Ecological Interactions Between Camellia oleifera and Insect Pollinators Across Heterogeneous Habitats
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Methods
2.2.1. Floral Morphology and Biology
2.2.2. Floral Visitor and Potential Pollinator
Survey
- Species richness (q = 0): N0 = S
- Exponential Shannon index (q = 1): N1 = exp (−)
- Inverse Simpson index (q = 2): N2 = 1/
- Inverse Berger–Parker index (q = 3): N3 = N/Nmax
Visit Behaviour and Body Pollen Load
2.3. Statistical Analysis
3. Results
3.1. Biological Characteristics of C. oleifera During the Flowering Period
3.2. Insect Survey in C. oleifera Populations: Composition and Diversity
3.3. Pollination Behaviour of Flower-Visiting Insects and Selection of High-Potential Pollinators in Different C. oleifera Habitats
3.4. Individual Characteristics and Foraging Behaviour of the Main High-Potential Pollinators
3.5. Relationship Between Pollinator Abundance and Floral Characteristics
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ji, S.; Yang, L.; Yan, S.J.; Ye, J.W.; Liao, J.C. Research advances in the interactions between floral traits and flower-visiting insects. World For. Res. 2023, 36, 26–31. [Google Scholar]
- Khan, S.A.; Tanveer, M.; Ahmad, S.; Mars, M.; Naeem, M.; Naveed, Z.; Schuett, W.; Drees, C.; Goulson, D. Declining abundance of pollinating insects drives falls in loquat (Eriobotrya japonica) fruit yields in the pothwar region of Pakistan. Agric. Ecosyst. Environ. 2022, 339, 108138. [Google Scholar] [CrossRef]
- Ataollah, R.; Alinaghi, M.; Danial, K.; Leila, Z.; Samad, J. Molecular genetic diversity and population structure of Iranian honey bee (Apis mellifera meda) populations: Implications for breeding and conservation. J. Plant Dis. Prot. 2022, 129, 1331–1342. [Google Scholar] [CrossRef]
- Lu, H.H.; Huang, S.C.; Liu, W.P.; Deng, Y.; Zhu, H.X.; Zhao, K.X.; Wei, W.; Yang, W.H.; Huang, D.Y. Structure characteristics and diversity analysis of pollinators of Olea europaea. Acta Ecol. Sin. 2022, 42, 10329–10337. [Google Scholar] [CrossRef]
- Li, H.Y.; Luo, A.C.; Hao, Y.J.; Dou, F.Y.; Kou, R.M.; Orr, M.C.; Zhu, C.D.; Huang, D.Y. Comparison of the pollination efficiency of Apis cerana with wild bees in oil-seed camellia fields. Basic Appl. Ecol. 2021, 56, 250–258. [Google Scholar] [CrossRef]
- Cheng, J.; Wang, H.X.; Xue, W.Y.; Deng, C.P. Adaptation of flower-visiting insects to biological characteristics of jujube flowers in heterogeneous habitats. Sci. Silvae Sin. 2021, 57, 121–132. [Google Scholar]
- Eckerter, T.; Buse, J.; Förschler, M.; Pufal, G. Additive positive effects of canopy openness on European bilberry (Vaccinium myrtillus) fruit quantity and quality. For. Ecol. Manag. 2019, 433, 122–130. [Google Scholar] [CrossRef]
- Sletvold, N.; Trunschke, J.; Smit, M.; Verbeek, J.; Ågren, J. Strong pollinator-mediated selection for increased flower brightness and contrast in a deceptive orchid. Evolution 2016, 70, 716–724. [Google Scholar] [CrossRef]
