Assessment of BG-Pro (Biogent AG) and Silver Bullet 2.1 (Lumin8) UV-Light Traps Efficiency for Surveillance of Malaria Vectors in Western Kenya
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Light Traps
2.2.1. BG-Pro UV-Light Trap
2.2.2. Silver Bullet 2.1 UV
2.2.3. UV LED CDC Light Trap
2.3. Light Properties and Fan Speed
2.4. Experimental Design
2.5. Mosquito Identification
2.6. Statistical Analysis
2.7. Ethical Considerations
3. Results
3.1. Trapping Efficacy
3.2. Comparison of Fan Speed and Light Properties
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fournet, F.; Jourdain, F.; Bonnet, E.; Degroote, S.; Ridde, V. Effective Surveillance Systems for Vector-Borne Diseases in Urban Settings and Translation of the Data into Action: A Scoping Review 11 Medical and Health Sciences 1117 Public Health and Health Services Frédéric Simard. Infect. Dis. Poverty 2018, 7, 99. [Google Scholar] [CrossRef] [PubMed]
- Lima, J.B.P.; Rosa-Freitas, M.G.; Rodovalho, C.M.; Santos, F.; Lourenço-de-Oliveira, R. Is There an Efficient Trap or Collection Method for Sampling Anopheles darlingi and Other Malaria Vectors That Can Describe the Essential Parameters Affecting Transmission Dynamics as Effectively as Human Landing Catches?-A Review. Mem. Inst. Oswaldo Cruz. 2014, 109, 685–705. [Google Scholar] [CrossRef]
- Fornadel, C.M.; Norris, L.C.; Norris, D.E. Centers for Disease Control Light Traps for Monitoring Anopheles arabiensis Human Biting Rates in an Area with Low Vector Density and High Insecticide-Treated Bed Net Use. Am. J. Trop. Med. Hyg. 2010, 83, 838–842. [Google Scholar] [CrossRef]
- Namango, I.H.; Marshall, C.; Saddler, A.; Ross, A.; Kaftan, D.; Tenywa, F.; Makungwa, N.; Odufuwa, O.G.; Ligema, G.; Ngonyani, H.; et al. The Centres for Disease Control Light Trap (CDC-LT) and the Human Decoy Trap (HDT) Compared to the Human Landing Catch (HLC) for Measuring Anopheles Biting in Rural Tanzania. Malar. J. 2022, 21, 181. [Google Scholar] [CrossRef] [PubMed]
- Ponlawat, A.; Khongtak, P.; Jaichapor, B.; Pongsiri, A.; Evans, B.P. Field Evaluation of Two Commercial Mosquito Traps Baited with Different Attractants and Colored Lights for Malaria Vector Surveillance in Thailand. Parasites Vectors 2017, 10, 378. [Google Scholar] [CrossRef]
- Costa-Neta, B.M.; da Silva, A.A.; Brito, J.M.; Moraes, J.L.P.; Rebêlo, J.M.M.; Silva, F.S. Light-Emitting Diode (LED) Traps Improve the Light-Trapping of Anopheline Mosquitoes. J. Med. Entomol. 2017, 54, 1699–1703. [Google Scholar] [CrossRef]
- Mbare, O.; Njoroge, M.M.; Ong, F.; Bukhari, T.; Fillinger, U. Evaluation of the Solar-Powered Silver Bullet 2.1 (Lumin 8) Light Trap for Sampling Malaria Vectors in Western Kenya. Malar. J. 2023, 22, 277. [Google Scholar] [CrossRef] [PubMed]
