The Essential Oil Component Terpinyl Acetate Alters Honey Bee Energy Levels and Foraging Behavior
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Mammalian Cell Culture ATP Levels
2.1.1. Materials and Supplies
2.1.2. Terpinyl Acetate Test
2.1.3. 1′8. Cineole Test
2.2. Honey Bee Foraging Behavior
2.2.1. Artificial Flower Patches
2.2.2. Experimental Design
2.2.3. Terpinyl Acetate Dosing
2.3. ATP Level in Foragers Fed Terpinyl Acetate
3. Results
3.1. Mammalian Cell Culture ATP Levels
3.2. Honey Bee Foraging Behavior
3.3. ATP Level in Foragers Fed Terpinyl Acetate
4. Discussion
4.1. Cell Culture
4.2. Foraging Behavior
4.3. The Floral Marketplace
4.4. Insect Diversity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tradeasia International Pte. Ltd. Terpinyl Acetate. 2024. Available online: https://www.essentialoilsasia.com (accessed on 10 May 2025).
- Sattayakhom, A.; Wichit, S.; Koomhin, P. The effects of essential oils on the nervous system: A scoping review. Molecules 2023, 28, 3771. [Google Scholar] [CrossRef] [PubMed]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- de Groot, A.C.; Schmidt, E. Essential Oils, Part III: Chemical Composition. Dermatitis 2016, 27, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Ramseya, J.T.; Shropshirea, B.T.; Nagya, T.R.; Chambersa, K.D.; Lib, Y.; Korachb, K.S. Essential Oils and Health. Yale J. Biol. Med. 2020, 93, 291–305. [Google Scholar] [PubMed]
- Bergman, M.E.; Kortbeek, R.W.J.; Gutensohn, M.; Dudareva, N. Plant terpenoid biosynthetic network and its multiple layers of regulation. Prog. Lipid Res. 2024, 95, 101287. [Google Scholar] [CrossRef]
- Huang, Y.; Xie, F.J.; Cao, X.; Li, M.Y. Research progress in biosynthesis and regulation of plant terpenoids. Biotechnol. Biotechnol. Equip. 2021, 35, 1799–1808. [Google Scholar] [CrossRef]
- Meng, Z.; Qin, R.; Wen, R.; Xie, J.; Li, G.; Zhou, Y. Synthesis of terpinyl acetate from α-pinene catalyzed by α-hydroxycarboxylic acid-boric acid composite catalyst. PLoS ONE 2024, 19, e0299218. [Google Scholar] [CrossRef]
- Giannenas, I.; Sidiropoulou, E.; Bonos, E.; Christaki, E.; Florou-Paneri, P. The history of herbs, medicinal and aromatic plants, and their extracts: Past, current situation and future perspectives. In Feed Additives, Aromatic Plants and Herbs in Animal Nutrition and Health; Florou-Paneri, P., Christaki, E., Giannenas, I., Eds.; Academic Press: San Diego, CA, USA, 2020; pp. 1–18. [Google Scholar] [CrossRef]
- King, A. Medieval Islamic ate aromatherapy: Medical perspectives on aromatics and perfumes. Senses Soc. 2022, 17, 37–51. [Google Scholar] [CrossRef]
- Vora, L.K.; Gholap, A.D.; Hatvate, N.T.; Naren, P.; Khan, S.; Chavda, V.P.; Balar, P.C.; Gandhi, J.; Khatri, D.K. Essential oils for clinical aromatherapy: A comprehensive review. J. Ethnopharmacol. 2024, 330, 118180. [Google Scholar] [CrossRef]
- Akhtar, M.S. Antimicrobial activity of essential oils extracted from medicinal plants against the pathogenic microorganisms: A review. Issues Biol. Sci. Pharm. Res. 2014, 2, 1–7. [Google Scholar]
