies and Life Table Parameters of Cryptoblabes gnidiella Mill. on Mango Inflorescences. J. Plant Prot. Pathol. 2018, 9, 393–397. [Google Scholar] [CrossRef]
- Wysoki, M.; Ben-Dov, Y.; Swirski, E.; Izhar, Y. The arthropod pests of mango in Israel. Acta Hortic. 1993, 341, 452–466. [Google Scholar] [CrossRef]
- Dawidowicz, Ł.; Rozwałka, R. Honeydew Moth Cryptoblabes gnidiella (Millière, 1867) (Lepidoptera: Pyralidae): An adventive species frequently imported with fruit to Poland. Pol. J. Entomol. 2016, 85, 181–189. [Google Scholar] [CrossRef]
- Ben Yehuda, S.; Wysoki, M.; Rosen, D. Phenology of the honeydew moth, Cryptoblabes gnidiella (Milliere) (Lepidoptera: Pyralidae), on avocado in Israel. Isr. J. Entomol. 1991, 25–26, 149–160. [Google Scholar]
- Harari, A.R.; Zahavi, T.; Gordon, D.; Anshelevich, L.; Harel, M.; Ovadia, S.; Dunkelblum, E. Pest management programmes in vineyards using male mating disruption. Pest Manag. Sci. 2007, 63, 769–775. [Google Scholar] [CrossRef]
- Grove, T. Thrips Management in Mango Orchards. Ph.D. Thesis, Faculty of AgriSciences, Department of Conservation Ecology and Entomology, University of Stellenbosch, Stellenbosch, South Africa, 1999. Available online: http://hdl.handle.net/10019.1/51528 (accessed on 27 August 2025).
- Alqahtani, M.M.; Abdein, M.A.; El-Leel, O.F.A. Morphological and Molecular Genetic Assessment of Some Thymus Species. Biosci. Biotechnol. Res. Asia 2020, 17, 103–113. [Google Scholar] [CrossRef]
- Mostafa, M.E.; Youssef, N.M.; Raghib, H.M. Toxicity, Phytochemical Analysis and Biochemical Responses of Some Selected Plant Essential Oils Against Cotton Mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). Acad. J. Entomol. 2023, 16, 105–112. [Google Scholar]
- Nagata, M.; Yamashita, I. Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon Shokuhin Kogyo Gakkaishi 1992, 39, 925–928. [Google Scholar] [CrossRef]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Woisky, R.G.; Salatino, A. Analysis of propolis: Some parameters and procedures for chemical quality control. J. Apic. Res. 1998, 37, 99–105. [Google Scholar] [CrossRef]
- Ragab, A.; Taher, M.A.; El-Rafey, H.H.; El-Rokh, A.R. Bioactive compounds from Withania somnifera dun and their toxicity against some piercing sucking pests. Appl. Biol. Chem. 2024, 67, 29. [Google Scholar] [CrossRef]
- Allam, R.; Mohamed, G.S.; El-Solimany, E.; Ahmed, E.E. Efficacy of some compounds against Thrips tabaci Lind. infesting onion plants at Sohag Governorate, Egypt. SVU-Int. J. Agric. Sci. 2023, 5, 67–74. [Google Scholar] [CrossRef]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Finney, D.J. Probit Analysis: A Statistical Treatment of the Sigmoid Response Curve, 7th ed.; Cambridge University Press: Cambridge, UK, 1971; p. 333. [Google Scholar]