- Jhaiaun, P.; Panthawong, A.; Saeung, M.; Sumarnrote, A.; Kongmee, M.; Ngoen-Klan, R.; Chareonviriyaphap, T. Comparing Light—Emitting—Diodes Light Traps for Catching. Insects 2021, 12, 1076. [Google Scholar] [CrossRef]
- Mwanga, E.P.; Ngowo, H.S.; Mapua, S.A.; Mmbando, A.S.; Kaindoa, E.W.; Kifungo, K.; Okumu, F.O. Evaluation of an Ultraviolet LED Trap for Catching Anopheles and Culex Mosquitoes in South-Eastern Tanzania. Parasites Vectors 2019, 12, 418. [Google Scholar] [CrossRef]
- Wilson, R.; Cooper, C.E.C.; Meah, R.J.; Wakefield, A.; Roberts, N.W.; Jones, G. The Spectral Composition of a White Light Influences Its Attractiveness to Culex pipiens Mosquitoes. Ecol. Evol. 2023, 13, e9714. [Google Scholar] [CrossRef]
- Oriyomi, M.; Babalola, P. Comparison of Mosquitoes Response to Different Diodes Wavelengths. Int. J. Sci. Res. 2020, 9, 218–223. [Google Scholar] [CrossRef]
- Sriwichai, P.; Karl, S.; Samung, Y.; Sumruayphol, S.; Kiattibutr, K.; Payakkapol, A.; Mueller, I.; Yan, G.; Cui, L.; Sattabongkot, J. Evaluation of CDC Light Traps for Mosquito Surveillance in a Malaria Endemic Area on the Thai-Myanmar Border. Parasites Vectors 2015, 8, 636. [Google Scholar] [CrossRef] [PubMed]
- Bioquipbugs. History of the Collection. Available online: https://bioquipbugs.com/history/ (accessed on 23 July 2024).
- Degener, C.M.; Staunton, K.M.; Bossin, H.; Marie, J.; da Silva, R.D.; Lima, D.C.; Eiras, A.E.; Akaratovic, K.I.; Kiser, J.; Gordon, S.W. Evaluation of the New Modular Biogents Bg-pro Mosquito Trap in Comparison to Cdc, Evs, Bg-Sentinel, and Bg-Mosquitaire Traps. J. Am. Mosq. Control Assoc. 2021, 37, 224–241. [Google Scholar] [CrossRef]
- Coulibaly, Z.I.; Gowelo, S.; Traore, I.; Mbewe, R.B.; Ngulube, W.; Olanga, E.A.; DePina, A.J.; Sanou, A.; Coleman, S.; Tangena, J.A.A. Strengthening Adult Mosquito Surveillance in Africa for Disease Control: Learning from the Present. Curr. Opin. Insect Sci. 2023, 60, 101110. [Google Scholar] [CrossRef] [PubMed]
- Gorsich, E.E.; Beechler, B.R.; Van Bodegom, P.M.; Govender, D.; Guarido, M.M.; Venter, M.; Schrama, M. A Comparative Assessment of Adult Mosquito Trapping Methods to Estimate Spatial Patterns of Abundance and Community Composition in Southern Africa. Parasites Vectors 2019, 12, 462. [Google Scholar] [CrossRef]
- Kosgei, J.; Gimnig, J.E.; Moshi, V.; Omondi, S.; McDermott, D.P.; Donnelly, M.J.; Ouma, C.; Abong’o, B.; Ochomo, E. Comparison of Different Trapping Methods to Collect Malaria Vectors Indoors and Outdoors in Western Kenya. Malar. J. 2024, 23, 81. [Google Scholar] [CrossRef] [PubMed]
- Githeko, A.K.; Service, M.W.; Mbogo, C.M.; Atieli, F.K.; Juma, F.O. Plasmodium falciparum Sporozoite and Entomological Inoculation Rates at the Ahero Rice Irrigation Scheme and the Miwani Sugar-Belt in Western Kenya. Ann. Trop. Med. Parasitol. 1993, 87, 379–391. [Google Scholar] [CrossRef]
