Evaluation of Selected Plant Essential Oils for Aphid Pest Control in Integrated Pest Management
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Extraction of EOs
2.3. GC-MS Characterization of EOs
2.4. Insect Rearing
2.5. Bioassays
2.5.1. Contact Toxicity Bioassays Against Aphids
2.5.2. Contact Toxicity Bioassays Against Syrphids
2.6. Statistical Analysis
3. Results
3.1. Essential Oil Characterization
3.2. Essential Oils as Insecticides Against Aphids
3.3. Essential Oils Against Aphid Natural Enemies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guerrieri, E.; Digilio, M.C. Aphid-plant interactions: A review. J. Plant Interact. 2008, 3, 223–232. [Google Scholar] [CrossRef]
- Loxdale, H.D.; Edwards, O.; Tagu, D.; Vorburger, C. Population genetic issues: New insights using conventional molecular markers and genomics tools. In Aphids as Crop Pests, 2nd ed.; van Emden, H.F., Harrington, R., Eds.; CABI: Wallingford, UK, 2017; pp. 515–532. [Google Scholar]
- Dedryver, C.-A.; Le Ralec, A.; Fabre, F. The conflicting relationships between aphids and men: A review of aphid damage and control strategies. C.R. Biol. 2010, 333, 539–553. [Google Scholar] [PubMed]
- Al Antary, T.M.; Abdel-Wali, M.I. Integration of biological and chemical control of Myzus persicae (Sulzer) (Hemiptera: Aphididae) under greenhouse conditions. Egypt J. Biol. Pest Control 2016, 26, 533–537. [Google Scholar]
- Hlaoui, A.; Boukhris-Bouhachem, S.; Sepúlveda, D.A.; Correa, M.C.G.; Briones, L.M.; Souissi, R.; Figueroa, C.C. Spatial and temporal genetic diversity of the peach potato aphid Myzus persicae (Sulzer) in Tunisia. Insects 2019, 10, 330. [Google Scholar] [CrossRef] [PubMed]
- Unruh, T.; Knight, A.; Bush, M.R. Green peach aphid (Homoptera: Aphididae) resistance to endosulfan in peach and nectarine orchards in Washington State. J. Econ. Entomol. 1996, 89, 1067–1073. [Google Scholar] [CrossRef]
- Foster, S.P.; Denholm, I.; Harling, Z.K.; Moores, G.D.; Devonshire, A.L. Intensification of insecticide resistance in UK field populations of the peach-potato aphid, Myzus persicae (Hemiptera: Aphididae) in 1996. Bull. Entomol. Res. 1998, 88, 127–130. [Google Scholar] [CrossRef]
- Bass, C.; Puinean, A.M.; Zimmer, C.T.; Denholm, I.; Field, L.M.; Foster, S.P.; Gutbrod, O.; Nauen, R.; Slater, R.; Williamson, M.S. The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Insect Biochem. Mol. Biol. 2014, 51, 41–51. [Google Scholar] [CrossRef]
- Quisenberry, S.S.; Ni, X.Z. Feeding injury. In Aphids as Crop Pests; van Emden, H.F., Harrington, R., Eds.; CABI: Wallingford, UK, 2007; pp. 331–352. [Google Scholar]
- Singh, R.; Singh, G. Aphids. In Polyphagous Pest of Crops; Omkar, Ed.; Springer Nature Singapore Pte Ltd.: Singapore, 2021; pp. 105–182. [Google Scholar] [CrossRef]
- Blackman, R.; Eastop, V. Taxonomic Issues. In Aphids as Crop Pests; van Emden, H., Harrington, R., Eds.; CABI: Wallingford, UK, 2007; pp. 1–29. [Google Scholar]
- Stark, J.D.; Wennergren, U. Can population effects of pesticides be predicted from demographic toxicological studies? J. Econ. Entomol. 1995, 88, 1089–1096. [Google Scholar] [CrossRef]
- Stenberg, J.A. A conceptual framework for Integrated Pest Management. Trends Plant Sci. 2017, 22, 759–769. [Google Scholar] [CrossRef]