- Sun, Y.P. Toxicity index, an improved method of comparing the relative toxicity of insecticides. J. Econ. Entomol. 1950, 43, 45–53. [Google Scholar] [CrossRef]
- El-Rokh, A.R.; Elhefni, M.A.; Elrafey, H.H.; Tadros, L.K.; Taher, M.A. Phytochemical Profiling and Isolation of Bioactive Polyphenols from Ipomoea carnea. Egypt. J. Chem. 2023, 66, 529–543. [Google Scholar] [CrossRef]
- Bakerman, S. Textbook of Clinical Chemistry. N. W. Tietz, Ed., W. B. Saunders Co., Philadelphia, PA 19105, September 1985, xxvi + 1919 pp. Clin. Chem. 1986, 32, 717. [Google Scholar] [CrossRef]
- Klein, B.; A Read, P.; Babson, A.L. Rapid Method for the Quantitative Determination of Serum Alkaline Phosphatase. Clin. Chem. 1960, 6, 269–275. [Google Scholar] [CrossRef]
- Habig, W.H.; Pabst, M.J.; Jakoby, W.B. The First Enzymatic Step in Mercapturic Acid Formation. J. Biol. Chem. 1974, 249, 7130–7139. [Google Scholar] [CrossRef]
- Simpson, D.R.; Bull, D.L.; Lindquist, D.A. A Semimicro-technique for the Estimation of Cholinesterase Activity in Boll Weevils. Ann. Entomol. Soc. Am. 1964, 57, 367–371. [Google Scholar] [CrossRef]
- Komaki, Y.; Tsukamoto, T.; Oishi, Y.; Shibasaki, Y. Green polymer synthesis and low dielectric properties obtained by oxidative polymerization of thymol with CuCl-2-(p-tolyl)pyridine catalyst. React. Funct. Polym. 2022, 172, 105206. [Google Scholar] [CrossRef]
- Wang, L.-L.; Zhao, H.-D.; Lin, H.; Duan, X.-Y.; Xing, G.-S.; Xu, W.-G.; Qiao, W.; Zhao, W.-J.; Tang, S.-A. Anti-inflammatory Constituents of Dichapetalum longipetalum. Chem. Nat. Compd. 2020, 56, 736–739. [Google Scholar] [CrossRef]
- Porte, A.; Godoy, R.L.O. Chemical composition of Thymus vulgaris L. (Thyme) essential oil from the Rio de Janeiro State, Brazil. J. Serbian Chem. Soc. 2008, 73, 307–310. [Google Scholar] [CrossRef]
- Allahverdiyev, A.M.; Bagirova, M.; Yaman, S.; Koc, R.C.; Abamor, E.S.; Ates, S.C.; Baydar, S.Y.; Elcicek, S.; Oztel, O.N. Chapter 17—Development of New Antiherpetic Drugs Based on Plant Compounds. In Fighting Multidrug Resistance with Herbal Extracts, Essential Oils and Their Components; Elsevier: Amsterdam, The Netherlands, 2013; pp. 245–259. [Google Scholar] [CrossRef]