- Swamy, M.K.; Akhtar, M.S.; Sinniah, U.R. Antimicrobial properties of plant essential oils against human pathogens and their mode of cction: An updated review. Evid. Based Complement. Alternat. Med. 2016, 3012462. [Google Scholar] [CrossRef] [PubMed]
- Deyno, S.; Mtewa, A.G.; Abebe, A.; Hymete, A.; Makonnen, E.; Bazira, J.; Alele, P.E. Essential oils as topical anti-infective agents: A systematic review and meta-analysis. Complement. Ther. Med. 2019, 47, 102224. [Google Scholar] [CrossRef] [PubMed]
- Miguel, M.G. Antioxidant and anti-inflammatory activities of essential oils: A short review. Molecules 2010, 15, 9252–9287. [Google Scholar] [CrossRef]
- Zuo, X.; Gu, Y.; Wang, C.; Zhang, J.; Zhang, J.; Wang, G.; Wang, F. A Systematic Review of the Anti-Inflammatory and Immunomodulatory Properties of 16 Essential Oils of Herbs. Evid. Based Complement. Alternat. Med. 2020, 7, 8878927. [Google Scholar] [CrossRef]
- Pezantes-Orellana, C.; German Bermúdez, F.; Matías De la Cruz, C.; Montalvo, J.L.; Orellana-Manzano, A. Essential oils: A systematic review on revolutionizing health, nutrition, and omics for optimal well-being. Front. Med. 2024, 11, 1337785. [Google Scholar] [CrossRef]
- Nerio, L.S.; Olivero-Verbel, J.; Stashenko, E. Repellent activity of essential oils: A review. Bioresour. Technol. 2010, 101, 372–378. [Google Scholar] [CrossRef]
- Abramson, C.I.; Wanderley, P.A.; Wanderley, M.J.A.; Mina, A.J.S.; Souza, O.B. Effect of essential oil from citronella and alfazema on fennel aphids Hyadaphis foeniculi Passerini (Hemiptera: Aphididae) and its predator Cycloneda sanguinea L. (Coleoptera: Coccinelidae). Am. J. Environ. Sci. 2006, 3, 9–10. [Google Scholar] [CrossRef]
- Singla, N.; Thind, R.K.; Mahal, A.K. Potential of eucalyptus oil as repellent against house rat, Rattus rattus. Sci. World J. 2014, 12, 249284. [Google Scholar] [CrossRef] [PubMed]
- Kevan, P.G.; Baker, H.G. Insects as Flower Visitors and Pollinators. Annu. Rev. Entomol. 1983, 28, 407–453. [Google Scholar] [CrossRef]
- Erb, M.; Reymond, P. Molecular Interactions Between Plants and Insect Herbivores. Annu. Rev. Plant Biol. 2019, 70, 527–557. [Google Scholar] [CrossRef]
- Giurfa, M.; Zhang, S.; Jenett, A.; Menzel, R.; Srinivasan, M.V. The concepts of ‘sameness’ and ‘difference’ in an insect. Nature 2001, 410, 930–933. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.W.; Lehrer, M.; Srinivasan, M.V. Honeybee memory: Navigation by associative grouping and recall of visual stimuli. Neurobiol. Learn. Mem. 1999, 72, 180–201. [Google Scholar] [CrossRef]
- Srinivasan, M.V. Honey bees as a model for vision, perception, and cognition. Annu. Rev. Entomol. 2010, 55, 267–284. [Google Scholar] [CrossRef] [PubMed]
- Collett, T.S.; Baron, J. Learnt sensory-motor mappings in honeybees: Interpolation and its possible relevance to navigation. J. Comp. Physiol. A 1995, 177, 287–298. [Google Scholar] [CrossRef]
- Collett, T.S.; Fauria, K.; Dale, K.; Baron, J. Places and patterns—A study of context learning in honeybees. J. Comp. Physiol. A 1997, 181, 343–353. [Google Scholar] [CrossRef]