- Chen, C.; Song, Q.S.; Proffit, M.; Bessiére, J.M.; Li, Z.B.; Hossaert-McKey, M. Private channel: A single unusual compound assures specific pollinator attraction in Ficus semicordata. Funct. Ecol. 2009, 23, 941–950. [Google Scholar] [CrossRef]
- Wee, S.L.; Tan, S.B.; Jürgens, A. Pollinator specialization in the enigmatic Rafflesia cantleyi: A true carrion flower with species-specific and sex-biased blow fly pollinators. Phytochemistry 2018, 153, 120–128. [Google Scholar] [CrossRef]
- Edge, A.A.; van Nest, B.N.; Johnson, J.N.; Miller, S.N.; Naeger, N.; Boyd, S.D.; Moore, D. Diel nectar secretion rhythm in squash (Cucurbita pepo) and its relation with pollinator activity. Apidologie 2012, 43, 1–16. [Google Scholar] [CrossRef]
- Brzosko, E.; Mirski, P. Floral nectar chemistry in orchids: A short review and meta-analysis. Plants 2021, 10, 2315. [Google Scholar] [CrossRef]
- Tan, X.J.; Yan, C.; Zhong, Q.P.; Wan, X.r.; Yuan, Y.Q.; Guo, H.Y.; Cao, L.Q.; Wang, J.F.; Ge, X.N.; Wang, J.; et al. Breeding, promotion and application of improved oil-tea cultivar in China. World For. Res. 2023, 36, 108–113. [Google Scholar]
- Wang, J.F.; Tan, X.J.; Wu, X.C.; Li, Q.P.; Zhong, Q.P.; Yan, C.; Guo, H.Y.; Ge, X.N. Development status and suggestions of camellia industry in China. World For. Res. 2020, 33, 80–85. [Google Scholar]
- Deng, Y.Y.; Yu, X.L.; Luo, Y.B. The role of native bees on the reproductive success of Camellia oleifera in Hunan Province, Central South China. Acta Ecol. Sin. 2010, 30, 4427–4436. [Google Scholar]
- Yuan, B.; Hu, G.X.; Zhang, X.X.; Yuan, J.K.; Fan, X.M.; Yuan, D.Y. What are the best pollinator candidates for Camelia oleifera: Do not forget hoverflies and flies. Insects 2022, 13, 539. [Google Scholar] [CrossRef]
- Li, Z.; Huang, Q.; Zheng, Y.; Zhang, Y.; Li, X.; Zhong, S.; Zeng, Z. Identification of the toxic compounds in Camellia oleifera honey and pollen to honey bees (Apis mellifera). J. Agric. Food Chem. 2022, 70, 13176–13185. [Google Scholar] [CrossRef]
- Zhang, C.; Feng, H.; Liu, Y.L.; Huang, S.Q. Lethal effects of tea-oil Camellia on honeybee larvae due to pollen toxicity. J. Integr. Plant Biol. 2024, 66, 2313–2316. [Google Scholar] [CrossRef]
- Li, H.; Orr, M.C.; Luo, A.; Dou, F.; Kou, R.; Hu, F.; Zhu, C.; Huang, D. Relationships between wild bee abundance and fruit set of Camellia oleifera Abel. J. Appl. Entomol. 2021, 145, 277–285. [Google Scholar] [CrossRef]
- Huang, D.Y.; Hao, J.S.; Yu, J.F.; Zhang, Y.Z.; Ding, L.; Zhu, C.D. Review on Camellia oleifera. Life Sci. Res. 2009, 13, 459–465. [Google Scholar]
- Hill, M.O. Diversity and Evenness: A Unifying Notation and Its Consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef]
- Jost, L. Partitioning diversity into independent alpha and beta components. Ecology 2007, 88, 2427–2439. [Google Scholar] [CrossRef] [PubMed]
- Chao, A.; Chiu, C.H.; Jost, L. Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through Hill numbers. Annu. Rev. Ecol. Evol. Syst. 2014, 45, 297–324. [Google Scholar] [CrossRef]