- Van Endem, H.F. Superadditivity between control methods in pest management. Ann. Appl. Biol. 2024, 186, 20–26. [Google Scholar] [CrossRef]
- Amorós-Jiménez, R.; Pineda, A.; Fereres, A.; Marcos-García, M.A. Prey availability and abiotic requirements of immature stages of the aphid predator Sphaerophoria rueppellii. Biol. Control 2012, 63, 17–24. [Google Scholar] [CrossRef]
- Pekas, A.; De Craecker, I.; Boonen, S.; Wäckers, F.L.; Moerkens, R. One stone; two birds: Concurrent pest control and pollination services provided by aphidophagous hoverflies. Biol. Control 2020, 149, 104328. [Google Scholar] [CrossRef]
- Calvo-Agudo, M.; Gonzalez-Cabrera, J.; Sadutto, D.; Picó, Y.; Urbaneja, A.; Dicke, M.; Tena, A. IPM-recommended insecticides harm beneficial insects through contaminated 49 honeydew. Environ Pollut. 2020, 267, 115581. [Google Scholar] [CrossRef]
- Orengo-Green, J.J.; Casas, J.L.; Marcos-García, M.A. Effect of abiotic climatic factors on the gonadal maturation of the biocontrol agent Sphaerophoria rueppellii (Wiedemann, 1830) (Diptera: Syrphidae). Insects 2022, 13, 573. [Google Scholar] [CrossRef] [PubMed]
- Rojo, S.; Gilbert, F.; Marcos-García, M.A.; Nieto, J.M.; Mier, M.P. A World Review of Predatory Hoverflies (Diptera, Syrphidae: Syrphinae) and Their Prey; Ibero-American Center for Biodiversity (CIBIO): Murcia, Spain, 2003; 319p. [Google Scholar]
- Dunn, L.; Lequerica, M.; Reid, C.R.; Latty, T. Dual ecosystem services of syrphid flies (Diptera: Syrphidae): Pollinators and biological control agents. Pest Manag. Sci. 2020, 76, 1973–1979. [Google Scholar] [CrossRef] [PubMed]
- Bailey, E.; Field, L.; Rawlings, C.; King, R.; Mohareb, F.; Hassani-Pak, K.; Hughes, D.; Williamson, M.; Ganko, E.; Buer, B.; et al. A near-chromosome level genome assembly of the European hoverfly, Sphaerophoria rueppellii (Diptera: Syrphidae), provides comparative insights into insecticide resistance-related gene family evolution. BMC Genom. 2022, 23, 198. [Google Scholar] [CrossRef]
- Moerkens, R.; Boonen, S.; Wäckers, F.L.; Pekas, A. Aphidophagous hoverflies reduce foxglove aphid infestations and improve seed establishment and fruit yield in sweet pepper. Pest Manag. Sci. 2021, 77, 2690–2696. [Google Scholar] [CrossRef]
- Calvo-Agudo, M.; González-Cabrera, J.; Picó, Y.; Calatayud-Vernich, P.; Urbaneja, A.; Dicke, M.; Tena, A. Neonicotinoids in excretion product of phloem-feeding insects kill beneficial insects. Proc. Natl. Acad. Sci. USA 2019, 116, 16817–16822. [Google Scholar] [CrossRef]
- Mossa, A.H.; Mohafrash, S.M.M.; Chandrasekaran, N. Safety of natural insecticides: Toxic effects in experimental animals. BioMed. Res. Int. 2018, 1, 4308054. [Google Scholar] [CrossRef]
- Kursheed, A.; Rather, M.A.; Jain, V.; Wani, A.R.; Rasool, S.; Nazir, R.; Malik, N.A.; Majid, S.A. Plant based natural products as potential ecofriendly and safer biopesticides: A comprehensive overview of their advantages over conventional pesticides, limitations and regulatory aspects. Microb. Pathog. 2022, 173, 105854. [Google Scholar] [CrossRef]
- Ikbal, C.; Pavela, R. Essential oils as active ingredients of botanical insecticides against aphids. J. Pest Sci. 2019, 92, 971–986. [Google Scholar] [CrossRef]