- Han, F.; Ma, G.-Q.; Yang, M.; Yan, L.; Xiong, W.; Shu, J.-C.; Zhao, Z.-D.; Xu, H.-L. Chemical composition and antioxidant activities of essential oils from different parts of the oregano. J. Zhejiang Univ. B 2017, 18, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Al-Asmari, A.K.; Athar, M.T.; Al-Faraidy, A.A.; Almuhaiza, M.S. Chemical composition of essential oil of Thymus vulgaris collected from Saudi Arabian market. Asian Pac. J. Trop. Biomed. 2017, 7, 147–150. [Google Scholar] [CrossRef]
- Walasek-Janusz, M.; Grzegorczyk, A.; Malm, A.; Nurzyńska-Wierdak, R.; Zalewski, D. Chemical Composition, and Antioxidant and Antimicrobial Activity of Oregano Essential Oil. Molecules 2024, 29, 435. [Google Scholar] [CrossRef] [PubMed]
- Martins, T.; Barros, A.N.; Rosa, E.; Antunes, L. Enhancing Health Benefits through Chlorophylls and Chlorophyll-Rich Agro-Food: A Comprehensive Review. Molecules 2023, 28, 5344. [Google Scholar] [CrossRef]
- Elvira-Torales, L.I.; García-Alonso, J.; Periago-Castón, M.J. Nutritional Importance of Carotenoids and Their Effect on Liver Health: A Review. Antioxidants 2019, 8, 229. [Google Scholar] [CrossRef]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.-H.; Jaremko, M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef]
- Pavela, R.; Vrchotová, N.; Tříska, J. Mosquitocidal activities of thyme oils (Thymus vulgaris L.) against Culex quinquefasciatus (Diptera: Culicidae). Parasitol. Res. 2009, 105, 1365–1370. [Google Scholar] [CrossRef]
- Dargahi, L.; Razavi-Azarkhiavi, K.; Ramezani, M.; Abaee, M.R.; Behravan, J. Insecticidal activity of the essential oil of Thymus transcaspicus against Anopheles stephensi. Asian Pac. J. Trop. Biomed. 2014, 4 (Suppl. S2), S589–S591. [Google Scholar] [CrossRef]
- Miri, R.; Ramezani, M.; Javidnia, K.; Ahmadi, L. Composition of the volatile oil of Thymus transcaspicus Klokov from Iran. Flavour Fragr. J. 2002, 17, 245–246. [Google Scholar] [CrossRef]
- Szczepanik, M.; Zawitowska, B.; Szumny, A. Insecticidal activities of Thymus vulgaris essential oil and its components (thymol and carvacrol) against larvae of lesser mealworm, Alphitobius diaperinus Panzer (Coleoptera: Tenebrionidae). Allelopath. J. 2012, 30, 129–142. [Google Scholar]
- Nation, J.L. Insect Physiology and Biochemistry, 4th ed.; CRC Press: London, UK, 2022; 586p. [Google Scholar] [CrossRef]
- Goharrostami, M.; Sendi, J.J.; Hosseini, R.; Mahmoodi, N.O.A. Effect of thyme essential oil and its two components on toxicity and some physiological parameters in mulberry pyralid Glyphodes pyloalis Walker. Pestic. Biochem. Physiol. 2022, 188, 105220. [Google Scholar] [CrossRef]