- Sigrist, M.R.; Leme, F.M.; Fabiano, V.S.; Pinheiro, F.P.; dos Santos Ferreira, B.H.; Nakamura, S.S.; da Silva, S.O. Chrysophyllum marginatum (Sapotaceae): Generalist pollination and cryptic gynomonoecious. Plant Species Biol. 2021, 36, 436–449. [Google Scholar] [CrossRef]
- Huang, D.Y.; He, B.; Gu, P.; Su, T.J.; Zhu, C.D. Discussion on current situation and research direction of pollination insects of Camellia oleifera. J. Environ. Entomol. 2017, 39, 213–220. [Google Scholar]
- Li, Y.; Wang, X.; Chen, J. Nectar secretion dynamics and pollinator attraction in Camellia oleifera. J. Plant Ecol. 2021, 14, 789–800. [Google Scholar]
- Zhang, Q.; Liu, H.; Huang, F. Floral phenology and pollination efficiency in oil-tea (Camellia oleifera). Front. Ecol. Evol. 2020, 8, 567893. [Google Scholar]
- Harder, L.D.; Johnson, S.D. Adaptive plasticity of floral display size in animal-pollinated plants. Proc. R. Soc. B 2005, 272, 2651–2657. [Google Scholar] [CrossRef]
- Potts, S.G.; Imperatriz-Fonseca, V.; Ngo, H.T.; Aizen, M.A.; Biesmeijer, J.C.; Breeze, T.D.; Dicks, L.V.; Garibaldi, L.A.; Hill, R.; Settele, J.; et al. Safeguarding pollinators and their values to human well-being. Nature 2016, 540, 220–229. [Google Scholar] [CrossRef]
- Su, T.; He, B.; Zhao, F.; Jiang, K.; Lin, G.; Huang, Z. Population genomics and phylogeography of Colletes gigas, a wild bee specialized on winter flowering plants. Ecol. Evol. 2022, 12, e8863. [Google Scholar] [CrossRef]
- Ding, G.L.; Zhang, W.F.; Lu, B.Y.; Yang, Y.Z.; Zhou, X.P.; Yang, B.Y.; Huang, J.X.; Luo, Y.B. The significance of artificial introduction of pollinators for improving the yield of Camellia oleifera and the potential biosafety issues. Acta Ecol. Sin. 2023, 43, 2959–2967. [Google Scholar]
- Díaz, S.; Settele, J.; Brondízio, E.S. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 2019, 366, eaax3100. [Google Scholar] [CrossRef]
- Xu, H.L.; Yang, J.W.; Sun, J.R. Current status on the study of wild bee-pollinators and conservation strategies in China. Acta Phytopathol. Sin. 2009, 36, 371–376. [Google Scholar]
- Liu, X.W.; Chesters, D.; Wu, C.S.; Zhou, Q.S.; Zhu, C.D. A horizon scan of the impacts of environmental change on wild bees in China. Biodivers. Sci. 2018, 26, 760–765. [Google Scholar] [CrossRef]
- Zhou, S.F.; Han, C.Y. Research progress and conservation strategies of insect pollinators of Camellia oleifera Abel. J. Henan Agric. Sci. 2011, 40, 8–10. [Google Scholar]
- Xia, J.P.; Chen, J.Y.; Deng, X.Z. Discussion on the current situation and importance of pollination insects of Camellia oleifera Abel. In the future. Hubei For. Sci. Technol. 2010, 164, 61–63. [Google Scholar]
- Hadley, A.S.; Betts, M.G. The effects of landscape fragmentation on pollination dynamics: Absence of evidence not evidence of absence. Biol. Rev. 2012, 87, 526–544. [Google Scholar] [CrossRef]