- Dayan, F.E.; Cantrell, C.L.; Duke, S.O. Natural products in crop protection. Bioorg. Med. Chem. 2009, 17, 4022–4034. [Google Scholar] [CrossRef]
- Campos, E.V.R.; Proenca, P.L.F.; Oliveira, J.L.; Bakshi, M.; Abhilash, P.C.; Fraceto, L.F. Use of botanical insecticides for sustainable agriculture: Future perspectives. Ecol. Indic. 2019, 105, 483–495. [Google Scholar] [CrossRef]
- Petrakis, E.A.; Kimbaris, A.C.; Perdikis, D.C.; Lykouressis, D.P.; Tarantilis, P.A.; Polissiou, M.G. Responses of Myzus persicae (Sulzer) to three Lamiaceae essential oils obtained by microwave-assisted and conventional hydrodistillation. Ind. Crop Prod. 2014, 62, 272–279. [Google Scholar] [CrossRef]
- Pavela, R. Essential oils from Foeniculum vulgare Miller as a safe environmental insecticide against the aphid Myzus persicae Sulzer. Environ. Sci. Pollut. Res. 2018, 25, 10904–10910. [Google Scholar] [CrossRef]
- Wróblewska-Kurdyk, A.; Dancewicz, K.; Gliszczynska, A.; Gabrys, B. Antifeedant potential of geranylacetone and nerylacetone and their epoxy-derivatives against Myzus persicae (Sulz.). Molecules 2022, 27, 8871. [Google Scholar] [CrossRef]
- Sayed, S.; Soliman, M.M.; Al-Otaibi, S.; Hassan, M.M.; Elarrnaouty, S.-A.; Abozeid, S.M.; El-Shehawi, A.M. Toxicity, deterrent and repellent activities of four essential oils on Aphis punicae (Hemiptera: Aphididae). Plants 2022, 11, 463. [Google Scholar] [CrossRef]
- Cantó-Tejero, M.; Casas, J.L.; Marcos-Garcia, M.A.; Pascual-Villalobos, M.J.; Florencio-Ortiz, V.; Guirao, P. Essential oils-based repellents for the management of Myzus persicae and Macrosiphum euphorbiae. J. Pest Sci. 2022, 95, 365–379. [Google Scholar] [CrossRef]
- Gabryś, B.; Dancewicz, K.; Halarewicz-Pacan, A.; Janusz, E. Effect of natural monoterpenes on the behaviour of the peach potato aphid Myzus persicae (Sulz.). Breed. Plant Resist. Pest Dis. IOBC wprs Bull. 2005, 28, 29–34. [Google Scholar]
- Giunti, G.; Benelli, G.; Palmeri, V.; Laudani, F.; Ricupero, M.; Ricciardi, R.; Maggi, F.; Lucchi, A.; Guedes, R.N.C.; Desneux, N.; et al. Non-target effects of essential oil-based biopesticides for crop protection: Impact on natural enemies, pollinators, and soil invertebrates. Biol. Control 2022, 176, 105071. [Google Scholar] [CrossRef]
- Isman, M.B. A renaissance for botanical insecticides? Pest Manag. Sci. 2015, 71, 1587–1590. [Google Scholar] [CrossRef]
- Pavela, R.; Benelli, G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci. 2016, 21, 1000–1007. [Google Scholar] [CrossRef]
- Clevenger, J.F. Apparatus for the determination of volatile oil. J. Am. Pharm. Assoc. (1912) 1928, 17, 345–349. [Google Scholar] [CrossRef]
- Casas, J.L.; Sagarduy-Cabrera, A.; López Santos-Olmo, M.; Marcos, M.A. Essential oils from selected Mediterranean aromatic plants-characterization and biological activity as aphid biopesticides. Life 2023, 13, 1621. [Google Scholar] [CrossRef]
- Finney, D.J. Probit Analysis, 3rd ed.; Cambridge University Press: Cambridge, UK, 1971. [Google Scholar]
- Mekapogu, A.R. Finney’s Probit Analysis Spreadsheet Calculator (Version 2021). Available online: https://probitanalysis.wordpress.com/ (accessed on 20 January 2025).