- Maazoun, A.M.; Ben Hlel, T.; Hamdi, S.H.; Belhadj, F.; Ben Jemâa, J.M.; Marzouki, M.N. Screening for insecticidal potential and acetylcholinesterase activity inhibition of Urginea maritima bulbs extract for the control of Sitophilus oryzae (L.). J. Asia-Pacific Èntomol. 2017, 20, 752–760. [Google Scholar] [CrossRef]
- Hu, Z.-D.; Feng, X.; Lin, Q.-S.; Chen, H.-Y.; Li, Z.-Y.; Yin, F.; Liang, P.; Gao, X.-W. Biochemical Mechanism of Chlorantraniliprole Resistance in the Diamondback Moth, Plutella xylostella Linnaeus. J. Integr. Agric. 2014, 13, 2452–2459. [Google Scholar] [CrossRef]
- Al-Harbi, N.A.; Al Attar, N.M.; Hikal, D.M.; Mohamed, S.E.; Latef, A.A.H.A.; Ibrahim, A.A.; Abdein, M.A. Evaluation of Insecticidal Effects of Plants Essential Oils Extracted from Basil, Black Seeds and Lavender against Sitophilus oryzae. Plants 2021, 10, 829. [Google Scholar] [CrossRef]
- Alhaithloul, H.A.S.; Alqahtani, M.M.; Ahmed, M.A.I.; Hesham, A.E.-L.; Aljameeli, M.M.E.; Al Mozini, R.N.; Gharsan, F.N.; Hussien, S.M.; El-Amier, Y.A. Rosemary and neem methanolic extract: Antioxidant, cytotoxic, and larvicidal activities supported by chemical composition and molecular docking simulations. Front. Plant Sci. 2023, 14, 1155698. [Google Scholar] [CrossRef]
- Askin, H.; Yildiz, M.; Ayar, A. Effects of Thymol and Carvacrol on Acetylcholinesterase from Drosophila melanogaster. Acta Phys. Pol. A 2017, 132, 720–722. [Google Scholar] [CrossRef]
H-Atom | 1H (Multiplicity, J) of Compound 37 | 1H (Multiplicity, J) of Compound 38 |
---|---|---|
2 | - | 6.66 (d, J 1.7 Hz, 1H) |
3 | 6.76 (d, J 7.7 Hz, 1H) | - |
4 | 7.11 (dd, J 7.7, 2.2 Hz, 1H) | 6.72 (dd, J 7.7, 1.7 Hz, 1H) |
5 | - | 7.03 (d, J 7.7 Hz, 1H) |
6 | 6.54 (d, J 2.2 Hz, 1H) | - |
7 | 3.20 (pent, J 6.8 Hz, 1H) | 2.82 (pent, J 6.9 Hz, 1H) |
8, 9 | 1.25 (d, J 6.8 Hz, 6H) | 1.22 (d, J 6.9 Hz, 6H) |
10 | 2.26 (s, 3H) | 2.21 (s, 3H) |
-OH | 5.23 (brs, 1H) | 5.34 (brs, 1H) |
Compound Name | RT | Mol. Formulae | Mol. Wt. | % of Compounds in Thyme Plants | |||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | RI | ||||
α-Thujene (1) | 7.18 | C10H16 | 136 | 0.10 | - | 0.07 | - | - | 910 |
α-Pinene (2) | 7.36 | C10H16 | 136 | 0.06 | 2.86 | 0.06 | 1.66 | 3.23 | 917 |
Camphene (3) | 7.79 | C10H16 | 136 | 0.07 | 0.29 | 0.07 | 0.06 | 0.34 | 932 |
β-Pinene (4) | 8.65 | C10H16 | 136 | 0.02 | - | - | 1.08 | 0.25 | 963 |
1-Octen-3-ol (5) | 8.81 | C8H16O | 128 | 0.10 | - | - | 0.13 | 0.17 | 969 |
β-Myrcene (6) | 9.11 | C10H16 | 136 | 0.18 | - | 0.08 | 0.19 | 0.14 | 980 |
Yamogi alcohol (7) | 9.51 | C10H18O | 154 | - | - | - | 2.02 | 0.39 | 995 |
α-Terpinene (8) | 9.87 | C10H16 | 136 | 0.09 | - | - | 0.13 | 0.82 | 1007 |
