Current and Future Spatial Distribution of the Aedes aegypti in Peru Based on Topoclimatic Analysis and Climate Change Scenarios
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Collection and Processing of the Presence Database
2.3. Variable Collection and Processing
2.4. Selection of Climate Models for Future Distribution
2.5. MaxENT Modeling
2.6. Model Validation
3. Results
3.1. Statistical Metrics of the Distribution Probability Model
3.2. Probability of Areas for the Distribution of Ae. aegypti in Peru
3.3. Probability of Future Areas for the Distribution of Ae. aegypti in Peru in Escenarios of Climate Changue
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhatia, S.; Bansal, D.; Patil, S.; Pandya, S.; Ilyas, Q.M.; Imran, S. A Retrospective Study of Climate Change Affecting Dengue: Evidences, Challenges and Future Directions. Front. Public Health 2022, 10, 884645. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Arya, H.; Pratap Singh, A.; Singh, S.; Sharma, S.; Singh, K. Surveillance of Aedes diversity, seasonal prevalence and habitat characterization in Bulandshahr, Utter Pradesh, India. J. Sci. Innov. Nat. Earth 2023, 4. Available online: https://jsiane.com/index.php/files/article/view/165 (accessed on 1 January 2025).
- Rader, J.A.; Serrato-Capuchina, A.; Anspach, T.; Matute, D.R. The Spread of Aedes albopictus (Diptera: Culicidae) in the Islands of São Tomé and Príncipe. Acta Trop. 2024, 251, 107106. [Google Scholar] [CrossRef]
- Wiese, D.; Escalante, A.A.; Murphy, H.; Henry, K.A.; Gutierrez-Velez, V.H. Integrating Environmental and Neighborhood Factors in MaxEnt Modeling to Predict Species Distributions: A Case Study of Aedes albopictus in Southeastern Pennsylvania. PLoS ONE 2019, 14, e0223821. [Google Scholar] [CrossRef]
- Wint, W.; Jones, P.; Kraemer, M.; Alexander, N.; Schaffner, F. Past, Present and Future Distribution of the Yellow Fever Mosquito Aedes aegypti: The European Paradox. Sci. Total Environ. 2022, 847, 157566. [Google Scholar] [CrossRef] [PubMed]
- Stewart Ibarra, A.M.; Ryan, S.J.; Beltrán, E.; Mejía, R.; Silva, M.; Muñoz, Á. Dengue Vector Dynamics (Aedes aegypti) Influenced by Climate and Social Factors in Ecuador: Implications for Targeted Control. PLoS ONE 2013, 8, e78263. [Google Scholar] [CrossRef]
- Oyewole, I.O.; Momoh, O.O.; Anyasor, G.N.; Ogunnowo, A.A.; Ibidapo, C.A.; Oduola, O.A.; Obansa, J.B.; Awolola, T.S. Physico-Chemical Characteristics of Anopheles Breeding Sites: Impact on Fecundity and Progeny Development. Afr. J. Environ. Sci. Technol. 2009, 3, 2. [Google Scholar]
- Mamai, W.; Maiga, H.; Sévérin, N.; Somda, B.; Wallner, T.; Bueno Masso, O.; Resch, C.; Yamada, H.; Bouyer, J. Does Tap Water Quality Compromise the Production of Aedes Mosquitoes in Genetic Control Projects? Insects 2021, 12, 57. [Google Scholar] [CrossRef]
- Turner, S.S.; Smith, J.A.; Howle, S.L.; Hancock, P.I.; Brett, K.; Davis, J.; Bruno, L.M.; Cecchetti, V.; Ford, C. Analyzing the Efficacy of Water Treatment Disinfectants as Vector Control: The Larvicidal Effects of Silver Nitrate, Copper Sulfate Pentahydrate, and Sodium Hypochlorite on Juvenile Aedes aegypti. Water 2025, 17, 348. [Google Scholar] [CrossRef]
- Reinhold, J.M.; Lazzari, C.R.; Lahondère, C. Effects of the Environmental Temperature on Aedes aegypti and Aedes albopictus Mosquitoes: A Review. Insects 2018, 9, 158. [Google Scholar] [CrossRef]
- De Majo, M.S.; Zanotti, G.; Campos, R.E.; Fischer, S. Effects of Constant and Fluctuating Low Temperatures on the Development of Aedes aegypti (Diptera: Culicidae) from a Temperate Region. J. Med. Entomol. 2019, 56, 1661–1668. [Google Scholar] [CrossRef] [PubMed]