- Barathi, S.; Sabapathi, N.; Kandasamy, S.; Lee, J. Present status of insecticide impact and eco-friendly approaches for remediation—A review. Environ. Res. 2024, 240, 117432. [Google Scholar] [CrossRef] [PubMed]
- Rajan, M.; Chandran, V.; Shahena, S.; Mathew, L. Controlled release pesticides as a route to sustainable crop production. In Controlled Release of Pesticides for Sustainable Agriculture; Rakhimol, K.R., Sabu, T., Volova, T., Jayachandran, K., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2020; pp. 111–126. [Google Scholar] [CrossRef]
- Drew, B.T.; González-Gallegos, J.G.; Xiang, C.-L.; Kriebel, R.; Drummond, C.P.; Walker, J.B.; Sytsma, K.J. Salvia united: The greatest Good for the greatest number. Taxon 2017, 66, 133–145. [Google Scholar] [CrossRef]
- Ainane, A.; Khammour, F.; Charaf, S.; Elabboubi, M.; Elkouali, M.; Talbi, M.; Benhima, R.; Cherroud, S.; Ainane, T. Chemical composition and insecticidal activity of five essential oils: Cedrus atlantica, Citrus limonum Rosmarinus officinalis, Syzygium aromaticum and Eucalyptus globules. Mater. Today Proc. 2019, 13, 474–485. [Google Scholar] [CrossRef]
- Sánchez Chopa, C.; Descamps, L.R. Composition and biological activity of essential oils against Metopolophium dirhodum Hemiptera: Aphididae) cereal crop pest. Pest Manag. Sci. 2012, 68, 1492–1500. [Google Scholar] [CrossRef]
- Miresmailli, S.; Bradbury, R.; Isman, M.B. Comparative toxicity of Rosmarinus officinalis L. essential oil and blends of its major constituents against Tetranychus urticae Koh (Acari: Tetranychidae) on two different host plants. Pest Manag. Sci. 2006, 62, 366–371. [Google Scholar] [CrossRef]
- Ahmed, Q.; Agarwal, M.; Al-Obaidi, R.; Wang, P.; Ren, Y. Evaluation of aphicidal effect of essential oils and their synergistic effect against Myzus persicae (Sulzer) (Hemiptera: Aphididae). Molecules 2021, 27, 3055. [Google Scholar] [CrossRef]
- Anzano, A.; de Falco, B.; Grauso, L.; Motti, R.; Lanzotti, V. Laurel, Laurus nobilis L.: A review of its botany, traditional uses, phytochemistry and pharmacology. Phytochem. Rev. 2022, 21, 565–615. [Google Scholar] [CrossRef]
- Caputo, L.; Nazzaro, F.; Souza, L.F.; Aliberti, L.; De Martino, L.; Fratianni, F.; Coppola, R.; de Feo, V. Laurus nobilis: Composition of essential oil and its biological activities. Molecules 2017, 22, 930. [Google Scholar] [CrossRef]
- Ben-Jemâa, J.M.; Tersin, N.; Toudert, K.T.; Khouja, M.L. Insecticidal activities of essential oils from leaves of Laurus nobilis L. from Tunisia, Algeria and Morocco, and comparative chemical composition. J. Stored Prod. Res. 2012, 48, 97–104. [Google Scholar] [CrossRef]
- Jaradat, N.; Hawash, M.; Qaoud, M.T.; Al-Maharik, N.; Qadi, M.; Hussein, F.; Issa, L.; Saleh, A.; Saleh, L.; Jadallah, A. Biological, phytochemical and molecular docking characteristics of Laurus nobilis L. fresh leaves essential oil from Palestine. BMC Complement. Med. Ther. 2024, 24, 223. [Google Scholar] [CrossRef]
- Furtado, R.; Baptista, J.; Lima, E.; Paiva, L.; Barroso, J.G.; Rosa, J.S.; Oliveira, L. Chemical composition and biological activities of Laurus essential oils from different Macaronesian Islands. Biochem. Syst. Ecol. 2014, 55, 333–341. [Google Scholar] [CrossRef]