- van Hateren, J.H.; Srinivasan, M.V.; Wait, P.B. Pattern recognition in bees: Orientation discrimination. J. Comp. Physiol. A 1990, 167, 649–654. [Google Scholar] [CrossRef]
- Horridge, G.A.; Zhang, S.W. Pattern vision in honeybees (Apis mellifera): Flower like patterns with no predominant orientation. J. Insect Physiol. 1995, 41, 681–688. [Google Scholar] [CrossRef]
- Giurfa, M.; Eichmann, B.; Menzel, R. Symmetry perception in an insect. Nature 1996, 382, 458–461. [Google Scholar] [CrossRef]
- Hill, P.S.M.; Wells, P.H.; Wells, H. Spontaneous flower constancy and learning in honey bees as a function of colour. Anim. Behav. 1997, 54, 615–627. [Google Scholar] [CrossRef]
- Wincheski, R.J.; Jones, I.T.; Rodrigues, S.D.; De Jesus-Soto, M.G.; Fletcher, S.J.; Pretends Eagle, T.J.; Grice, J.W.; Abramson, C.I. Training honey bees (Apis mellifera) to push a cap: Shaping, observational learning, and memory. Int. J. Comp. Psychol. 2023, 36, 60113. [Google Scholar] [CrossRef]
- Abramson, C.I.; Dinges, C.W.; Wells, H. Operant Conditioning in honey bees (Apis mellifera): The cap pushing response. PLoS ONE 2016, 11, e0162347. [Google Scholar] [CrossRef] [PubMed]
- Loukola, O.J.; Solvi, C.; Cosco, L.; Chittka, L. Bumblebees show cognitive flexibility by improving on an observed complex behavior. Science 2017, 355, 833–836. [Google Scholar] [CrossRef]
- Rodrigues, S.D.; Wincheski, R.J.; Jones, I.T.; De Jesus-Soto, M.G.; Fletcher, S.J.; Pretends Eagle, T.J.; Grice, J.W.; Abramson, C.I. Some phenomena of the cap pushing response in honey bees (Apis mellifera spp.). J. Comp. Psychol. 2023, 137, 178–190. [Google Scholar] [CrossRef]
- Wincheski, R.J.; Stauch, K.N.; Grossner, L.M.; Zepeda, M.B.; Grice, J.W.; Abramson, C.I. Further studies of the cap pushing response in honey bees (Apis mellifera). Nat. Sci. 2024, 16, 45–64. [Google Scholar] [CrossRef]
- Abramson, C.I.; Nolf, S.L.; Mixson, T.A.; Wells, H. Can honey bees learn the removal of a stimulus as a conditioning cue? Ethology 2010, 116, 843–854. [Google Scholar] [CrossRef]
- Abramson, C.I.; Wells, H. An inconvenient truth: Some neglected issues in invertebrate learning. Perspect. Behav. Sci. 2018, 41, 395–416. [Google Scholar] [CrossRef] [PubMed]
- Abramson, C.I.; Sanderson, C.; Painter, J.; Barnett, S.; Wells, H. Development of an ethanol model using social insects V: Honey bee foraging decisions under the influence of alcohol. Alcohol 2005, 36, 187–193. [Google Scholar] [CrossRef]
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. The Evolution of Electron-Transport Chains. In Molecular Biology of the Cell, 4th ed.; Garland Science: New York, NY, USA, 2002; ISBN 0-8153-3218-1. [Google Scholar]
- Goblirsch, M.J.; Spivak, M.S.; Kurtti, T.J. A cell line resource derived from honey bee (Apis mellifera) embryonic tissues. PLoS ONE 2013, 8, e69831. [Google Scholar] [CrossRef] [PubMed]
- Abebe, F.A.; Hopkins, M.D.; Vodnala, S.N.; Sheaff, R.J.; Lamar, A.A. Development of a rapid in vitro screening assay using metabolic inhibitors to detect highly selective anticancer agents. ACS Omega 2021, 6, 18333–18343. [Google Scholar] [CrossRef]
- JMP®, Version 17; SAS Institute Inc.: Cary, NC, USA, 2023.