p-Cymene (9) | 10.15 | C10H14 | 134 | 9.45 | - | 1.85 | 1.06 | 1.16 | 1016 |
D-Limonene (10) | 10.26 | C10H16 | 136 | 0.13 | - | 0.68 | 0.44 | - | 1020 |
Eucalyptol (11) | 10.33 | C10H18O | 154 | 0.24 | 8.53 | 0.77 | - | 1.88 | 1022 |
Santolina alcohol (12) | 10.67 | C10H18O | 154 | - | - | - | 0.04 | - | 1033 |
1-Nonen-3-ol (13) | 11.08 | C9H18O | 142 | - | - | - | 0.21 | - | 1046 |
γ-Terpinene (14) | 11.20 | C10H16 | 136 | 0.82 | - | 0.81 | 1.50 | 1050 | |
trans-4-Thujanol (15) | 11.48 | C10H18O | 154 | 0.41 | 1.06 | 0.56 | - | - | 1060 |
Linalool (16) | 12.50 | C10H18O | 154 | 1.79 | - | 7.10 | 1.48 | 1.19 | 1092 |
Carveol (17) | 13.19 | C10H16O | 152 | - | - | 0.48 | - | - | 1114 |
α-Campholenal (18) | 13.34 | C10H16O | 152 | - | - | - | 0.16 | - | 1119 |
(E)-Pinocarveol (19) | 13.73 | C10H16O | 152 | - | - | 0.15 | 1.48 | 0.03 | 1131 |
(+)-Camphor (20) | 13.93 | C10H16O | 152 | 0.40 | 3.32 | 0.42 | - | 0.37 | 1136 |
Pinocarvone (21) | 14.51 | C10H14O | 150 | - | - | - | 2.14 | - | 1156 |
(-)-Borneol (22) | 14.58 | C10H18O | 154 | 1.44 | 1.18 | 1.24 | - | 0.23 | 1158 |
(E)-Pinanone (23) | 14.83 | C10H16O | 152 | - | - | - | - | 0.06 | 1167 |
Terpene-4-ol (24) | 14.93 | C10H18O | 154 | 0.52 | - | 0.46 | 0.42 | 0.35 | 1170 |
p-Mentha-1(7),8-dien-2-ol (25) | 15.27 | C10H16O | 152 | - | - | 0.18 | 0.80 | - | 1181 |
α-Terpineol (26) | 15.40 | C10H18O | 154 | 0.11 | - | 0.45 | - | - | 1185 |
(-)-Myrtenol (27) | 15.54 | C10H16O | 152 | - | - | 0.83 | 0.11 | 1189 | |
cis-Dihydrocarvone (28) | 15.61 | C10H16O | 152 | 0.05 | - | 0.10 | - | - | 1192 |
Berbenone (29) | 15.97 | C10H14O | 150 | - | 0.74 | - | - | 0.08 | 1204 |
Fenchyl acetate (30) | 16.18 | C12H20O2 | 196 | - | - | 0.26 | 0.13 | 0.03 | 1211 |
Thymol methyl ether (31) | 16.61 | C11H16O | 164 | 1.31 | - | 0.67 | 0.80 | 0.06 | 1226 |
p-Cymene methyl ether (32) | 16.88 | C11H16O | 164 | 1.01 | - | 3.70 | - | 0.22 | 1236 |
(-)-Carvone (33) | 17.07 | C10H14O | 150 | - | - | 0.20 | - | - | 1242 |
cis-Geraniol (34) | 17.30 | C10H18O | 154 | - | - | 0.28 | 0.47 | - | 1250 |
β-Citral (35) | 17.79 | C10H16O | 152 | - | - | - | 0.18 | - | 1267 |
(-)-Bornyl acetate (36) | 18.15 | C12H20O2 | 196 | - | 0.82 | 1.32 | 0.21 | 0.21 | 1280 |
Thymol (37) | 18.39 | C10H14O | 150 | 69.45 | 13.77 | 36.87 | 4.54 | 13.00 | 1288 |
Carvacrol (38) | 18.68 | C10H14O | 150 | 4.46 | 64.82 | 1.24 | 2.42 | 2.63 | 1297 |
α-Cubebene (39) | 19.92 | C15H24 | 204 | - | - | 0.19 | 0.12 | 0.12 | 1342 |
α-Copaene (40) | 20.67 | C15H24 | 204 | 0.40 | - | 1.10 | 0.38 | 2.64 | 1368 |