- Batiha, G.E.-S.; Teibo, J.O.; Shaheen, H.M.; Akinfe, O.A.; Awad, A.A.; Teibo, T.K.A.; Alexiou, A.; Papadakis, M. Bioactive compounds, pharmacological actions and pharmacokinetics of Cupressus sempervirens. Naunyn-Schmiedeb. Arch. Pharmacol. 2023, 396, 389–403. [Google Scholar] [CrossRef]
- Selim, S.A.; Adam, M.E.; Hassan, S.M.; Albalawi, A.R. Chemical composition, antimicrobial and antibiofilm activity of the essential oil and methanol extract of the Mediterranean cypress (Cupressus sempervirens L.). BMC Complement. Altern. Med. 2014, 14, 179. [Google Scholar] [CrossRef]
- Laoudi, T.; Khelfane-Goucem, K.; Hamani-Aoudjit, S.; Chebrouk, F.; Amrouche, T.; Saher, L.; Kellouche, A. Chemical composition of essential oils from the leaves of Schinus molle and Cupressus sempervirens and their insecticidal activity against Oryzaephilus surinamensis (Coleoptera: Silvanidae). J. Essent. Oil Bear. Plants 2023, 26, 309–322. [Google Scholar] [CrossRef]
- Almadiy, A.A.; Nenaah, G.E. Bioactivity and safety evaluations of Cupressus sempervirens essential oil, its nanoemulsion and main terpenes against Culex quinquefasciatus Say. Environ. Sci. Pollut. Res. 2022, 29, 13417–13430. [Google Scholar] [CrossRef]
- Kimbaris, A.C.; Papachristos, D.P.; Michelakis, A.; Martinou, A.F.; Polissiou, M.G. Toxicity of plant essential oil vapours to aphid pests and their coccinellid predators. Biocontrol Sci. Technol. 2010, 20, 411–422. [Google Scholar] [CrossRef]
Compound Family | Rosemary | Laurel | Cypress |
---|---|---|---|
Carotenoids and apocarotenoids | 0.05 ± 0.01 1 | - | - |
Cyclic polyketides | 0.01 ± 0.02 | - | - |
Fatty acyls | 3.94 ± 0.02 | 0.82 ± 0.01 | 0.062 ± 0.001 |
Phenylpropanoids | 0.788 ± 0.002 | 13.53 ± 0.14 | 0.177 ± 0.002 |
Monoterpenes | 82.31 ± 0.07 2 | 64.13 ± 0.14 | 58.03 ± 0.04 |
Sesquiterpenes | 11.90 ± 0.04 | 20.49 ± 0.40 | 37.00 ± 0.05 |
Diterpenes | 0.087 ± 0.001 | - | 2.95 ± 0.11 |
Unidentified | 0.20 ± 0.02 | 0.54 ± 0.13 | 0.26 ± 0.06 |
Others | 0.72 ± 0.03 | 0.48 ± 0.01 | 1.52 ± 0.06 |
Total identified (%) | 99.08 ± 0.05 | 98.97 ± 0.14 | 98.22 ± 0.12 |
Yield (mL EO 100 g dw−1) | 1.18 ± 0.15 | 0.73 ± 0.03 | 0.43 ± 0.03 |
Plant | Compound | Compound Family | Relative Abundance (%) 1 |
---|---|---|---|
Rosemary | Camphor | Monoterpenes | 18.07 ± 0.02 |
1,8-Cineole | Monoterpenes | 13.95 ± 0.05 | |
Cyclofenchene | Monoterpenes | 9.10 ± 0.30 | |
Borneol | Monoterpenes | 6.28 ± 0.04 | |
Camphene | Monoterpenes | 6.13 ± 0.01 | |
β-Pinene | Monoterpenes | 4.14 ± 0.00 | |
Verbenone | Monoterpenes | 4.09 ± 0.03 | |
3-Octanone | Fatty acyls | 3.46 ± 0.01 | |
Sylvestrene | Monoterpenes | 3.19 ± 0.03 | |
α-Terpineol | Monoterpenes | 2.93 ± 0.03 | |
Laurel | 1,8-Cineole | Monoterpenes | 17.13 ± 0.11 |
Methyleugenol | Phenylpropanoids | 11.34 ± 0.12 | |
α-Terpinyl acetate | Monoterpenes | 10.88 ± 0.06 | |
Linalool | Monoterpenes | 10.18 ± 0.01 | |
β-Phellandrene | Monoterpenes | 5.04 ± 0.05 | |
3,6,6-Trimethyl-2-norpinene | Monoterpenes | 3.40 ± 0.02 | |
α-Terpineol | Monoterpenes | 2.81 ± 0.00 | |
β-Pinene | Monoterpenes | 2.62 ± 0.03 | |
Terpinen-4-ol | Monoterpenes | 2.58 ± 0.02 | |