- Garibaldi, L.A.; Steffan-Dewenter, I.; Kremen, C.; Morales, J.M.; Bommarco, R.; Cunningham, S.A. Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol. Lett. 2011, 14, 1062–1072. [Google Scholar] [CrossRef]
- Luo, C.W.; Chen, Y.; Zhang, T. Pollination efficiency of the major pollinators of Paeonia ostia “Feng Dan”. J. Nanjing Univ. (Nat. Sci. Ed.) 2019, 43, 148–154. [Google Scholar]
- Yang, H.B.; Zhang, R.; Song, P.; Zhou, Z.C. Pollination behaviours of main insect pollinators of Schima superba (Theaceae). Chin. J. Ecol. 2017, 36, 1322–1329. [Google Scholar]
- Jauker, F.; Wolters, V. Hover flies are efficient pollinators of oilseed rape. Oecologia 2008, 156, 819–823. [Google Scholar] [CrossRef] [PubMed]
- Brittain, C.; Kremen, C.; Garber, A.; Klein, A.M. Pollination and plant resources change the nutritional quality of almonds for human health. PLoS ONE 2014, 9, e90082. [Google Scholar] [CrossRef] [PubMed]
- Greenleaf, S.S.; Kremen, C. Wild bees enhance honey bees’ pollination of hybrid sunflower. Proc. Natl. Acad. Sci. USA 2006, 103, 13890–13895. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.Q.; Shen, R.M.; Tian, Z.Z.; Lu, Y.G.; Zhang, S.W.; Qi, W.Z. The bee pollination density on the fuji and golden delicious fruit rate impact studies. APIC China 2012, 63, 21–23. [Google Scholar]
- Dong, J.; An, J.D.; Huang, J.X.; Zhou, Z.Y.; Zhao, Y.Z.; Xing, Y.H. Effects of pollination by different bees on peach fruit development and quality under greenhouse conditions. Chin. J. Eco-Agric. 2011, 19, 836–842. [Google Scholar] [CrossRef]
- Qin, J.M.; Deng, S.K.; Zhan, J.; Hou, M.S.; Li, X.F.; Cao, W.Y.; Yang, X.H.; Gao, Z.X.; Liang, C. Effects of Apis cerana pollination on the yield and quality of loquat. APIC China 2023, 74, 65–68. [Google Scholar]
Experimental Site | Altitude (m) | Average Temperature (°C) | Relative Humidity (%) | Precipitation (mm) | Agrotype | Area (hm2) | Main Planting Variety |
---|---|---|---|---|---|---|---|
Youcheng Town | 58 | 17.2 | 76.2 | 35.7 | Yellow Soil | 340 | Changlin 4, 40, 3, 53 |
Qianshan Town | 81 | 18.0 | 72.5 | 32.4 | Red-Yellow Soil | 22 | Changlin 4, 40, 3, 53, C31, C43 |
Fengtian Town | 96 | 18.8 | 73.4 | 55.6 | Red Soil | 30 | Changlin 4, 40, 3, 53, C31, C43 |
Time | Changlin 3 | Changlin 4 | Changlin 40 | Changlin 53 | Changlin C31 | Changlin C43 |
---|---|---|---|---|---|---|
day1 | + + + | + + + | + + | + + + | + + | + + |
day2 | + + + | + + + | + + + | + + + | + + + | + + + |
day3 | + + + | + + | + + + | + + + | + + + | + + + |
day4 | + + | + + | + + | + + | + + | + + |
day5 | + | +/− | +/− | + + | +/− | + + |
day6 | +/− | − | − | +/− | − | +/− |
day7 | − | − | − | − | − | − |
Family | Species | Proportion | ||
---|---|---|---|---|
Plot 1 | Plot 2 | Plot 3 | ||
Apidae | Apis cerana | 2.91% | 20.79% | 37.31% |
Apis mellifera ligustica | 0.87% | — | 3.72% | |
Vespidae | Vespa bicolor | 6.98% | 3.56% | 4.49% |
Vespa affinis | 4.94% | 6.14% | — | |