- Obholz, G.; Mansilla, A.P.; San Blas, G.; Diaz, A. Modeling and Updating the Occurrence of Aedes aegypti in Its Southern Limit of Distribution in South America. Acta Trop. 2024, 249, 107052. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The Global Distribution and Burden of Dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef]
- Khan, M.B.; Yang, Z.S.; Lin, C.Y.; Hsu, M.C.; Urbina, A.N.; Assavalapsakul, W.; Wang, W.H.; Chen, Y.H.; Wang, S.F. Dengue Overview: An Updated Systemic Review. J. Infect. Public Health 2023, 16, 1625–1642. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Peng, D.; Li, Y.; Chen, Z.; Zhai, Y.; Liu, C.; Hong, B. Potential Global Distribution of the Guava Root-Knot Nematode Meloidogyne enterolobii under Different Climate Change Scenarios Using MaxEnt Ecological Niche Modeling. J. Integr. Agric. 2023, 22, 2138–2150. [Google Scholar] [CrossRef]
- Munayco, C.V.; Valderrama Rosales, B.Y.; Mateo Lizarbe, S.Y.; Yon Fabian, C.R.; Peña Sánchez, R.; Vásquez Sánchez, C.H.; Paquita García, M.; Padilla-Rojas, C.; Suárez, V.; Sánchez-González, L.; et al. Dengue in Peru: A Quarter Century after Its Reemergence. Rev. Peru. De Med. Exp. Y Salud Pública 2015, 32, 146–156. [Google Scholar] [CrossRef]
- Dostal, T.; Meisner, J.; Munaycoid, C.; García, P.J.; Cárcamo, C.; Lu, J.E.P.; Morin, C.; Frisbie, L.; Rabinowitz, P.M. The Effect of Weather and Climate on Dengue Outbreak Risk in Peru, 2000–2018: A Time-Series Analysis. PLoS Neglected Trop. Dis. 2022, 16, e0010479. [Google Scholar] [CrossRef]
- García Solórzano, F.O.; Heredia Torres, L.; Ramos Ramirez, K. EL NIÑO OSCILACIÓN SUR COMO DETERMINANTE DE LA TRANSMISIÓN DE ENFERMEDADES INFECCIOSAS EN EL PERÚ. Rev. Fac. Med. Humana 2017, 17, 4. [Google Scholar] [CrossRef]
- Hijar, G.; Bonilla, C.; Munayco, C.V.; Gutierrez, E.L.; Ramos, W. El Niño Phenomenon and Natural Disasters: Public Health Interventions for Disaster Preparedness and Response. Rev. Peru. Med. Exp. Salud Publica 2016, 33, 300–310. [Google Scholar] [CrossRef]
- Holmes, E.C.; Twiddy, S.S. The Origin, Emergence and Evolutionary Genetics of Dengue Virus. Infect. Genet. Evol. 2003, 3, 19–28. [Google Scholar] [CrossRef]
- Bailon, H.; Jimenez, V.; Galarza, M.; Medrano, P.; Mestanza, O.; Figueroa, D.; Lizarraga, W.; Silva, I.; Sevilla, L.; Hurtado, V.; et al. RAPID SPREAD OF THE EMERGING COSMOPOLITAN GENOTYPE OF DENGUE VIRUS SEROTYPE 2, AND EXPANSION OF DENGUE VIRUS SEROTYPE 1 GENOTYPE V IN PERU. Rev. Peru. Med. Exp. Salud Publica 2024, 41, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Cabezas, C.; Gutiérrez, V.; García, M.P.; Mamani, E.; Cobos, M.; Cáceres, O.; Farfán, M.E.; Rosario Balta, M.; Palomino, R.; Casternoque, N.; et al. Dengue en el Perú: Aportes para su diagnóstico y control. Rev. Peru. Med. Exp. Salud Pública 2005, 22, 212–228. [Google Scholar]
- Sevilla Andrade, C.; Cáceres, A.G.; Vaquerizo, A.; Ibañez-Bernal, S.; Sulca Cachay, L.; de San Marcos, M.; José Santos Chocano No, J. Reappearance of Aedes aegypti (Diptera: Culicidae) in Lima, Peru. Mem. Do Inst. Oswaldo Cruz 2001, 96, 657–658. [Google Scholar] [CrossRef]
- Guagliardo, S.A.; Barboza, J.L.; Morrison, A.C.; Astete, H.; Vazquez-Prokopec, G.; Kitron, U. Patterns of Geographic Expansion of Aedes aegypti in the Peruvian Amazon. PLoS Neglected Trop. Dis. 2014, 8, e3033. [Google Scholar] [CrossRef] [PubMed]
- Maguiña Vargas, C. The Current Dengue Fever Outbreak in Peru: Analysis and Perspectives. Acta Medica Peru. 2023, 40, 87–90. [Google Scholar]
- Hussain, S.S.A.; Dhiman, R.C. Distribution Expansion of Dengue Vectors and Climate Change in India. Geohealth 2022, 6, e2021GH000477. [Google Scholar] [CrossRef]
- Li, Y.; An, Q.; Sun, Z.; Gao, X.; Wang, H. Distribution Areas and Monthly Dynamic Distribution Changes of Three Aedes Species in China: Aedes aegypti, Aedes albopictus and Aedes vexans. Parasit Vectors 2023, 16, 297. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum Entropy Modeling of Species Geographic Distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Hwang, J.H.; Kim, S.H.; Yoon, S.; Jung, S.; Kim, D.H.; Lee, W.H. Evaluation of Spatial Distribution of Three Major Leptocorisa (Hemiptera: Alydidae) Pests Using MaxEnt Model. Insects 2022, 13, 750. [Google Scholar] [CrossRef]
- Mugiyo, H.; Chimonyo, V.G.P.; Kunz, R.; Sibanda, M.; Nhamo, L.; Ramakgahlele Masemola, C.; Modi, A.T.; Mabhaudhi, T. Mapping the Spatial Distribution of Underutilised Crop Species under Climate Change Using the MaxEnt Model: A Case of KwaZulu-Natal, South Africa. Clim. Serv. 2022, 28, 100330. [Google Scholar] [CrossRef]
- West, A.M.; Kumar, S.; Brown, C.S.; Stohlgren, T.J.; Bromberg, J. Field Validation of an Invasive Species Maxent Model. Ecol. Inform. 2016, 36, 126–134. [Google Scholar] [CrossRef]
- Beeman, S.P.; Morrison, A.M.; Unnasch, T.R.; Unnasch, R.S. Ensemble Ecological Niche Modeling of West Nile Virus Probability in Florida. PLoS ONE 2021, 16, e0256868. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Wang, G.; Xu, J.; Zhang, T. An Ecological Assessment of the Potential Pandemic Threat of Dengue Virus in Zhejiang Province of China. BMC Infect. Dis. 2023, 23, 473. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.P.; Martínez-Meyer, E.; Nakamura, M.; Araújo, M.B.; Peterson, A.T.; Soberón, J.; Pearson, R.G. Ecological Niches and Geographic Distributions (MPB-49); Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Lana, R.M.; Morais, M.M.; de Lima, T.F.M.; de Senna Carneiro, T.G.; Stolerman, L.M.; dos Santos, J.P.C.; Cortés, J.J.C.; Eiras, Á.E.; Codeço, C.T. Assessment of a Trap Based Aedes aegypti Surveillance Program Using Mathematical Modeling. PLoS ONE 2018, 13, e0190673. [Google Scholar] [CrossRef] [PubMed]
- Nejati, J.; Bueno-Marí, R.; Collantes, F.; Hanafi-Bojd, A.A.; Vatandoost, H.; Charrahy, Z.; Tabatabaei, S.M.; Yaghoobi-Ershadi, M.R.; Hasanzehi, A.; Shirzadi, M.R.; et al. Potential Risk Areas of Aedes albopictus in South-Eastern Iran: A Vector of Dengue Fever, Zika, and Chikungunya. Front. Microbiol. 2017, 8, 1660. [Google Scholar] [CrossRef] [PubMed]
- Sedaghat, M.; Omid, F.; Karimi, M.; Haghi, S.; Hanafi-Bojd, A. Modelling the Probability of Presence of Aedes aegypti and Aedes albopictus in Iran until 2070. Asian Pac. J. Trop. Med. 2023, 16, 16–25. [Google Scholar] [CrossRef]
- Portilla Cabrera, C.V.; Selvaraj, J.J. Geographic Shifts in the Bioclimatic Suitability for Aedes aegypti under Climate Change Scenarios in Colombia. Heliyon 2020, 6, e03101. [Google Scholar] [CrossRef]
- Kraemer, M.U.; Sinka, M.E.; Duda, K.A.; Mylne, A.Q.; Shearer, F.M.; Barker, C.M.; Moore, C.G.; Carvalho, R.G.; Coelho, G.E.; Van Bortel, W.; et al. The Global Distribution of the Arbovirus Vectors Aedes aegypti and Ae. albopictus. Ecol. Glob. Health 2015, 4, e08347. [Google Scholar] [CrossRef]
- Liu, B.; Gao, X.; Ma, J.; Jiao, Z.; Xiao, J.; Hayat, M.A.; Wang, H. Modeling the Present and Future Distribution of Arbovirus Vectors Aedes aegypti and Aedes albopictus under Climate Change Scenarios in Mainland China. Sci. Total Environ. 2019, 664, 203–214. [Google Scholar] [CrossRef]
- Candelario-Mejía, G.; Rodríguez-Rivas, A.; Muñoz-Urias, A.; Ibarra-Montoya, J.L.; Chavéz-Lopez, C.; Mosso-González, C.; Cruz-Bastida, J.M.; Ramírez-García, S.A. Estudio Ecológico Mixto en México de La Distribución de Aedes aegypti Implicaciones en las Políticas Públicas. Rev. Médica MD 2015, 7, 13–19. [Google Scholar]
- Romero, D.; Olivero, J.; Real, R.; Guerrero, J.C. Applying Fuzzy Logic to Assess the Biogeographical Risk of Dengue in South America. Parasit Vectors 2019, 12. [Google Scholar] [CrossRef] [PubMed]
- Jácome, G.; Vilela, P.; Yoo, C. Social-Ecological Modelling of the Spatial Distribution of Dengue Fever and Its Temporal Dynamics in Guayaquil, Ecuador for Climate Change Adaption. Ecol. Inform. 2019, 49, 1–12. [Google Scholar] [CrossRef]
- Kraemer, M.U.G.; Reiner, R.C.; Brady, O.J.; Messina, J.P.; Gilbert, M.; Pigott, D.M.; Yi, D.; Johnson, K.; Earl, L.; Marczak, L.B.; et al. Past and Future Spread of the Arbovirus Vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol. 2019, 4, 854–863. [Google Scholar] [CrossRef] [PubMed]
- Kamal, M.; Kenawy, M.A.; Rady, M.H.; Khaled, A.S.; Samy, A.M. Mapping the Global Potential Distributions of Two Arboviral Vectors Aedes aegypti and Ae. albopictus under Changing Climate. PLoS ONE 2018, 13, e0210122. [Google Scholar] [CrossRef] [PubMed]
- Vergara, A.J.; Cieza-Tarrillo, D.; Ocaña, C.; Quiñonez, L.; Idrogo-Vasquez, G.; Muñoz-Astecker, L.D.; Auquiñivin-Silva, E.A.; Cruzalegui, R.J.; Arbizu, C.I. Current and Future Spatial Distribution of the Genus Cinchona in Peru: Opportunities for Conservation in the Face of Climate Change. Sustainability 2023, 15, 14109. [Google Scholar] [CrossRef]
- Khwarahm, N.R. Predicting the Spatial Distribution of Hyalomma Ssp., Vector Ticks of Crimean–Congo Haemorrhagic Fever in Iraq. Sustainability 2023, 15, 13669. [Google Scholar] [CrossRef]
- Wang, F.; Yuan, X.; Sun, Y.; Liu, Y. Species Distribution Modeling Based on MaxEnt to Inform Biodiversity Conservation in the Central Urban Area of Chongqing Municipality. Ecol. Indic. 2024, 158, 111491. [Google Scholar] [CrossRef]
- Scrivanti, L.R.; Anton, A.M. Impact of Climate Change on the Andean Distribution of Poa Scaberula (Poaceae). Flora Morphol. Distrib. Funct. Ecol. Plants 2021, 278, 151805. [Google Scholar] [CrossRef]
- Kufa, C.A.; Bekele, A.; Atickem, A. Impacts of Climate Change on Predicted Habitat Suitability and Distribution of Djaffa Mountains Guereza (Colobus Guereza Gallarum, Neumann 1902) Using MaxEnt Algorithm in Eastern Ethiopian Highland. Glob. Ecol. Conserv. 2022, 35, e02094. [Google Scholar] [CrossRef]
- Campos, J.C.; Garcia, N.; Alírio, J.; Arenas-Castro, S.; Teodoro, A.C.; Sillero, N. Ecological Niche Models Using MaxEnt in Google Earth Engine: Evaluation, Guidelines and Recommendations. Ecol. Inform. 2023, 76, 102147. [Google Scholar] [CrossRef]
- Velu, R.M.; Kwenda, G.; Bosomprah, S.; Chisola, M.N.; Simunyandi, M.; Chisenga, C.C.; Bumbangi, F.N.; Sande, N.C.; Simubali, L.; Mburu, M.M.; et al. Ecological Niche Modeling of Aedes and Culex Mosquitoes: A Risk Map for Chikungunya and West Nile Viruses in Zambia. Viruses 2023, 15, 1900. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Qi, G.-J.; Ma, J.; Ren, Y.; Wang, R.; McKirdy, S. Predicting the Potential Geographic Distribution of Bactrocera Bryoniae and Bactrocera Neohumeralis (Diptera: Tephritidae) in China Using MaxEnt Ecological Niche Modeling. J. Integr. Agric. 2020, 19, 2072–2082. [Google Scholar] [CrossRef]
- Wang, J.; Wang, G.; Qi, J.; Liu, Y.; Zhang, W. Research of Forest Fire Points Detection Method Based on MODIS Active Fire Product. In Proceedings of the 2021 28th International Conference on Geoinformatics, Nanchang, China, 3–5 November 2021; pp. 1–5. [Google Scholar]
- Vergara, A.J.; Valqui-Reina, S.V.; Cieza-Tarrillo, D.; Gómez-Santillán, Y.; Chapa-Gonza, S.; Ocaña-Zúñiga, C.L.; Auquiñivin-Silva, E.A.; Cayo-Colca, I.S.; Rosa dos Santos, A. Modeling of Forest Fire Risk Areas of Amazonas Department, Peru: Comparative Evaluation of Three Machine Learning Methods. Forests 2025, 16, 273. [Google Scholar] [CrossRef]
- Luo, M.; Wang, H.; Lyu, Z. Evaluating the Performance of Species Distribution Models Biomod2 and MaxEnt Using the Giant Panda Distribution Data. Yingyong Shengtai Xuebao 2017, 28, 4001–4006. [Google Scholar] [CrossRef]