Bicyclogermacrene | Monoterpenes | 2.26 ± 0.03 | |
Cypress | Cyclofenchene | Monoterpenes | 21.06 ± 0.32 |
3-Carene | Monoterpenes | 15.56 ± 0.01 | |
Cedrol | Sesquiterpenes | 13.31 ± 0.21 | |
Germacrene D | Sesquiterpenes | 7.38 ± 0.01 | |
α-Terpinyl acetate | Monoterpenes | 5.38 ± 0.61 | |
α-Terpinene | Monoterpenes | 3.41 ± 0.01 | |
β-Funebrene | Sesquiterpenes | 3.30 ± 0.00 | |
Sylvestrene | Monoterpenes | 2.23 ± 0.00 | |
β-Myrcene | Monoterpenes | 2.22 ± 0.00 | |
β-Cedrene | Sesquiterpenes | 1.96 ± 0.00 |
Essential Oil | Dose (μL EO/mL Acetone) | Mortality (%) Mean ± SD a | LD50 (μL/mL) (95% CI) b |
---|---|---|---|
Rosemary | 2 | 34.0 ± 18.4 | 4.61 (2.69–7.89) |
4 | 40.0 ± 24.5 | ||
10 | 85.0 ± 21.7 | ||
Laurel | 2 | 42.0 ± 33.9 | 2.74 (1.32–5.59) |
4 | 76.0 ± 15.8 | ||
10 | 83.0 ± 11.6 | ||
Cypress | 2 | 52.0 ± 21.5 | 1.93 (0.70–5.28) |
4 | 77.0 ± 18.9 | ||
10 | 81.0 ± 12.9 | ||
Control | - | 6.0 ± 7.0 |
Treatment (Type of EO and Concentration) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Control | R a 2 b | R 4 | R 10 | L 2 | L 4 | L 10 | C 2 | C 4 | C 10 | |
Control | 0.018 | 0.032 | <0.001 | 0.132 | <0.001 | <0.001 | 0.001 | <0.001 | <0.001 | |
R 2 | 0.018 | 1 | <0.001 | 0.999 | 0.001 | <0.001 | 0.602 | 0.002 | <0.001 | |
R 4 | 0.032 | 1 | 0.011 | 1 | 0.032 | 0.006 | 0.969 | 0.036 | 0.01 | |
R 10 | <0.001 | <0.001 | 0.011 | 0.084 | 0.982 | 1 | 0.07 | 0.995 | 1 | |
L 2 | 0.132 | 0.999 | 1 | 0.084 | 0.208 | 0.074 | 0.998 | 0.208 | 0.1 | |
L 4 | <0.001 | 0.001 | 0.032 | 0.982 | 0.208 | 0.974 | 0.198 | 1 | 0.998 | |
L 10 | <0.001 | <0.001 | 0.006 | 1 | 0.074 | 0.974 | 0.03 | 0.996 | 1 | |
C 2 | 0.001 | 0.602 | 0.969 | 0.07 | 0.998 | 0.198 | 0.03 | 0.222 | 0.052 | |
C 4 | <0.001 | 0.002 | 0.036 | 0.995 | 0.208 | 1 | 0.996 | 0.222 | 1 | |
C 10 | <0.001 | <0.001 | 0.01 | 1 | 0.1 | 0.998 | 1 | 0.052 | 1 |
Essential Oil | Dose (μL EO/mL Acetone) | Mortality (%) Mean ± SD |
---|---|---|
Rosemary | 4 | 3.3 ± 12.9 |
10 | 16.7 ± 24.4 | |
Laurel | 4 | 6.7 ± 17.6 |
10 | 20.0 ± 25.4 | |
Cypress | 4 | 6.7 ± 17.6 |
10 | 20.0 ± 31.6 | |
Control 1 (acetone) | 16.7 ± 30.9 | |
Control 2 | 3.3 ± 12.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casas, J.L.; López Santos-Olmo, M.; Sagarduy-Cabrera, A.; Marcos-García, M.Á. Evaluation of Selected Plant Essential Oils for Aphid Pest Control in Integrated Pest Management. Insects 2025, 16, 353. https://doi.org/10.3390/insects16040353
Casas JL, López Santos-Olmo M, Sagarduy-Cabrera A, Marcos-García MÁ. Evaluation of Selected Plant Essential Oils for Aphid Pest Control in Integrated Pest Management. Insects. 2025; 16(4):353. https://doi.org/10.3390/insects16040353
Chicago/Turabian StyleCasas, José Luis, María López Santos-Olmo, Aitor Sagarduy-Cabrera, and Mᵃ Ángeles Marcos-García. 2025. "Evaluation of Selected Plant Essential Oils for Aphid Pest Control in Integrated Pest Management" Insects 16, no. 4: 353. https://doi.org/10.3390/insects16040353
APA StyleCasas, J. L., López Santos-Olmo, M., Sagarduy-Cabrera, A., & Marcos-García, M. Á. (2025). Evaluation of Selected Plant Essential Oils for Aphid Pest Control in Integrated Pest Management. Insects, 16(4), 353. https://doi.org/10.3390/insects16040353