- Heinz, S.; Freyberger, A.; Lawrenz, B.; Schladt, L.; Schmuck, G.; Ellinger-Ziegelbauer, H. Mechanistic investigations of the mitochondrial complex I inhibitor rotenone in the context of pharmacological and safety evaluation. Sci. Rep. 2017, 7, 45465. [Google Scholar] [CrossRef]
- Cakmak, I.; Sanderson, C.E.; Blocker, T.D.; Pham, L.L.; Checotah, S.; Norman, A.A.; Harader-Pate, B.K.; Reidenbaugh, R.T.; Nenchev, P.; Barthell, J.F.; et al. Different solutions by bees to a foraging problem. Anim. Behav. 2009, 77, 1273–1280. [Google Scholar] [CrossRef]
- Sanderson, C.E.; Orozco, B.S.; Hill, P.S.M.; Wells, H. Honeybee (Apis mellifera ligustica) response to differences in handling time, rewards, and flower colours. Ethology 2006, 112, 937–946. [Google Scholar] [CrossRef]
- Wells, H.; Wells, P.H. Optimal diet, minimal uncertainty and individual constancy in the foraging of honey bees, Apis mellifera. Anim. Ecol. 1986, 55, 881–891. [Google Scholar] [CrossRef]
- Wells, H.; Wells, P.H. Honey bee foraging ecology: Optimal diet, minimal uncertainty, or individual constancy? J. Anim. Ecol. 1983, 52, 829–838. [Google Scholar] [CrossRef]
- Wells, H.; Hill, P.S.M.; Wells, P.H. Nectivore foraging ecology: Rewards differing in sugar type. Ecol. Entomol. 1992, 17, 280–288. [Google Scholar] [CrossRef]
- Wells, H.; Rathore, R.R.S. Discriminant conditioning of foragers in the Asian honey bees Apis cerana and Apis dorsata. Ecol. Entomol. 1995, 20, 374–379. [Google Scholar] [CrossRef]
- Amaya-Márquez, M.; Abramson, C.I.; Wells, H. Use of flower color-cue memory by honey bee foragers continues when rewards no longer differ between flower colors. J. Insect Behav. 2017, 30, 728–740. [Google Scholar] [CrossRef]
- Claudio, E.P.; Rodriguez-Cruz, Y.; Arslan, O.C.; Giray, T.; Rivera, J.L.A.; Kence, M.; Wells, H.; Abramson, C.I. Appetitive reversal learning differences of two honey bee subspecies with different foraging behaviors. PeerJ 2018, 6, e5918. [Google Scholar] [CrossRef]
- Powner, M.B.; Salt, T.E.; Hogg, C.; Jeffery, G. Improving Mitochondrial Function Protects Bumblebees from Neonicotinoid Pesticides. PLoS ONE 2016, 15, e0166531. [Google Scholar] [CrossRef]
- Liao, L.-H.; Wu, W.-Y.; Dad, A.; Berenbaum, M.R. Fungicide suppression of flight performance in the honeybee (Apis mellifera) and its amelioration by quercetin. Proc. R. Soc. B 2019, 286, 2019–2041. [Google Scholar] [CrossRef]
- AAT Bioquest, Inc. Quest Graph™ IC50 Calculator; AAT Bioquest: Pleasanton, CA, USA, 2024. [Google Scholar]
- Liberti, M.V.; Locasale, J.W. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem. Sci. 2016, 41, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, A.; Brigman, J.L.; Radke, A.K.; Rudebeck, P.H.; Holmes, A. The neural basis of reversal learning: An updated perspective. Neuroscience 2017, 345, 12–26. [Google Scholar] [CrossRef] [PubMed]
- Ben-Shahar, Y.; Thompson, C.K.; Hartz, S.M.; Smith, B.H.; Robinson, G.E. Differences in performance on a reversal learning test and division of labor in honey bee colonies. Anim. Cogn. 2000, 3, 119–125. [Google Scholar] [CrossRef]
- Carr-Markell, M.K.; Robinson, G.E. Comparing reversal-learning abilities, sucrose responsiveness, and foraging experience between scout and non-scout honey bee (Apis mellifera) foragers. J. Insect Behav. 2014, 27, 736–752. [Google Scholar] [CrossRef]