Vespa mandarinia | 2.03% | 4.75% | — | |
Vespa ducalis | — | — | 1.08% | |
Vespa nigrithorax | 0.62% | |||
Vespula flaviceps | — | 0.40% | 0.62% | |
Polistes yokohamae | — | 0.40% | 0.46% | |
Polistes gigas | 0.29% | 0.20% | — | |
Scoliidae | Campsomeris annulata | 0.87% | — | — |
Syrphidae | Phytomia zonata | 55.52% | 32.48% | 20.90% |
Eristalis arvorum | — | 11.88% | — | |
Eristalis tenax | — | — | 0.31% | |
Lathyrophthalmus arvorum | — | 0.40% | 0.31% | |
Episyrphus balteatus | — | — | 0.46% | |
Calliphoridae | Stomorhina obsoleta | 0.87% | — | |
Lucilia sericata | 5.23% | 1.58% | 2.01% | |
Chrysomya megacephala | — | 0.99% | 8.36% | |
Sarcophagidae | Helicophagella melanura | 9.88% | 12.28% | 8.98% |
Muscidae | Musca domestica | 9.59% | 3.96% | 10.37% |
Gastrophilidae | Tabanus spp. | — | 0.20% | — |
Species Richness (N0) | Exponential Shannon Index (N1) | Inverse Simpson Index (N2) | Inverse Berger–Parker Index (N3) | |
---|---|---|---|---|
Plot 1 | 12 | 4.93 ± 0.98 b | 3.07 ± 0.81 b | 1.85 ± 0.31 b |
Plot 2 | 15 | 7.02 ± 0.04 a | 5.29 ± 0.09 a | 3.08 ± 0.11 a |
Plot 3 | 15 | 6.56 ± 0.38 a | 4.69 ± 0.42 a | 2.69 ± 0.24 a |
Species | Body Length/mm | Body Width/mm | Pollen Load (Grain/Individual) | Visiting Frequency/(Times/h) | Time Visiting Each Flower/s | ||
---|---|---|---|---|---|---|---|
Shortest | Longest | Average | |||||
Apis cerana | 11.93 ± 0.77 b | 4.39 ± 0.06 b | 15,383 ± 3996 a | 231.60 ± 68.83 a | 2 | 76 | 13.98 ± 14.09 a |
Phytomia zonata | 13.14 ± 0.47 a | 7.32 ± 0.25 a | 4367 ± 1335 b | 152.40 ± 40.81 b | 1 | 132 | 17.36 ± 21.39 a |
Factor | Contribution/% | F |
---|---|---|
Stamen length | 41.74 | 2.58 |
Style length | 21.89 | 1.27 |
Manninotriose | 15.39 | 0.88 |
Fructose | 10.11 | 0.61 |
Sucrose | 5.06 | 0.29 |
Galactose | 3.58 | 0.19 |
Stachyose | 2.23 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, L.; Zhong, Q.; Yan, C.; Ge, X.; Tian, F.; Yuan, Y.; Wang, J.; Wang, J.; Chen, S.; Yang, H. Ecological Interactions Between Camellia oleifera and Insect Pollinators Across Heterogeneous Habitats. Insects 2025, 16, 282. https://doi.org/10.3390/insects16030282
Cao L, Zhong Q, Yan C, Ge X, Tian F, Yuan Y, Wang J, Wang J, Chen S, Yang H. Ecological Interactions Between Camellia oleifera and Insect Pollinators Across Heterogeneous Habitats. Insects. 2025; 16(3):282. https://doi.org/10.3390/insects16030282
Chicago/Turabian StyleCao, Linqing, Qiuping Zhong, Chao Yan, Xiaoning Ge, Feng Tian, Yaqi Yuan, Jinfeng Wang, Jia Wang, Shengtian Chen, and Hong Yang. 2025. "Ecological Interactions Between Camellia oleifera and Insect Pollinators Across Heterogeneous Habitats" Insects 16, no. 3: 282. https://doi.org/10.3390/insects16030282
APA StyleCao, L., Zhong, Q., Yan, C., Ge, X., Tian, F., Yuan, Y., Wang, J., Wang, J., Chen, S., & Yang, H. (2025). Ecological Interactions Between Camellia oleifera and Insect Pollinators Across Heterogeneous Habitats. Insects, 16(3), 282. https://doi.org/10.3390/insects16030282