Sensitivity and Resistance of Parasitic Mites (Varroa destructor, Tropilaelaps spp. and Acarapis woodi) Against Amitraz and Amitraz-Based Product Treatment: A Systematic Review
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Review Question, Eligibility Criteria, Information Sources, and Search Strategies
2.2. Quality Assessment
3. Results
3.1. Study Selection
3.2. Experimental Protocol During Laboratory Assay
3.2.1. Mite Origin and Pre-Bioassay Condition
3.2.2. Bioassay Condition and Setup
3.2.3. Data Correction and Elaboration
3.3. Results and Data Interpretation
3.4. Amitraz Resistance Assessment
3.4.1. Quantitative Resistance Calculation
3.4.2. Genetic Resistance
3.4.3. Metabolic Resistance
3.5. Risk of Bias Within Studies (Quality Evaluation)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hung, K.-L.J.; Kingston, J.M.; Albrecht, M.; Holway, D.A.; Kohn, J.R. The worldwide importance of honey bees as pollinators in natural habitats. Proc. R. Soc. B Biol. Sci. 2018, 285, 20172140. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, S.A.M.; Elshafiey, E.H.; Shetaia, A.A.; El-Wahed, A.A.A.; Algethami, A.F.; Musharraf, S.G.; AlAjmi, M.F.; Zhao, C.; Masry, S.H.D.; Abdel-Daim, M.M.; et al. Overview of Bee Pollination and Its Economic Value for Crop Production. Insects 2021, 12, 688. [Google Scholar] [CrossRef] [PubMed]
- Phiri, B.J.; Fèvre, D.; Hidano, A. Uptrend in global managed honey bee colonies and production based on a six-decade viewpoint, 1961–2017. Sci. Rep. 2022, 12, 21298. [Google Scholar] [CrossRef]
- Potts, S.G.; Roberts, S.P.M.; Dean, R.; Marris, G.; A Brown, M.; Jones, R.; Neumann, P.; Settele, J. Declines of managed honey bees and beekeepers in Europe. J. Apic. Res. 2010, 49, 15–22. [Google Scholar] [CrossRef]
- Brown, P.; Newstrom-Lloyd, L.E.; Foster, B.J.; Badger, P.H.; McLean, J.A. Winter 2016 honey bee colony losses in New Zealand. J. Apic. Res. 2018, 57, 278–291. [Google Scholar] [CrossRef]
- Requier, F.; Andersson, G.K.S.; Oddi, F.J.; Garcia, N.; Garibaldi, L.A. Perspectives from the Survey of Honey Bee Colony Losses During 2015–2016 in Argentina. Bee World 2018, 95, 9–12. [Google Scholar] [CrossRef]
- Bruckner Hristov, P.; Shumkova, R.; Palova, N.; Neov, B. Factors Associated with Honey Bee Colony Losses: A Mini-Review. Vet. Sci. 2020, 7, 166. [Google Scholar] [CrossRef]
- Bruckner, S.; Wilson, M.; Aurell, D.; Rennich, K.; Van Engelsdorp, D.; Steinhauer, N.; Williams, G.R. A national survey of managed honey bee colony losses in the USA: Results from the Bee Informed Partnership for 2017–18, 2018–2019, and 2019–20. J. Apic. Res. 2023, 62, 429–443. [Google Scholar] [CrossRef]
- Gray, A.; Adjlane, N.; Arab, A.; Ballis, A.; Brusbardis, V.; Bugeja, V.; Douglas, A.B.; Cadahía, L.; Charrière, J.-D.; Chlebo, R.; et al. Honey bee colony loss rates in 37 countries using the COLOSS survey for winter 2019–2020: The combined effects of operation size, migration and queen replacement. J. Apic. Res. 2023, 62, 204–210. [Google Scholar] [CrossRef]
- Dequenne, I.; Philippart de Foy, J.-M.; Cani, P.D. Developing Strategies to Help Bee Colony Resilience in Changing Environments. Animals 2022, 12, 3396. [Google Scholar] [CrossRef]
- Mutinelli, F.; Pinto, A.; Barzon, L.; Toson, M. Some Considerations about Winter Colony Losses in Italy According to the Coloss Questionnaire. Insects 2022, 13, 1059. [Google Scholar] [CrossRef] [PubMed]
- Richardson, R.T.; Conflitti, I.M.; Labuschagne, R.S.; E Hoover, S.; Currie, R.W.; Giovenazzo, P.; Guarna, M.M.; Pernal, S.F.; Foster, L.J.; Zayed, A. Land use changes associated with declining honey bee health across temperate North America. Environ. Res. Lett. 2023, 18, 064042. [Google Scholar] [CrossRef]
- Le Conte, Y.; Ellis, M.; Ritter, W. Varroamites and honey bee health: Can Varroa explain part of the colony losses? Apidologie 2010, 41, 353–363. [Google Scholar] [CrossRef]
- Traynor, K.S.; Mondet, F.; de Miranda, J.R.; Techer, M.; Kowallik, V.; Oddie, M.A.; Chantawannakul, P.; McAfee, A. Varroa destructor: A Complex Parasite, Crippling Honey Bees Worldwide. Trends Parasitol. 2020, 36, 592–606. [Google Scholar] [CrossRef]
- Warner, S.; Pokhrel, L.R.; Akula, S.M.; Ubah, C.S.; Richards, S.L.; Jensen, H.; Kearney, G.D. A scoping review on the effects of Varroa mite (Varroa destructor) on global honey bee decline. Sci. Total. Environ. 2024, 906, 167492. [Google Scholar] [CrossRef]
- van Dooremalen, C.; Gerritsen, L.; Cornelissen, B.; van der Steen, J.J.M.; van Langevelde, F.; Blacquière, T. Winter Survival of Individual Honey Bees and Honey Bee Colonies Depends on Level of Varroa destructor Infestation. PLoS ONE 2012, 7, e36285. [Google Scholar] [CrossRef]
- Mondet, F.; Beaurepaire, A.; McAfee, A.; Locke, B.; Alaux, C.; Blanchard, S.; Danka, B.; Le Conte, Y. Honey bee survival mechanisms against the parasite Varroa destructor: A systematic review of phenotypic and genomic research efforts. Int. J. Parasitol. 2020, 50, 433–447. [Google Scholar] [CrossRef]
- Smoliński, S.; Langowska, A.; Glazaczow, A. Raised seasonal temperatures reinforce autumn Varroa destructor infestation in honey bee colonies. Sci. Rep. 2021, 11, 22256. [Google Scholar] [CrossRef]
- Jack, C.J.; De Bem Oliveira, I.; Kimmel, C.B.; Ellis, J.D. Seasonal differences in Varroa destructor population growth in western honey bee (Apis mellifera) colonies. Front. Ecol. Evol. 2023, 11, 1102457. [Google Scholar] [CrossRef]
- Haber, A.I.; Steinhauer, N.A.; Vanengelsdorp, D. Use of Chemical and Nonchemical Methods for the Control of Varroa destructor (Acari: Varroidae) and Associated Winter Colony Losses in U.S. Beekeeping Operations. J. Econ. Èntomol. 2019, 112, 1509–1525. [Google Scholar] [CrossRef]
- Jack, C.J.; Ellis, J.D. Integrated Pest Management Control of Varroa destructor (Acari: Varroidae), the Most Damaging Pest of (Apis mellifera L. (Hymenoptera: Apidae)) Colonies. J. Insect Sci. 2021, 21, 6. [Google Scholar] [CrossRef] [PubMed]
- Roth, M.A.; Wilson, J.M.; Gross, A.D. Assessing Varroa destructor acaricide resistance in Apis mellifera colonies of Virginia. Apidologie 2021, 52, 1278–1290. [Google Scholar] [CrossRef]
- Brodschneider, R.; Schlagbauer, J.; Arakelyan, I.; Ballis, A.; Brus, J.; Brusbardis, V.; Cadahía, L.; Charrière, J.-D.; Chlebo, R.; Coffey, M.F.; et al. Spatial clusters of Varroa destructor control strategies in Europe. J. Pest Sci. 2023, 96, 759–783. [Google Scholar] [CrossRef]
- Mullin, C.A.; Frazier, M.; Frazier, J.L.; Ashcraft, S.; Simonds, R.; van Engelsdorp, D.; Pettis, J.S. High Levels of Miticides and Agrochemicals in North American Apiaries: Implications for Honey Bee Health. PLoS ONE 2010, 5, e9754. [Google Scholar] [CrossRef]
- Mitton, G.A.; Arcerito, F.M.; Cooley, H.; de Landa, G.F.; Eguaras, M.J.; Ruffinengo, S.R.; Maggi, M.D. More than sixty years living with Varroa destructor: A review of acaricide resistance. Int. J. Pest Manag. 2022, 7, 1–18. [Google Scholar] [CrossRef]
- Johnson, R.M.; Pollock, H.S.; Berenbaum, M.R. Synergistic Interactions Between In-Hive Miticides in Apis mellifera. J. Econ. Èntomol. 2009, 102, 474–479. [Google Scholar] [CrossRef]
- Milani, N. The resistance of Varroa jacobsoni Oud. to acaricides. Apidologie 1999, 30, 229–234. [Google Scholar] [CrossRef]
- Elzen, P.J.; Baxter, J.R.; Spivak, M.; Wilson, W.T. Control of Varroa jacobsoni Oud. resistant to fluvalinate and amitraz using coumaphos. Apidologie 2000, 31, 437–441. [Google Scholar] [CrossRef]
- Maggi, M.D.; Ruffinengo, S.R.; Negri, P.; Eguaras, M.J. Resistance phenomena to amitraz from populations of the ectoparasitic mite Varroa destructor of Argentina. Parasitol. Res. 2010, 107, 1189–1192. [Google Scholar] [CrossRef]
- Milani, N. The resistance of Varroa jacobsoni Oud to pyrethroids: A laboratory assay. Apidologie 1995, 26, 415–429. [Google Scholar] [CrossRef]
- Rinkevich, F.D. Detection of amitraz resistance and reduced treatment efficacy in the Varroa Mite, Varroa destructor, within commercial beekeeping operations. PLoS ONE 2020, 15, e0227264. [Google Scholar] [CrossRef] [PubMed]
- Rinkevich, F.D. Experimental parameters affecting the outcomes of amitraz resistance testing in Varroa destructor. J. Apic. Res. 2024, 63, 341–349. [Google Scholar] [CrossRef]
- Maggi, M.D.; Ruffinengo, S.R.; Gende, L.B.; Eguaras, M.J.; Sardella, N.H. LC50 baseline levels of amitraz, coumaphos, fluvalinate and flumethrin in populations of Varroa destructor from Buenos Aires Province, Argentina. J. Apic. Res. 2008, 47, 292–295. [Google Scholar] [CrossRef]
- Maggi, M.D.; Ruffinengo, S.R.; Mendoza, Y.; Ojeda, P.; Ramallo, G.; Floris, I.; Eguaras, M.J. Susceptibility of Varroa destructor (Acari: Varroidae) to synthetic acaricides in Uruguay: Varroa mites’ potential to develop acaricide resistance. Parasitol. Res. 2011, 108, 815–821. [Google Scholar] [CrossRef]
- González-Cabrera, J.; Davies, T.G.E.; Field, L.M.; Kennedy, P.J.; Williamson, M.S. An Amino Acid Substitution (L925V) Associated with Resistance to Pyrethroids in Varroa destructor. PLoS ONE 2013, 8, e82941. [Google Scholar] [CrossRef]
- González-Cabrera, J.; Rodríguez-Vargas, S.; Davies, T.G.E.; Field, L.M.; Schmehl, D.; Ellis, J.D.; Krieger, K.; Williamson, M.S. Novel Mutations in the Voltage-Gated Sodium Channel of Pyrethroid-Resistant Varroa destructor Populations from the Southeastern USA. PLoS ONE 2016, 11, e0155332. [Google Scholar] [CrossRef]
- Gracia, M.J.; Moreno, C.; Ferrer, M.; Sanz, A.; Peribáñez, M.Á.; Estrada, R. Field efficacy of acaricides against Varroa destructor. PLoS ONE 2017, 12, e0171633. [Google Scholar] [CrossRef]
- Sammataro, D.; Untalan, P.; Guerrero, F.; Finley, J. The resistance of varroa mites (Acari: Varroidae) to acaricides and the presence of esterase. Int. J. Acarol. 2005, 31, 67–74. [Google Scholar] [CrossRef]
- Coles, T.B.; Dryden, M.W. Insecticide/acaricide resistance in fleas and ticks infesting dogs and cats. Parasites Vectors 2014, 7, 8. [Google Scholar] [CrossRef]
- Wang, R.; Liu, Z.; Dong, K.; Elzen, P.J.; Pettis, J.; Huang, Z. Association of novel mutations in a sodium channel gene with fluvalinate resistance in the mite, Varroa destructor. J. Apic. Res. 2002, 41, 17–25. [Google Scholar] [CrossRef]
- Wang, R.; Huang, Z.Y.; Dong, K. Molecular characterization of an arachnid sodium channel gene from the varroa mite (Varroa destructor). Insect Biochem. Mol. Biol. 2003, 33, 733–739. [Google Scholar] [CrossRef] [PubMed]
- González-Cabrera, J.; Bumann, H.; Rodríguez-Vargas, S.; Kennedy, P.J.; Krieger, K.; Altreuther, G.; Hertel, A.; Hertlein, G.; Nauen, R.; Williamson, M.S. A single mutation is driving resistance to pyrethroids in European populations of the parasitic mite, Varroa destructor. J. Pest Sci. 2018, 91, 1137–1144. [Google Scholar] [CrossRef]
- Hillesheim, E.; Ritter, W.; Bassand, D. First data on resistance mechanisms of Varroa jacobsoni (Oud.) against tau-fluvalinate. Exp. Appl. Acarol. 1996, 20, 283–296. [Google Scholar] [CrossRef]
- Gerson, U.; Mozes-Koch, R.; Cohen, E. Enzyme levels used to monitor pesticide resistance in Varroa jacobsoni. J. Apic. Res. 1991, 30, 17–20. [Google Scholar] [CrossRef]
- Mozes-Koch, R.; Slabezki, Y.; Efrat, H.; Kalev, H.; Kamer, Y.; Yakobson, B.; Dag, A. First detection in Israel of fluvalinate resistance in the varroa mite using bioassay and biochemical methods. Exp. Appl. Acarol. 2000, 24, 35–43. [Google Scholar] [CrossRef]
- Vlogiannitis, S.; Mavridis, K.; Dermauw, W.; Snoeck, S.; Katsavou, E.; Morou, E.; Harizanis, P.; Swevers, L.; Hemingway, J.; Feyereisen, R.; et al. Reduced proinsecticide activation by cytochrome P450 confers coumaphos resistance in the major bee parasite Varroa destructor. Proc. Natl. Acad. Sci. USA 2021, 118, e2020380118. [Google Scholar] [CrossRef]
- Watkins, M. Resistance and its relevance to beekeeping. Bee World 1997, 78, 15–22. [Google Scholar] [CrossRef]
- Gregorc, A.; Alburaki, M.; Sampson, B.; Knight, P.; Adamczyk, J. Toxicity of Selected Acaricides to Honey Bees (Apis mellifera) and Varroa (Varroa destructor Anderson and Trueman) and Their Use in Controlling Varroa within Honey Bee Colonies. Insects 2018, 9, 55. [Google Scholar] [CrossRef]
- Almecija, G.; Poirot, B.; Cochard, P.; Suppo, C. Inventory of Varroa destructor susceptibility to amitraz and tau-fluvalinate in France. Exp. Appl. Acarol. 2020, 82, 1–16. [Google Scholar] [CrossRef]
- Jack, C.J.; Boncristiani, H.; Prouty, C.; Schmehl, D.R.; Ellis, J.D. Evaluating the seasonal efficacy of commonly used chemical treatments on Varroa destructor (Mesostigmata: Varroidae) population resurgence in honey bee colonies. J. Insect Sci. 2024, 24, 11. [Google Scholar] [CrossRef]
- Kamler, M.; Nesvorna, M.; Stara, J.; Erban, T.; Hubert, J. Comparison of tau-fluvalinate, acrinathrin, and amitraz effects on susceptible and resistant populations of Varroa destructor in a vial test. Exp. Appl. Acarol. 2016, 69, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Abbott, W.S. A Method of Computing the Effectiveness of an Insecticide. J. Econ. Èntomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Sandon, Y.; Viry, A. Lutte contre le Varroa—Etude de sensibilité/résistance à l’amitraze chez Varroa destructor. Santé Abeille 2017, 277, 47–56. [Google Scholar]
- Hernández-Rodríguez, C.S.; Marín, Ó.; Calatayud, F.; Mahiques, M.J.; Mompó, A.; Segura, I.; Simó, E.; González-Cabrera, J. Large-Scale Monitoring of Resistance to Coumaphos, Amitraz, and Pyrethroids in Varroa destructor. Insects 2021, 12, 27. [Google Scholar] [CrossRef]
- Trouiller, J. Monitoring Varroa jacobsoni resistance to pyrethroids in western Europe. Apidologie 1998, 29, 537–546. [Google Scholar] [CrossRef]
- Elzen, P.; Eischen, F.; Baxter, J.; Pettis, J.; Elzen, G.; Wilson, W. Fluvalinate resistance in Varroa jacobsoni from several geographic locations. Am. Bee J. 1998, 138, 674–676. [Google Scholar]
- Elzen, P.J.; Westervelt, D. Detection of coumaphos resistance in Varroa destructor in Florida. Am. Bee J. 2002, 142, 291–292. [Google Scholar]
- Pettis, J.S. A scientific note on Varroa destructor resistance to coumaphos in the United States. Apidologie 2004, 35, 91–92. [Google Scholar] [CrossRef]
- Pettis, J.; Shimanuki, H.; Feldlaufer, M. An assay to detect fluvalinate resistance in varroa mites. Am. Bee J. 1998, 138, 538–541. [Google Scholar]
- Semkiw, P.; Skubida, P.; Pohorecka, K. The Amitraz Strips Efficacy in Control of Varroa destructor After Many Years Application of Amitraz in Apiaries. J. Apic. Sci. 2013, 57, 107–121. [Google Scholar] [CrossRef]
- