Pre-Crop Chemical Control Has No Effects on Corn Leaf Aphid, Rhopalosiphum maidis (Fitch) (Hemiptera: Aphididae) Endosymbiotic Bacterial Diversity Along an Industrial Maize Management
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Methods of Corn Leaf Aphids
2.2. Bacterial Symbionts Identification and Bioinformatics Assessments
2.3. Data Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- James, C.K.N.; Perry, K.L. Transmission of Plant Viruses by Aphid Vectors. Mol. Plant Pathol. 2004, 5, 505–511. [Google Scholar] [CrossRef]
- Stevens, M.; Lacomme, C. Transmission of Plant Viruses. In Aphids as Crop Pests; van Emden, H.F., Harrington, R., Eds.; CABI: Wallingford, UK, 2017; pp. 323–361. [Google Scholar]
- Bass, C.; Puinean, A.M.; Zimmer, C.T.; Denholm, I.; Field, L.M.; Foster, S.P.; Gutbrod, O.; Nauen, R.; Slater, R.; Williamson, M.S. The Evolution of Insecticide Resistance in the Peach Potato Aphid, Myzus persicae. Insect Biochem. Mol. Biol. 2014, 51, 41–51. [Google Scholar] [CrossRef]
- Geiger, F.; Bengtsson, J.; Berendse, F.; Weisser, W.W.; Emmerson, M.; Morales, M.B.; Ceryngier, P.; Liira, J.; Tscharntke, T.; Winqvist, C.; et al. Persistent Negative Effects of Pesticides on Biodiversity and Biological Control Potential on European Farmland. Basic. Appl. Ecol. 2010, 11, 97–105. [Google Scholar] [CrossRef]
- Bass, C.; Denholm, I.; Williamson, M.S.; Nauen, R. The Global Status of Insect Resistance to Neonicotinoid Insecticides. Pestic. Biochem. Physiol. 2015, 121, 78–87. [Google Scholar] [CrossRef]
- Herron, G.A.; Wilson, L.J. Can Resistance Management Strategies Recover Insecticide Susceptibility in Pests?: A Case Study with Cotton Aphid Aphis gossypii (Aphididae: Hemiptera) in Australian Cotton: Resistance Management of Aphis gossypii. Austral Entomol. 2017, 56, 1–13. [Google Scholar] [CrossRef]
- Sparks, T.C.; Nauen, R. IRAC: Mode of Action Classification and Insecticide Resistance Management. Pestic. Biochem. Physiol. 2015, 121, 122–128. [Google Scholar] [CrossRef]
- Itoh, H.; Navarro, R.; Takeshita, K.; Tago, K.; Hayatsu, M.; Hori, T.; Kikuchi, Y. Bacterial Population Succession and Adaptation Affected by Insecticide Application and Soil Spraying History. Front. Microbiol. 2014, 5, 457. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Jung, M.; Lee, D.-H. Characterization of Burkholderia Bacteria Clade Compositions in Soil and Riptortus pedestris (Hemiptera: Alydidae) in South Korea. J. Asia-Pac. Entomol. 2022, 25, 101976. [Google Scholar] [CrossRef]
- Zhang, S.; Luo, J.; Wang, L.; Zhang, L.; Zhu, X.; Jiang, W.; Cui, J. Bacterial Communities in Natural versus Pesticide-Treated Aphis gossypii Populations in North China. Microbiologyopen 2019, 8, e00652. [Google Scholar] [CrossRef]
- Chirgwin, E.; Yang, Q.; Umina, P.A.; Gill, A.; Soleimannejad, S.; Gu, X.; Ross, P.; Hoffmann, A.A. Fungicides Have Transgenerational Effects on Rhopalosiphum padi but Not Their Endosymbionts. Pest Manag. Sci. 2022, 78, 4709–4718. [Google Scholar] [CrossRef]
- Frank, R.; Stephen Clegg, B.; Ritcey, G. Disappearance of Oxyfluorfen (Goal) from Onions and Organic Soils. Bull. Environ. Contam. Toxicol. 1991, 46, 485–491. [Google Scholar] [CrossRef]
- Yen, J.-H.; Sheu, W.-S.; Wang, Y.-S. Dissipation of the Herbicide Oxyfluorfen in Subtropical Soils and Its Potential to Contaminate Groundwater. Ecotoxicol. Environ. Saf. 2003, 54, 151–156. [Google Scholar] [CrossRef]
- Gao, X.; Hu, F.; Zhang, S.; Luo, J.; Zhu, X.; Wang, L.; Zhang, K.; Li, D.; Ji, J.; Niu, L.; et al. Glyphosate Exposure Disturbs the Bacterial Endosymbiont Community and Reduces Body Weight of the Predatory Ladybird Beetle Harmonia axyridis (Coleoptera: Coccinellidae). Sci. Total Environ. 2021, 790, 147847. [Google Scholar] [CrossRef]
- Cheng, D.; Guo, Z.; Riegler, M.; Xi, Z.; Liang, G.; Xu, Y. Gut Symbiont Enhances Insecticide Resistance in a Significant Pest, the Oriental Fruit Fly Bactrocera dorsalis (Hendel). Microbiome 2017, 5, 13. [Google Scholar] [CrossRef]
- Kikuchi, Y.; Hayatsu, M.; Hosokawa, T.; Nagayama, A.; Tago, K.; Fukatsu, T. Symbiont-Mediated Insecticide Resistance. Proc. Natl. Acad. Sci. USA 2012, 109, 8618–8622. [Google Scholar] [CrossRef]
- Ramya, S.L.; Venkatesan, T.; Srinivasa Murthy, K.; Jalali, S.K.; Verghese, A. Detection of Carboxylesterase and Esterase Activity in Culturable Gut Bacterial Flora Isolated from Diamondback Moth, Plutella xylostella (Linnaeus), from India and Its Possible Role in Indoxacarb Degradation. Braz. J. Microbiol. 2016, 47, 327–336. [Google Scholar] [CrossRef]
- Pan, H.P.; Chu, D.; Liu, B.M.; Xie, W.; Wang, S.L.; Wu, Q.J.; Xu, B.Y.; Zhang, Y.J. Relative Amount of Symbionts in Insect Hosts Changes with Host-Plant Adaptation and Insecticide Resistance. Environ. Entomol. 2013, 42, 74–78. [Google Scholar] [CrossRef]
- Guo, S.-K.; Gong, Y.-J.; Chen, J.-C.; Shi, P.; Cao, L.-J.; Yang, Q.; Hoffmann, A.A.; Wei, S.-J. Increased Density of Endosymbiotic Buchnera Related to Pesticide Resistance in Yellow Morph of Melon Aphid. J. Pest. Sci. 2020, 93, 1281–1294. [Google Scholar] [CrossRef]
- Laughton, A.M.; Fan, M.H.; Gerardo, N.M. The Combined Effects of Bacterial Symbionts and Aging on Life History Traits in the Pea Aphid, Acyrthosiphon pisum. Appl. Environ. Microbiol. 2014, 80, 470–477. [Google Scholar] [CrossRef]
- Simon, J.-C.; Boutin, S.; Tsuchida, T.; Koga, R.; Le Gallic, J.-F.; Frantz, A.; Outreman, Y.; Fukatsu, T. Facultative Symbiont Infections Affect Aphid Reproduction. PLoS ONE 2011, 6, e21831. [Google Scholar] [CrossRef]
- Skaljac, M.; Kirfel, P.; Grotmann, J.; Vilcinskas, A. Fitness Costs of Infection with Serratia symbiotica Are Associated with Greater Susceptibility to Insecticides in the Pea Aphid Acyrthosiphon pisum: Serratia symbiotica Correlates with Susceptibility to Insecticides in Pea Aphid. Pest Manag. Sci. 2018, 74, 1829–1836. [Google Scholar] [CrossRef]
- Li, Q.; Sun, J.; Qin, Y.; Fan, J.; Zhang, Y.; Tan, X.; Hou, M.; Chen, J. Reduced Insecticide Susceptibility of the Wheat Aphid Sitobion miscanthi after Infection by the Secondary Bacterial Symbiont Hamiltonella Defensa. Pest Manag. Sci. 2021, 77, 1936–1944. [Google Scholar] [CrossRef]
- Lv, N.; Li, R.; Cheng, S.; Zhang, L.; Liang, P.; Gao, X. The Gut Symbiont Sphingomonas Mediates Imidacloprid Resistance in the Important Agricultural Insect Pest Aphis gossypii Glover. BMC Biol. 2023, 21, 86. [Google Scholar] [CrossRef]
- Hagimori, T.; Abe, Y.; Date, S.; Miura, K. The First Finding of a Rickettsia Bacterium Associated with Parthenogenesis Induction Among Insects. Curr. Microbiol. 2006, 52, 97–101. [Google Scholar] [CrossRef]
- Kontsedalov, S.; Zchori-Fein, E.; Chiel, E.; Gottlieb, Y.; Inbar, M.; Ghanim, M. The Presence of Rickettsia is Associated with Increased Susceptibility of Bemisia tabaci (Homoptera: Aleyrodidae) to Insecticides. Pest Manag. Sci. 2008, 64, 789–792. [Google Scholar] [CrossRef]
- Sakurai, M.; Koga, R.; Tsuchida, T.; Meng, X.-Y.; Fukatsu, T. Rickettsia Symbiont in the Pea Aphid Acyrthosiphon pisum: Novel Cellular Tropism, Effect on Host Fitness, and Interaction with the Essential Symbiont Buchnera. Appl. Environ. Microbiol. 2005, 71, 4069–4075. [Google Scholar] [CrossRef]
- Singh, B.K. Organophosphorus-Degrading Bacteria: Ecology and Industrial Applications. Nat. Rev. Microbiol. 2009, 7, 156–164. [Google Scholar] [CrossRef]
- Pakala, S.B.; Gorla, P.; Pinjari, A.B.; Krovidi, R.K.; Baru, R.; Yanamandra, M.; Merrick, M.; Siddavattam, D. Biodegradation of Methyl Parathion and P-Nitrophenol: Evidence for the Presence of a p-Nitrophenol 2-Hydroxylase in a Gram-Negative Serratia sp. Strain DS001. Appl. Microbiol. Biotechnol. 2007, 73, 1452–1462. [Google Scholar] [CrossRef]
- FAOStat. Available online: https://www.fao.org/faostat/en/#compare (accessed on 26 July 2022).
- Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet J. 2011, 17, 10. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Use R!), 2nd ed.; Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-24275-0. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing [Computer Software]; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Vázquez-Baeza, Y.; Pirrung, M.; Gonzalez, A.; Knight, R. EMPeror: A Tool for Visualizing High-Throughput Microbial Community Data. Gigascience 2013, 2, 2047-217X-2-16. [Google Scholar] [CrossRef]
- Shigenobu, S.; Watanabe, H.; Hattori, M.; Sakaki, Y.; Ishikawa, H. Genome Sequence of the Endocellular Bacterial Symbiont of Aphids buchnera sp. APS. Nature 2000, 407, 81–86. [Google Scholar] [CrossRef]
- Chong, R.A.; Moran, N.A. Evolutionary Loss and Replacement of Buchnera, the Obligate Endosymbiont of Aphids. ISME J. 2018, 12, 898–908. [Google Scholar] [CrossRef]
- Nováková, E.; Hypša, V.; Klein, J.; Foottit, R.G.; von Dohlen, C.D.; Moran, N.A. Reconstructing the Phylogeny of Aphids (Hemiptera: Aphididae) Using DNA of the Obligate Symbiont Buchnera aphidicola. Mol. Phylogenet Evol. 2013, 68, 42–54. [Google Scholar] [CrossRef]
- Wegierek, P.; Michalik, A.; Wieczorek, K.; Kanturski, M.; Kobiałka, M.; Śliwa, K.; Szklarzewicz, T. Buchnera aphidicola of the Birch Blister Aphid, Hamamelistes betulinus (Horváth, 1896) (Insecta, Hemiptera, Aphididae: Hormaphidinae): Molecular Characterization, Transmission between Generations and Its Geographic Significance. Acta Zoologica 2017, 98, 412–421. [Google Scholar] [CrossRef]
- Xu, S.; Chen, J.; Qin, M.; Jiang, L.; Qiao, G. Geography-Dependent Symbiont Communities in Two Oligophagous Aphid Species. FEMS Microbiol. Ecol. 2021, 97, fiab132. [Google Scholar] [CrossRef]
- Gómez-Valero, L.; Soriano-Navarro, M.; Pérez-Brocal, V.; Heddi, A.; Moya, A.; García-Verdugo, J.M.; Latorre, A. Coexistence of Wolbachia with Buchnera aphidicola and a Secondary Symbiont in the Aphid Cinara cedri. J. Bacteriol. 2004, 186, 6626–6633. [Google Scholar] [CrossRef]
- Iturbe-Ormaetxe, I.; Walker, T.; O’Neill, S.L. Wolbachia and the Biological Control of Mosquito-borne Disease. EMBO Rep. 2011, 12, 508–518. [Google Scholar] [CrossRef]
- Rothacher, L.; Ferrer-Suay, M.; Vorburger, C. Bacterial Endosymbionts Protect Aphids in the Field and Alter Parasitoid Community Composition. Ecology 2016, 97, 1712–1723. [Google Scholar] [CrossRef]
- Frago, E.; Mala, M.; Weldegergis, B.T.; Yang, C.; McLean, A.; Godfray, H.C.J.; Gols, R.; Dicke, M. Symbionts Protect Aphids from Parasitic Wasps by Attenuating Herbivore-Induced Plant Volatiles. Nat. Commun. 2017, 8, 1860. [Google Scholar] [CrossRef]
Commercial Name | Active Ingredient | Dosage | Time |
---|---|---|---|
Basagran 480 SL | bentazone 480 g/L | 2 L/ha | 3 May 2023 |
Tropotox XT | MCPB 400 g/L | 2 L/ha | 3 May 2023 |
Judo | lambda-cyhalothrin 5 g/L and pirimicarb 100 g/L | 1.2 L/ha | 15 May 2023 |