- Song, G.; Wang, Q. Species Classification from Hyperspectral Leaf Information Using Machine Learning Approaches. Ecol. Inform. 2023, 76, 102141. [Google Scholar] [CrossRef]
- Sabat-Tomala, A.; Raczko, E.; Zagajewski, B. Comparison of Support Vector Machine and Random Forest Algorithms for Invasive and Expansive Species Classification Using Airborne Hyperspectral Data. Remote Sens. 2020, 12, 516. [Google Scholar] [CrossRef]
- Fu, Y.; Li, R.; Wang, X.; Bergeron, Y.; Valeria, O.; Chavardès, R.D.; Wang, Y.; Hu, J. Fire Detection and Fire Radiative Power in Forests and Low-Biomass Lands in Northeast Asia: MODIS versus VIIRS Fire Products. Remote Sens. 2020, 12, 2870. [Google Scholar] [CrossRef]
- Marceló-Díaz, C.; Lesmes, M.C.; Santamaría, E.; Salamanca, J.A.; Fuya, P.; Cadena, H.; Muñoz-Laiton, P.; Morales, C.A. Spatial Analysis of Dengue Clusters at Department, Municipality and Local Scales in the Southwest of Colombia, 2014–2019. Trop. Med. Infect. Dis. 2023, 8, 262. [Google Scholar] [CrossRef]
- Ebi, K.L.; Nealon, J. Dengue in a Changing Climate. Environ Res 2016, 151, 115–123. [Google Scholar] [CrossRef]
- Liu-Helmersson, J.; Quam, M.; Wilder-Smith, A.; Stenlund, H.; Ebi, K.; Massad, E.; Rocklöv, J. Climate Change and Aedes Vectors: 21st Century Projections for Dengue Transmission in Europe. EBioMedicine 2016, 7, 267–277. [Google Scholar] [CrossRef]
- Xu, Z.; Bambrick, H.; Frentiu, F.D.; Devine, G.; Yakob, L.; Williams, G.; Hu, W. Projecting the Future of Dengue under Climate Change Scenarios: Progress, Uncertainties and Research Needs. PLoS Neglected Trop. Dis. 2020, 14, e0008118. [Google Scholar] [CrossRef] [PubMed]
- Stanaway, J.D.; Shepard, D.S.; Undurraga, E.A.; Halasa, Y.A.; Coffeng, L.E.; Brady, O.J.; Hay, S.I.; Bedi, N.; Bensenor, I.M.; Castañeda-Orjuela, C.A.; et al. The Global Burden of Dengue: A Systematic Analysis from the Global Burden of Disease Study 2013. Lancet Infect. Dis. 2016, 16, 712–723. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, M.; Hemami, M.R.; Kaboli, M.; Shabani, F. MaxEnt Brings Comparable Results When the Input Data Are Being Completed; Model Parameterization of Four Species Distribution Models. Ecol. Evol. 2023, 13, e9827. [Google Scholar] [CrossRef]
- Daniel, J.; Horrocks, J.; Umphrey, G.J. Efficient Modelling of Presence-Only Species Data via Local Background Sampling. J. Agric. Biol. Environ. Stat. 2020, 25, 90–111. [Google Scholar] [CrossRef]
- Kumar, S.; Graham, J.; West, A.M.; Evangelista, P.H. Using District-Level Occurrences in MaxEnt for Predicting the Invasion Potential of an Exotic Insect Pest in India. Comput. Electron. Agric. 2014, 103, 55–62. [Google Scholar] [CrossRef]
- Yang, X.; Jin, X.; Zhou, Y. Wildfire Risk Assessment and Zoning by Integrating Maxent and GIS in Hunan Province, China. Forests 2021, 12, 1299. [Google Scholar] [CrossRef]
- Spencer, D.; Yue, Y.R.; Bolin, D.; Ryan, S.; Mejia, A.F. Spatial Bayesian GLM on the Cortical Surface Produces Reliable Task Activations in Individuals and Groups. Neuroimage 2022, 249, 118908. [Google Scholar] [CrossRef]
- Chollet Ramampiandra, E.; Scheidegger, A.; Wydler, J.; Schuwirth, N. A Comparison of Machine Learning and Statistical Species Distribution Models: Quantifying Overfitting Supports Model Interpretation. Ecol. Model. 2023, 481, 110353. [Google Scholar] [CrossRef]
- Čengić, M.; Rost, J.; Remenska, D.; Janse, J.H.; Huijbregts, M.A.J.; Schipper, A.M. On the Importance of Predictor Choice, Modelling Technique, and Number of Pseudo-Absences for Bioclimatic Envelope Model Performance. Ecol. Evol. 2020, 10, 12307–12317. [Google Scholar] [CrossRef]
- Quinn, A.J.; Atkinson, L.Z.; Gohil, C.; Kohl, O.; Pitt, J.; Zich, C.; Nobre, A.C.; Woolrich, M.W. The GLM-Spectrum: A Multilevel Framework for Spectrum Analysis with Covariate and Confound Modelling. Imaging Neurosci. 2024, 2, 1–26. [Google Scholar] [CrossRef]