- Nzioki, I.; Machani, M.G.; Onyango, S.A.; Kabui, K.K.; Githeko, A.K.; Ochomo, E.; Yan, G.; Afrane, Y.A. Differences in Malaria Vector Biting Behavior and Changing Vulnerability to Malaria Transmission in Contrasting Ecosystems of Western Kenya. Parasites Vectors 2023, 16, 376. [Google Scholar] [CrossRef]
- Bukhari, T.; Gichuhi, J.; Mbare, O.; Ochwal, V.A.; Fillinger, U.; Herren, J.K. Willingness to Accept and Participate in a Microsporidia MB-Based Mosquito Release Strategy: A Community-Based Rapid Assessment in Western Kenya. Malar. J. 2024, 23, 113. [Google Scholar] [CrossRef]
- Cohnstaedt, L.E.E.; Gillen, J.I.; Munstermann, L.E. Light Emitting Diode Technology Improves Insect Trapping. J. Am. Mosq. Control Assoc. 2008, 24, 331–334. [Google Scholar] [CrossRef]
- Hope, A.; Gubbins, S.; Sanders, C.; Denison, E.; Barber, J.; Stubbins, F.; Baylis, M.; Carpenter, S. A Comparison of Commercial Light-Emitting Diode Baited Suction Traps for Surveillance of Culicoides in Northern Europe. Parasites Vectors 2015, 8, 239. [Google Scholar] [CrossRef] [PubMed]
- Passos, M.L.C.; Saraiva, M.L.M.F.S. Detection in UV-Visible Spectrophotometry: Detectors, Detection Systems, and Detection Strategies. Meas. J. Int. Meas. Confed. 2019, 135, 896–904. [Google Scholar] [CrossRef]
- Miron, R.J.; Pinto, N.R.; Quirynen, M.; Ghanaati, S. Standardization of Relative Centrifugal Forces in Studies Related to Platelet-Rich Fibrin. J. Periodontol. 2019, 90, 817–820. [Google Scholar] [CrossRef] [PubMed]
- Coetzee, M. Key to the Females of Afrotropical Anopheles Mosquitoes (Diptera: Culicidae). Malar. J. 2020, 19, 70. [Google Scholar] [CrossRef]
- Amugune, B.L.; Matharu, A.K.; Ouma, P.; Mutebi, F.; Elson, L.; Fillinger, U.; Krücken, J. Cost-Effective PCR-Based Identification of Tunga penetrans (Siphonaptera) Larvae Extracted from Soil Samples Containing PCR Inhibitor-Rich Material. Insects 2022, 14, 5. [Google Scholar] [CrossRef]
- Scott, J.A.; Brogdon, W.G.; Collins, F.H. Identification of Single Specimens of the Anopheles gambiae Complex by the Polymerase Chain Reaction. Am. J. Trop. Med. Hyg. 1993, 49, 520–529. [Google Scholar] [CrossRef]
- Hawkes, F.; Gibson, G. Seeing Is Believing: The Nocturnal Malarial Mosquito Anopheles coluzzii Responds to Visual Host-Cues When Odour Indicates a Host Is Nearby. Parasites Vectors 2016, 9, 320. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, J.; Li, T.; Liu, Q.; Gong, Z.; Hou, J. Effect of Different Carbon Dioxide (CO2) Flows on Trapping Aedes albopictus with BG Traps in the Field in Zhejiang Province, China. PLoS ONE 2020, 15, e0243061. [Google Scholar] [CrossRef]
- Zhang, C.; Geng, D.; Xu, H.; Li, X.; Ming, J.; Li, D.; Wang, Q. Experimental Study on the Influence of Working Parameters of Centrifugal Fan on Airflow Field in Cleaning Room. Agriculture 2023, 13, 1368. [Google Scholar] [CrossRef]