- Hadar, R.; Menzel, R. Memory formation in reversal learning of the honeybee. Front. Behav. Neurosci. 2010, 4, 186. [Google Scholar] [CrossRef]
- Abramson, C.I.; Craig, D.P.A.; Varnon, C.A.; Wells, H. The effect of ethanol on reversal learning in honey bees (Apis mellifera anatolica): Response inhibition in a social insect model. Alcohol 2015, 49, 245–258. [Google Scholar] [CrossRef]
- Black, T.E.; Fofah, O.; Giray, T.; Wells, H.; Abramson, C.I. Influence of environmental experience on aversive conditioning of honey bees (Apis mellifera L.). Apidologie 2018, 49, 647–659. [Google Scholar] [CrossRef]
- Dias, R.; Robbins, T.W.; Roberts, A.C. Dissociable forms of inhibitory control within prefrontal cortex with an analog of the Wisconsin Card Sort Test: Restriction to novel situations and independence from “on-line” processing. J. Neurosci. 1997, 17, 285–9297. [Google Scholar] [CrossRef]
- Nilsson, S.R.O.; Ripley, T.L.; Somerville, E.M.; Clifton, P.G. Reduced activity at the 5-HT(2C) receptor enhances reversal learning by decreasing the influence of previously non-rewarded associations. Psychopharmacology 2012, 224, 241–254. [Google Scholar] [CrossRef]
- Calabresi, P.; Picconi, B.; Tozzi, A.; Di Filippo, M. Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci. 2007, 30, 211–219. [Google Scholar] [CrossRef]
- Warming, E. The Oecology of Plants; Clarendon Press: Oxford, UK, 1909; 442p. [Google Scholar]
- Craine, J.M.; Dybzinski, R. Mechanisms of plant competition for nutrients, water and light. Funct. Ecol. 2013, 27, 833–840. [Google Scholar] [CrossRef]
- Allee, W.C.; Bowen, E. Studies in animal aggregations: Mass protection against colloidal silver among goldfishes. J. Exp. Zool. 61 1932, 61, 185–207. [Google Scholar] [CrossRef]
- Wells, H.; Strauss, E.G.; Rutter, M.A.; Wells, P.A. Mate location, population growth and species extinction. Biol. Conserv. 1998, 86, 317–324. [Google Scholar] [CrossRef]
- Randall, J.; Mitchell, R.J.; Flanagan, B.J.; Brown, N.M.; Waser, N.M.; Karron, J.D. New frontiers in competition for pollination. Ann. Bot. 2009, 103, 1403–1413. [Google Scholar] [CrossRef]
- Stephens, D.W.; Krebs, J.R. Foraging Theory. In Monographs in Behavior and Ecology; Princeton University Press: Princeton, MA, USA, 1986; ISBN 9780691084428. [Google Scholar]
- Parker, G.A.; Smith, J.M. Optimality theory in evolutionary biology. Nature 1990, 34, 27–33. [Google Scholar] [CrossRef]
- Linnaeus, C. Calendarium Florae; Hojer: Uppsala, Sweden, 1756; p. 17. [Google Scholar]
- Percival, M. Floral Biology; Pergamon Press: Oxford, UK, 1965; 243p. [Google Scholar]
- Michener, C.D. The Bees of the World; Johns Hopkins University Press: Baltimore, MA, USA, 2000; 992p. [Google Scholar]
- Charnov, E.L. Optimal foraging: The marginal value theorem. Theor. Popul. Biol. 1976, 9, 129–136. [Google Scholar] [CrossRef]
- Abramson, C.I.; Wanderley, P.A.; Wanderley, M.J.A.; Silva, J.C.R.; Michaluk, L.M. The effect of Sweet Fennel and Pignut on the mortality and learning of Africanized honey bees (Apis mellifera L.) in Brazil. Neotrop. Entomol. 2007, 36, 828–835. [Google Scholar] [CrossRef]
- Abramson, C.I.; Singleton, J.B.; Wilson, M.K.; Wanderley, P.A.; Ramalho, F.S.; Michaluk, L.M. The effect of an organic pesticide on mortality and learning in Africanized honey bees (Apis mellifera L.) in Brasil. Am. J. Environ. Sci. 2006, 2, 33–40. [Google Scholar] [CrossRef]