- Fitzgibbon, A.; Pisut, D.; Fleisher, D. Evaluation of Maximum Entropy (Maxent) Machine Learning Model to Assess Relationships between Climate and Corn Suitability. Land 2022, 11, 1382. [Google Scholar] [CrossRef]
- Mazzoni, S.; Halvorsen, R.; Bakkestuen, V. MIAT: Modular R-Wrappers for Flexible Implementation of MaxEnt Distribution Modelling. Ecol. Inform. 2015, 30, 215–221. [Google Scholar] [CrossRef]
- Yates, K.L.; Bouchet, P.J.; Caley, M.J.; Mengersen, K.; Randin, C.F.; Parnell, S.; Fielding, A.H.; Bamford, A.J.; Ban, S.; Barbosa, A.M.; et al. Outstanding Challenges in the Transferability of Ecological Models. Trends Ecol. Evol. 2018, 33, 790–802. [Google Scholar] [CrossRef]
- Nie, P.; Feng, J. Niche and Range Shifts of Aedes aegypti and Ae. albopictus Suggest That the Latecomer Shows a Greater Invasiveness. Insects 2023, 14, 810. [Google Scholar] [CrossRef] [PubMed]
- Gomes, E.O.; Sacchetto, L.; Teixeira, M.; Chaves, B.A.; Hendy, A.; Mendonça, C.; Guimarães, I.; Linhares, R.; Brito, D.; Valério, D.; et al. Detection of Zika Virus in Aedes aegypti and Aedes albopictus Mosquitoes Collected in Urban Forest Fragments in the Brazilian Amazon. Viruses 2023, 15, 1356. [Google Scholar] [CrossRef]
- Christofferson, R.C.; Turner, E.A.; Peña-García, V.H. Identifying Knowledge Gaps through the Systematic Review of Temperature-Driven Variability in the Competence of Aedes aegypti and Ae. albopictus for Chikungunya Virus. Pathogens 2023, 12, 1368. [Google Scholar] [CrossRef] [PubMed]
- Padonou, G.G.; Konkon, A.K.; Salako, A.S.; Zoungbédji, D.M.; Ossè, R.; Sovi, A.; Azondekon, R.; Sidick, A.; Ahouandjinou, J.M.; Adoha, C.J.; et al. Distribution and Abundance of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in Benin, West Africa. Trop. Med. Infect. Dis. 2023, 8, 439. [Google Scholar] [CrossRef]
- Román-Pérez, S.; Aguirre-Gómez, R.; Hernández-Ávila, J.E.; Íñiguez-Rojas, L.B.; Santos-Luna, R.; Correa-Morales, F. Identification of Risk Areas of Dengue Transmission in Culiacan, Mexico. ISPRS Int. J. Geo-Inf. 2023, 12, 221. [Google Scholar] [CrossRef]
- Hemme, R.R.; Thomas, C.L.; Chadee, D.D.; Severson, D.W. Influence of Urban Landscapes on Population Dynamics in a Short-Distance Migrant Mosquito: Evidence for the Dengue Vector Aedes aegypti. PLoS Neglected Trop. Dis. 2010, 4, e634. [Google Scholar] [CrossRef]
- Yeo, H.; Tan, H.Z.; Tang, Q.; Tan, T.R.H.; Puniamoorthy, N.; Rheindt, F.E. Dense Residential Areas Promote Gene Flow in Dengue Vector Mosquito Aedes albopictus. iScience 2023, 26, 107577. [Google Scholar] [CrossRef]
- Follmann, A. Geographies of Peri-Urbanization in the Global South. Geogr. Compass 2022, 16, e12650. [Google Scholar] [CrossRef]
- Tovar, C.; Arnillas, C.A.; Cuesta, F.; Buytaert, W. Diverging Responses of Tropical Andean Biomes under Future Climate Conditions. PLoS ONE 2013, 8, e63634. [Google Scholar] [CrossRef] [PubMed]
- Mejía-Jurado, E.; Echeverry-Cárdenas, E.; Aguirre-Obando, O.A. Potential Current and Future Distribution for Aedes aegypti and Aedes albopictus in Colombia: Important Disease Vectors. Biol. Invasions 2024, 26, 2119–2137. [Google Scholar] [CrossRef]
- Bonnin, L.; Tran, A.; Herbreteau, V.; Marcombe, S.; Boyer, S.; Mangeas, M.; Menkes, C. Predicting the Effects of Climate Change on Dengue Vector Densities in Southeast Asia through Process-Based Modeling. Environ. Health Perspect 2022, 130, 127002. [Google Scholar] [CrossRef]
- Khan, M.; Pedersen, M.; Zhu, M.; Zhang, H.; Zhang, L. General Rights Trend of Dengue Transmission under Future Climate and Human Population Change Scenarios in Mainland China. J. Math. Anal. Appl. 2024. Available online: https://backend.orbit.dtu.dk/ws/portalfiles/portal/277514111/Dengue_20220324.pdf (accessed on 26 April 2025).
- Fan, J.C.; Liu, Q.Y. Potential Impacts of Climate Change on Dengue Fever Distribution Using RCP Scenarios in China. Adv. Clim. Change Res. 2019, 10, 1–8. [Google Scholar] [CrossRef]
- Döscher, R.; Acosta, M.; Alessandri, A.; Anthoni, P.; Arsouze, T.; Bergman, T.; Bernardello, R.; Boussetta, S.; Caron, L.P.; Carver, G.; et al. The EC-Earth3 Earth System Model for the Coupled Model Intercomparison Project 6. Geosci. Model Dev. 2022, 15, 2973–3020. [Google Scholar] [CrossRef]
- Oh, S.G.; Kim, B.G.; Cho, Y.K.; Son, S.W. Quantification of The Performance of CMIP6 Models for Dynamic Downscaling in The North Pacific and Northwest Pacific Oceans. Asia Pacific J. Atmos. Sci. 2023, 59, 367–383. [Google Scholar] [CrossRef]
- Adhikari, R.K.; Yilmaz, A.G.; Mainali, B.; Dyson, P. Performance Evaluation of CMIP6 Models for Application to Hydrological Modelling Studies—A Case Study of Australia. Sci. Total Environ. 2024, 945, 174015. [Google Scholar] [CrossRef]
- Nishant, N.; Di Virgilio, G.; Ji, F.; Tam, E.; Beyer, K.; Riley, M.L. Evaluation of Present-Day CMIP6 Model Simulations of Extreme Precipitation and Temperature over the Australian Continent. Atmosphere 2022, 13, 1478. [Google Scholar] [CrossRef]
- Örücü, Ö.K.; Arslan, E.S.; Hoşgör, E.; Kaymaz, I.; Gülcü, S. Potential Distribution Pattern of the Quercus Brantii Lindl. and Quercus Frainetto Ten. under the Future Climate Conditions. Eur. J. For. Res. 2024, 143, 465–478. [Google Scholar] [CrossRef]
- Sarikaya, O.; Gencal, T.; Uzun, A.; Sarikaya, A.G. The Current and Future Potential Distribution Areas of the Invasive Oak Leaf Defoliator Oak Lace Bug [Corythucha Arcuata (Say, 1832)] (Heteroptera: Tingidae) on Oak Forests of Türkiye. 2023. Available online: https://www.researchsquare.com/article/rs-3620520/v1 (accessed on 12 October 2024).
- Tiwary, R.; Singh, P.P.; Adhikari, D.; Behera, M.D.; Barik, S.K. Vulnerability Assessment of Taxus Wallichiana in the Indian Himalayan Region to Future Climate Change Using Species Niche Models and Global Climate Models under Future Climate Scenarios. Biodivers Conserv. 2024, 33, 3475–3494. [Google Scholar] [CrossRef]
- Mantilla-Granados, J.S.; Montilla-López, K.; Sarmiento-Senior, D.; Chapal-Arcos, E.; Velandia-Romero, M.L.; Calvo, E.; Morales, C.A.; Castellanos, J.E. Environmental and Anthropic Factors Influencing Aedes aegypti and Aedes albopictus (Diptera: Culicidae), with Emphasis on Natural Infection and Dissemination: Implications for an Emerging Vector in Colombia. PLoS Neglected Trop. Dis. 2025, 19, e0012605. [Google Scholar] [CrossRef]
- Acevedo-Guerrero, T. Water with Larvae: Hydrological Fertility, Inequality, and Mosquito Urbanism. Environ. Plan. E Nat. Space 2022, 8, 13–30. [Google Scholar] [CrossRef]
- Yin, S.; Ren, C.; Shi, Y.; Hua, J.; Yuan, H.Y.; Tian, L.W. A Systematic Review on Modeling Methods and Influential Factors for Mapping Dengue-Related Risk in Urban Settings. Int. J. Environ. Res. Public Health 2022, 19, 15265. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, D.I.; Piche-Ovares, M.; Romero-Vega, L.M.; Wagman, J.; Troyo, A. The Impact of Deforestation, Urbanization, and Changing Land Use Patterns on the Ecology of Mosquito and Tick-Borne Diseases in Central America. Insects 2022, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Seposo, X.; Valenzuela, S.; Apostol, G.L. Socio-Economic Factors and Its Influence on the Association between Temperature and Dengue Incidence in 61 Provinces of the Philippines, 2010–2019. PLoS Neglected Trop. Dis. 2023, 17, e0011700. [Google Scholar] [CrossRef]
- Gomes, H.; de Jesus, A.G.; Quaresma, J.A.S. Identification of Risk Areas for Arboviruses Transmitted by Aedes aegypti in Northern Brazil: A One Health Analysis. One Health 2023, 16, 100499. [Google Scholar] [CrossRef]
- Kolimenakis, A.; Heinz, S.; Wilson, M.L.; Winkler, V.; Yakob, L.; Michaelakis, A.; Papachristos, D.; Richardson, C.; Horstick, O. The Role of Urbanisation in the Spread of Aedes Mosquitoes and the Diseases They Transmit—A Systematic Review. PLoS Neglected Trop. Dis. 2021, 15, e0009631. [Google Scholar] [CrossRef]
- Martin, J.L.; Lippi, C.A.; Stewart-Ibarra, A.M.; Ayala, E.B.; Mordecai, E.A.; Sippy, R.; Heras, F.H.; Blackburn, J.K.; Ryan, S.J. Household and Climate Factors Influence Aedes aegypti Presence in the Arid City of Huaquillas, Ecuador. PLoS Neglected Trop. Dis. 2021, 15, e0009931. [Google Scholar] [CrossRef]
Type | Variables | Description | Source |
---|---|---|---|
Environmental variables | bio01 | Annual Mean Temperature | WorldClim |
bio02 | Mean Diurnal Range (Mean of monthly (max temp–min temp)) | ||
bio03 | Isothermality (BIO2/BIO7) (×100) | ||
bio04 | Temperature Seasonality (standard deviation ×100) | ||
bio05 | Max Temperature of Warmest Month | ||
bio06 | Min Temperature of Coldest Month * | ||
bio07 | Temperature Annual Range (BIO5-BIO6) | ||
bio08 | Mean Temperature of Wettest Quarter | ||
bio09 | Mean Temperature of Driest Quarter * | ||
bio10 | Mean Temperature of Warmest Quarter | ||
bio11 | Mean Temperature of Coldest Quarter | ||
bio12 | Annual Precipitation * | ||
bio13 | Precipitation of Wettest Month | ||
bio14 | Precipitation of Driest Month | ||
bio15 | Precipitation Seasonality (Coefficient of Variación) | ||
bio16 | Precipitation of Wettest Quarter * | ||
bio17 | Precipitation of Driest Quarter * | ||
bio18 | Precipitation of Warmest Quarter * | ||
bio19 | Precipitation of Coldest Quarter * | ||
Topographic variables | DEM | Elevation | SRTM |
Statistical Metrics | Precision | Recall | F1-Score | Accuracy | AUC |
---|---|---|---|---|---|
MaxEnt | 0.9785 | 0.8763 | 0.9245 | 0.8751 | 0.91 |
Probability Class Distribution | Area | |
---|---|---|
Km2 | % | |
Unsuitable | 416,352.51 | 32.27 |
Low suitability | 436,850.80 | 33.85 |
Moderate suitability | 305,253.82 | 23.65 |
High suitability | 132,053.96 | 10.23 |
Total | 1,290,511.09 | 100 |
Global Climate Model | Year | SSPs | High Suitable | Diference | |
---|---|---|---|---|---|
Km | % | % | |||
Actuality | 2022 | 132,053.96 | 10.23 | 10.23 | |
EC-Earth3-Veg | 2070 | 245 | 145,759.56 | 11.29 | 1.06 |
HadGEM3-GC31-LL | 189,715.13 | 14.70 | 4.47 | ||
MIROC6 | 163,304.19 | 12.65 | 2.42 | ||
EC-Earth3-Veg | 585 | 121,197.74 | 9.39 | −0.84 | |
HadGEM3-GC31-LL | 151,664.19 | 11.75 | 1.52 | ||
MIROC6 | 139,376.75 | 10.8 | 0.57 | ||
EC-Earth3-Veg | 2100 | 245 | 151,899.69 | 11.77 | 1.54 |
HadGEM3-GC31-LL | 170,608.69 | 13.22 | 2.99 | ||
MIROC6 | 146,618.13 | 11.36 | 1.13 | ||
EC-Earth3-Veg | 585 | 138,003.37 | 10.69 | 0.46 | |
HadGEM3-GC31-LL | 135,695.46 | 10.51 | 0.28 | ||
MIROC6 | 136,953.93 | 10.61 | 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vergara, A.J.; Valqui-Reina, S.V.; Cieza-Tarrillo, D.; Ocaña-Zúñiga, C.L.; Hernández, R.; Chapa-Gonza, S.R.; Aquiñivin-Silva, E.A.; Fernández-Jeri, A.B.; Santos, A.R.d. Current and Future Spatial Distribution of the Aedes aegypti in Peru Based on Topoclimatic Analysis and Climate Change Scenarios. Insects 2025, 16, 487. https://doi.org/10.3390/insects16050487
Vergara AJ, Valqui-Reina SV, Cieza-Tarrillo D, Ocaña-Zúñiga CL, Hernández R, Chapa-Gonza SR, Aquiñivin-Silva EA, Fernández-Jeri AB, Santos ARd. Current and Future Spatial Distribution of the Aedes aegypti in Peru Based on Topoclimatic Analysis and Climate Change Scenarios. Insects. 2025; 16(5):487. https://doi.org/10.3390/insects16050487
Chicago/Turabian StyleVergara, Alex J., Sivmny V. Valqui-Reina, Dennis Cieza-Tarrillo, Candy Lisbeth Ocaña-Zúñiga, Rocio Hernández, Sandy R. Chapa-Gonza, Erick A. Aquiñivin-Silva, Armstrong B. Fernández-Jeri, and Alexandre Rosa dos Santos. 2025. "Current and Future Spatial Distribution of the Aedes aegypti in Peru Based on Topoclimatic Analysis and Climate Change Scenarios" Insects 16, no. 5: 487. https://doi.org/10.3390/insects16050487
APA StyleVergara, A. J., Valqui-Reina, S. V., Cieza-Tarrillo, D., Ocaña-Zúñiga, C. L., Hernández, R., Chapa-Gonza, S. R., Aquiñivin-Silva, E. A., Fernández-Jeri, A. B., & Santos, A. R. d. (2025). Current and Future Spatial Distribution of the Aedes aegypti in Peru Based on Topoclimatic Analysis and Climate Change Scenarios. Insects, 16(5), 487. https://doi.org/10.3390/insects16050487