Trap | Mean (95% CI) | RR (95% CI) | p-Value | RR (95% CI) | p-Value | RR (95%CI) | p-Value |
---|---|---|---|---|---|---|---|
An. arabiensis | |||||||
UV LED CDC | 5.1(3.5–7.6) | 1 | - | ||||
Silver Bullet 2.1 UV | 21.9 (15.1–31.8) | 4.3 (2.5–7.3) | <0.001 | 1 | - | ||
BG-Pro UV (Battery) | 10.0 (5.6–17.8) | 2.0 (0.9–3.9) | 0.06 | 0.5 (0.2–1.0) | 0.043 | 1 | |
BG-Pro UV (Power bank) | 11.0 (5.9–20.5) | 2.1 (1.3–3.6) | 0.005 | 0.5 (0.2–1.1) | 0.066 | 1.1 (0.6–2.0) | 0.760 |
An. funestus s.s. | |||||||
UV LED CDC | 0.9 (0.6–1.4) | 1 | - | ||||
Silver Bullet 2.1 UV | 6.3 (4.0–9.8) | 7.1 (3.9–13.1) | <0.001 | 1 | - | ||
BG-Pro UV (Battery) | 3.1 (1.7–5.6) | 3.5 (1.9–6.4) | <0.001 | 0.5 (0.2–1.1) | 0.076 | 1 | |
BG-Pro UV (Power bank) | 4.4 (2.5–7.8) | 5.0 (2.7–9.3) | <0.001 | 0.7 (0.4–1.3) | 0.276 | 1.4 (0.7–3.0) | 0.348 |
Culex spp. | |||||||
UV LED CDC | 32.9 (18.5–58.7) | 1 | - | ||||
Silver Bullet 2.1 UV | 88.9 (42.3–187.0) | 2.7 (1.2–6.0) | 0.014 | 1 | - | ||
BG-Pro UV (Battery) | 25.0 (15.4–40.7) | 0.8 (0.6–1.3) | 0.292 | 0.3 (0.1–0.6) | 0.001 | 1 | |
BG-Pro UV (Power bank) | 26.8 (15.8–45.4) | 0.8 (0.3–1.9) | 0.640 | 0.3 (0.1–0.8) | 0.011 | 1.0 (0.6–2.1) | 0.842 |
Trap | Fan Radius | Fan Speed | G-Force |
---|---|---|---|
UV LED CDC | 4 cm | 6.2 mph | 20 × g |
BG-Pro UV (power bank) | 6 cm | 8 mph | 22 × g |
BG-Pro UV (battery) | 6 cm | 10.1 mph | 35 × g |
Silver Bullet 2.1 UV | 4.5 cm | 9.0 mph | 37 × g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amugune, B.L.; Tamre, R.; Mogaka, D.; Mbare, O.; Bukhari, T.; Fillinger, U.; Njoroge, M.M. Assessment of BG-Pro (Biogent AG) and Silver Bullet 2.1 (Lumin8) UV-Light Traps Efficiency for Surveillance of Malaria Vectors in Western Kenya. Insects 2025, 16, 739. https://doi.org/10.3390/insects16070739
Amugune BL, Tamre R, Mogaka D, Mbare O, Bukhari T, Fillinger U, Njoroge MM. Assessment of BG-Pro (Biogent AG) and Silver Bullet 2.1 (Lumin8) UV-Light Traps Efficiency for Surveillance of Malaria Vectors in Western Kenya. Insects. 2025; 16(7):739. https://doi.org/10.3390/insects16070739
Chicago/Turabian StyleAmugune, Billy L., Richard Tamre, Dylan Mogaka, Oscar Mbare, Tullu Bukhari, Ulrike Fillinger, and Margaret M. Njoroge. 2025. "Assessment of BG-Pro (Biogent AG) and Silver Bullet 2.1 (Lumin8) UV-Light Traps Efficiency for Surveillance of Malaria Vectors in Western Kenya" Insects 16, no. 7: 739. https://doi.org/10.3390/insects16070739
APA StyleAmugune, B. L., Tamre, R., Mogaka, D., Mbare, O., Bukhari, T., Fillinger, U., & Njoroge, M. M. (2025). Assessment of BG-Pro (Biogent AG) and Silver Bullet 2.1 (Lumin8) UV-Light Traps Efficiency for Surveillance of Malaria Vectors in Western Kenya. Insects, 16(7), 739. https://doi.org/10.3390/insects16070739