- Abramson, C.I.; Wilson, M.K.; Singleton, J.B.; Wanderley, P.A.; Wanderley, M.J.A.; Michaluk, L.M. Citronella is not a repellent to Africanized honey bees Apis mellifera L. (Hymenoptera: Apidae). BioAssay 2006, 1, 1–7. [Google Scholar] [CrossRef]
- Brogna, S.; Benos, P.V.; Gasperi, G.; Savakis, C. The Drosophila alcohol dehydrogenase gene may have evolved independently of the functionally homologous medfly, olive fly, and flesh fly. Mol. Biol. Evol. 2001, 18, 322–329. [Google Scholar] [CrossRef]
- Noumi, E.; Snoussi, M.; Alreshidi, M.M.; Rekha, P.D.; Saptami, K.; Caputo, L.; De Martino, L.; Souza, L.F.; Msaada, K.; Mancini, E.; et al. Chemical and Biological Evaluation of Essential Oils from Cardamom Species. Molecules 2018, 23, 2818. [Google Scholar] [CrossRef]
- Wiese, N.; Fischer, J.; Heidler, J.; Lewkowski, O.; Degenhardt, J.; Erler, S. The terpenes of leaves, pollen, and nectar of thyme (Thymus vulgaris) inhibit growth of bee disease-associated microbes. Sci. Rep. 2018, 8, 14634. [Google Scholar] [CrossRef] [PubMed]
- Abramson, C.I.; Sokolowski, M.B.C.; Wells, H. Issues in the study of proboscis conditioning. In Social Insects: Structure, Function, and Behavior; Columbus, F., Ed.; Nova Science Publishers: Hauppaug, NY, USA, 2011; pp. 25–49. [Google Scholar]
- Sokolowski, M.; Abramson, C.I. From foraging to operant conditioning: A new computer-controlled Skinner box to study free flying nectar gathering in bees. J. Neurosci. Methods 2010, 188, 235–242. [Google Scholar] [CrossRef] [PubMed]
Experiment | Cell Growth Media | Compound | Treatments | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Expt Group I | L-15 | Terpinyl acetate | 1 through 12 | ||||||||
Expt Group II | L-15 + 10 mM glucose | Terpinyl acetate | 1 through 12 | ||||||||
Expt Group III | L-15 | 1’8 Cineole | 1 through 12 | ||||||||
Expt Group IV | L-15 + 10 mM glucose | 1’8 Cineole | 1 through 12 | ||||||||
Expt Group V control | L-15 ± 10 mM glucose | Rotenone | ±2.5 μM | ||||||||
Treatments 1 through 12: Compound μM | |||||||||||
#1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 | #9 | #10 | #11 | #12 |
0.0 | 0.98 | 1.95 | 3.91 | 7.81 | 15.6 | 31.3 | 62.5 | 125 | 250 | 500 | 1000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mathews, T.; Joyce, E.; Abramson, C.I.; Wells, H.; Sheaff, R.J. The Essential Oil Component Terpinyl Acetate Alters Honey Bee Energy Levels and Foraging Behavior. Insects 2025, 16, 561. https://doi.org/10.3390/insects16060561
Mathews T, Joyce E, Abramson CI, Wells H, Sheaff RJ. The Essential Oil Component Terpinyl Acetate Alters Honey Bee Energy Levels and Foraging Behavior. Insects. 2025; 16(6):561. https://doi.org/10.3390/insects16060561
Chicago/Turabian StyleMathews, Trey, Ella Joyce, Charles I. Abramson, Harrington Wells, and Robert J. Sheaff. 2025. "The Essential Oil Component Terpinyl Acetate Alters Honey Bee Energy Levels and Foraging Behavior" Insects 16, no. 6: 561. https://doi.org/10.3390/insects16060561
APA StyleMathews, T., Joyce, E., Abramson, C. I., Wells, H., & Sheaff, R. J. (2025). The Essential Oil Component Terpinyl Acetate Alters Honey Bee Energy Levels and Foraging Behavior. Insects, 16(6), 561. https://doi.org/10.3390/insects16060561