Geranyl acetate (41) | 20.86 | C12H20O2 | 196 | - | - | - | 1.00 | - | 1375 |
β-Bourbonene (42) | 20.93 | C15H24 | 204 | 0.05 | - | 0.35 | - | 0.19 | 1377 |
β-Elemene (43) | 21.11 | C15H24 | 204 | 0.04 | - | 0.55 | - | 0.51 | 1383 |
α-Gurjunene (44) | 21.62 | C15H24 | 204 | - | - | 0.19 | 0.04 | 0.26 | 1401 |
Caryophyllene (45) | 21.89 | C15H24 | 204 | 2.47 | 0.82 | 2.56 | 2.19 | 5.10 | 1412 |
trans-α-Bergamotene (46) | 22.26 | C15H24 | 204 | - | - | - | - | 0.19 | 1426 |
Alloaromadendrene (47) | 22.42 | C15H24 | 204 | - | - | - | 0.02 | 0.03 | 1433 |
α-Muurolene (48) | 22.55 | C15H24 | 204 | - | - | 0.05 | 0.02 | 0.05 | 1437 |
Humulene (49) | 22.80 | C15H24 | 204 | 0.40 | - | 0.61 | 0.27 | 4.70 | 1447 |
cis-Muurola-4(15),5-diene (50) | 23.03 | C15H24 | 204 | - | - | - | 0.15 | 0.16 | 1457 |
Cadina-1(6),4-diene (51) | 23.31 | C15H24 | 204 | - | - | 0.07 | - | 0.24 | 1467 |
γ-Muurolene (52) | 23.38 | C15H24 | 204 | 0.10 | - | 0.11 | 0.13 | 0.38 | 1471 |
Germacrene D (53) | 23.52 | C15H24 | 204 | 0.88 | - | 4.25 | 2.16 | 11.64 | 1477 |
α-Selinene (54) | 23.67 | C15H24 | 204 | 0.06 | - | - | - | 0.85 | 1481 |
γ-Gurjunene (55) | 23.93 | C15H24 | 204 | 0.23 | - | 2.29 | 3.08 | 3.10 | 1492 |
β-Bisabolene (56) | 24.17 | C15H24 | 204 | 0.10 | - | 0.11 | - | 0.16 | 1501 |
γ-Cadinene (57) | 24.37 | C15H24 | 204 | 0.12 | - | 2.63 | - | 1.60 | 1509 |
Selina-3,7(11)-diene (58) | 24.48 | C15H24 | 204 | - | - | - | 1.46 | - | 1513 |
δ-Cadinene (59) | 24.58 | C15H24 | 204 | 0.60 | - | 1.38 | - | 7.07 | 1517 |
Kessane (60) | 24.75 | C15H26O | 222 | - | - | - | 3.43 | 0.09 | 1523 |
Cubebol (61) | 24.84 | C15H26O | 222 | 0.02 | - | 1.47 | 0.67 | 5.93 | 1527 |
α-Cadinene (62) | 24.96 | C15H24 | 204 | - | - | - | - | 0.20 | 1531 |
Caryophyllene oxide (63) | 25.38 | C15H24O | 220 | - | - | - | 4.33 | 0.24 | 1556 |
Palustrol (64) | 25.79 | C15H26O | 222 | - | - | 0.13 | 0.10 | 0.05 | 1563 |
Spatulenol (65) | 26.02 | C15H24O | 220 | 0.09 | - | 0.45 | 2.47 | 0.48 | 1573 |
Isoaromadendrene epoxide (66) | 26.15 | C15H24O | 220 | 0.42 | - | 0.53 | 2.01 | 0.49 | 1578 |
Salvial-4(14)-en-1-one (67) | 26.42 | C15H24O | 220 | - | - | 0.12 | - | - | 1589 |
β-Oplopenone (68) | 26.79 | C15H24O | 220 | - | - | 0.27 | 0.71 | 0.18 | 1604 |
β-Eudesmol (69) | 27.07 | C15H26O | 222 | 0.06 | - | 0.08 | - | - | 1615 |
γ-Eudesmol (70) | 27.31 | C15H26O | 222 | - | - | - | 10.02 | 0.95 | 1634 |
T-Cadinol (71) | 27.55 | C15H26O | 222 | 0.42 | - | 0.65 | - | 3.47 | 1637 |
δ-Cedrol (72) | 27.64 | C15H26O | 222 | - | - | 0.29 | - | 0.59 | 1641 |
T-Muurolol (73) | 27.85 | C15H26O | 222 | 0.68 | 0.67 | 2.36 | - | 5.46 | 1650 |