Amistar SC | azoxystrobin 250 g/L | 1 L/ha | 20 May 2023 |
Adengo 465 SC | izoxaflutole 225 g/L, thiencarbazone-methyl 90 g/L and cyprosulfamide 150 g/L | 0.4 L/ha | 22 April 2024 |
A | Df | SumsOfSqs | MeanSqs | F.Model | R2 | Pr(>F) |
Soil Type | 1 | 0.18 | 0.18 | 0.56 | 0.05 | 0.41 |
Residuals | 10 | 3.17 | 0.31 | NA | 0.94 | NA |
Total | 11 | 3.36 | NA | NA | 1.00 | NA |
B | Df | SumsOfSqs | MeanSqs | F.Model | R2 | Pr(>F) |
Soil Type | 1 | 0.13 | 0.13 | 0.43 | 0.05 | 0.60 |
Residuals | 8 | 2.46 | 0.30 | NA | 0.94 | NA |
Total | 9 | 2.60 | NA | NA | 1.00 | NA |
C | Df | SumsOfSqs | MeanSqs | F.Model | R2 | Pr(>F) |
Soil Type | 1 | 0.29 | 0.29 | 0.87 | 0.09 | 0.38 |
Residuals | 8 | 2.67 | 0.33 | NA | 0.90 | NA |
Total | 9 | 2.96 | NA | NA | 1.00 | NA |
D | Df | SumsOfSqs | MeanSqs | F.Model | R2 | Pr(>F) |
Soil Type | 1 | 0.05 | 0.05 | 0.15 | 0.01 | 0.89 |
Residuals | 8 | 2.70 | 0.33 | NA | 0.98 | NA |
Total | 9 | 2.75 | NA | NA | 1.00 | NA |
E | Df | SumsOfSqs | MeanSqs | F.Model | R2 | Pr(>F) |
Soil Type | 1 | 0.16 | 0.16 | 0.45 | 0.05 | 0.63 |
Residuals | 8 | 2.90 | 0.36 | NA | 0.94 | NA |
Total | 9 | 3.07 | NA | NA | 1.00 | NA |
F | Df | SumsOfSqs | MeanSqs | F.Model | R2 | Pr(>F) |
Soil Type | 1 | 0.20 | 0.20 | 0.54 | 0.08 | 0.52 |
Residuals | 6 | 2.19 | 0.36 | NA | 0.91 | NA |
Total | 7 | 2.39 | NA | NA | 1.00 | NA |
Df | SumsOfSqs | MeanSqs | F.Model | R2 | Pr(>F) | |
---|---|---|---|---|---|---|
Time | 1 | 1.09 | 1.09 | 4.13 | 0.18 | 0.02 |
Residuals | 18 | 4.78 | 0.26 | NA | 0.81 | NA |
Total | 19 | 5.88 | NA | NA | 1.00 | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Csorba, A.B.; Szanyi, K.; Szanyi, S.; Tarcali, G.; Balog, A.; Nagy, A. Pre-Crop Chemical Control Has No Effects on Corn Leaf Aphid, Rhopalosiphum maidis (Fitch) (Hemiptera: Aphididae) Endosymbiotic Bacterial Diversity Along an Industrial Maize Management. Insects 2025, 16, 417. https://doi.org/10.3390/insects16040417
Csorba AB, Szanyi K, Szanyi S, Tarcali G, Balog A, Nagy A. Pre-Crop Chemical Control Has No Effects on Corn Leaf Aphid, Rhopalosiphum maidis (Fitch) (Hemiptera: Aphididae) Endosymbiotic Bacterial Diversity Along an Industrial Maize Management. Insects. 2025; 16(4):417. https://doi.org/10.3390/insects16040417
Chicago/Turabian StyleCsorba, Artúr Botond, Kálmán Szanyi, Szabolcs Szanyi, Gábor Tarcali, Adalbert Balog, and Antal Nagy. 2025. "Pre-Crop Chemical Control Has No Effects on Corn Leaf Aphid, Rhopalosiphum maidis (Fitch) (Hemiptera: Aphididae) Endosymbiotic Bacterial Diversity Along an Industrial Maize Management" Insects 16, no. 4: 417. https://doi.org/10.3390/insects16040417
APA StyleCsorba, A. B., Szanyi, K., Szanyi, S., Tarcali, G., Balog, A., & Nagy, A. (2025). Pre-Crop Chemical Control Has No Effects on Corn Leaf Aphid, Rhopalosiphum maidis (Fitch) (Hemiptera: Aphididae) Endosymbiotic Bacterial Diversity Along an Industrial Maize Management. Insects, 16(4), 417. https://doi.org/10.3390/insects16040417