Pogostole (74) | 28.01 | C15H26O | 222 | - | - | - | - | 2.57 | 1656 |
(-)-Globulol (75) | 28.26 | C15H26O | 222 | - | - | 0.73 | 23.06 | 0.25 | 1667 |
(Z)-α.-Atlantone (76) | 29.31 | C15H22O | 218 | - | - | 1.70 | 0.11 | 0.40 | 1713 |
α-Cyperone (77) | 30.14 | C15H22O | 218 | - | - | - | 0.60 | 0.29 | 1749 |
Hexahydrofarnesyl acetone (78) | 31.92 | C18H36O | 268 | - | - | - | 0.84 | 2.43 | 1829 |
Isopimara-9(11),15-diene (79) | 33.58 | C20H32 | 272 | - | - | 1.37 | 0.35 | 0.39 | 1908 |
Aristol-1(10)-en-9-yl isovalerate (80) | 33.92 | C17H36O2 | 262 | - | - | - | 0.04 | 0.13 | 1925 |
Phytol (81) | 37.35 | C20H40O | 278 | - | - | - | 0.50 | - | 2102 |
Total % | 99.35 | 98.88 | 86.67 | 83.26 | 92.10 | -- |
Thyme Plants | Chl A mg\100 g | Chl B mg\100 g | Carotene mg\100 g | Total Phenol mg\100 g | Flavonoids mg\100 g | Total Antioxidant mg\100 g |
---|---|---|---|---|---|---|
T. vulgaris | 0.969 a | 0.576 a | 86.64 a | 0.161 b | 0.579 b | 28.61 c |
O. vulgare | 0.890 b | 0.485 c | 83.26 b | 0.295 b | 1.034 a | 34.04 b |
T. argenteus | 0.182 d | 0.167 e | 19.56 e | 0.516 a | 0.308 b | 26.47 d |
T. citriodorus | 0.247 c | 0.230 d | 24.37 d | 0.151 b | 0.295 b | 23.86 e |
O. syricum | 0.251 c | 0.535 b | 29.37 c | 0.677 a | 0.393 b | 43.36 a |
L.S.D. (0.05) | 0.004 | 0.003 | 0.48 | 0.214 | 0.407 | 0.26 |
Treatment | LC50 (ppm) | Confidence Limit 95% (ppm) | LC90 (ppm) | Confidence Limit 95% (ppm) | Slope ± SE | Toxicity Index (%) at LC50 Value | ||
---|---|---|---|---|---|---|---|---|
Lower | Upper | Lower | Upper | |||||
T. vulgaris | 18.93 | 14.21 | 25.06 | 88.34 | 57.77 | 182.96 | 1.92 ± 0.30 | 40.94 |
O. vulgare | 16.93 | 12.55 | 22.37 | 80.62 | 52.97 | 165.91 | 1.89 ± 0.29 | 45.78 |
T. argenteus | 44.54 | 33.74 | 59.52 | 207.10 | 133.15 | 444.29 | 1.92 ± 0.30 | 17.40 |
T. citriodorus | 89.60 | 66.20 | 119.54 | 448.01 | 287.94 | 969.56 | 1.83 ± 0.29 | 8.65 |
O. syriacum | 77.38 | 57.92 | 102.98 | 371.16 | 239.93 | 789.53 | 1.88 ± 0.29 | 10.02 |
Thymol 37 | 7.75 | 5.63 | 10.32 | 39.34 | 25.54 | 83.70 | 1.82 ± 0.29 | 100 |
Carvacrol 38 | 8.45 | 6.36 | 11.04 | 37.03 | 24.98 | 71.66 | 2.00 ± 0.30 | 91.72 |
Treatment | LC50 (ppm) | Confidence Limit 95% (ppm) | LC90 (ppm) | Confidence Limit 95% (ppm) | Slope ± SE | Toxicity Index (%) at LC50 Value | ||
---|---|---|---|---|---|---|---|---|
Lower | Upper | Lower | Upper | |||||
T. vulgaris | 183.32 | 140.87 | 236.75 | 729.23 | 503.18 | 1339.02 | 2.14 ± 0.31 | 46.03 |
O. vulgare | 164.68 | 121.89 | 217.35 | 779.77 | 514.61 | 1589.77 | 1.90 ± 0.30 | 51.24 |
T. argenteus | 446.55 | 342.37 | 588.93 | 1913.89 | 1265.64 | 3847.49 | 2.03 ± 0.30 | 18.90 |
T. citriodorus | 565.77 | 429.97 | 740.03 | 2439.76 | 1637.84 | 4757.78 | 2.02 ± 0.30 | 14.92 |
O. syriacum | 479.07 | 367.52 | 619.88 | 1929.21 | 1325.72 | 3573.81 | 2.12 ± 0.31 | 17.62 |
Thymol 37 | 87.46 | 66.23 | 113.94 | 373.74 | 253.31 | 714.83 | 2.03 ± 0.30 | 96.49 |
Carvacrol 38 | 84.39 | 62.13 | 112.14 | 416.99 | 270.78 | 882.68 | 1.85 ± 0.29 | 100 |
Treatments | ACP (U/L) ± SE | ALP (U/L) ± SE | AchE (U/L/min) ± SE | GST (U/L) ± SE |
---|---|---|---|---|
Control | 22.30 ± 1.13 a | 176.4 ± 3.49 a | 316.1 ± 14.09 a | 671.8 ± 22.34 a |
Thymol 37 | 15.09 ± 0.56 b | 90.7 ± 5.41 b | 71.17 ± 6.21 b | 319.6 ± 9.68 c |
Carvacrol 38 | 13.88 ± 0.75 b | 101.0 ± 3.11 b | 83.50 ± 0.29 b | 371.1 ± 2.54 b |
LSD, 0.05 | 2.94 | 14.29 | 30.78 | 48.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aljameeli, M.M.; Alfuhaid, N.A.; El-Rokh, A.R.; El-Salam, S.A.; Elhefni, M.A.; El-Rahman, A.S.; Hussein, E.M.; Mahyoub, J.A.; Elshazly, H.; Alyahya, H.S.; et al. Phytochemical and Insecticidal Activity of Some Thyme Plants’ Essential Oils Against Cryptoblabes gnidiella and Scirtothrips mangiferae on Mango Inflorescences. Insects 2025, 16, 922. https://doi.org/10.3390/insects16090922
Aljameeli MM, Alfuhaid NA, El-Rokh AR, El-Salam SA, Elhefni MA, El-Rahman AS, Hussein EM, Mahyoub JA, Elshazly H, Alyahya HS, et al. Phytochemical and Insecticidal Activity of Some Thyme Plants’ Essential Oils Against Cryptoblabes gnidiella and Scirtothrips mangiferae on Mango Inflorescences. Insects. 2025; 16(9):922. https://doi.org/10.3390/insects16090922
Chicago/Turabian StyleAljameeli, Mohammad M., Nawal Abdulaziz Alfuhaid, Ahmed Ramadan El-Rokh, Samira A. El-Salam, May A. Elhefni, Amira S. El-Rahman, Esraa M. Hussein, Jazem A. Mahyoub, Hayam Elshazly, Hanan S. Alyahya, and et al. 2025. "Phytochemical and Insecticidal Activity of Some Thyme Plants’ Essential Oils Against Cryptoblabes gnidiella and Scirtothrips mangiferae on Mango Inflorescences" Insects 16, no. 9: 922. https://doi.org/10.3390/insects16090922
APA StyleAljameeli, M. M., Alfuhaid, N. A., El-Rokh, A. R., El-Salam, S. A., Elhefni, M. A., El-Rahman, A. S., Hussein, E. M., Mahyoub, J. A., Elshazly, H., Alyahya, H. S., Alqurashi, S. I., Abdein, M. A., Qaoud, E.-S. M., & Mosallam, M. M. (2025). Phytochemical and Insecticidal Activity of Some Thyme Plants’ Essential Oils Against Cryptoblabes gnidiella and Scirtothrips mangiferae on Mango Inflorescences. Insects, 16(9), 922. https://doi.org/10.3390/insects16090922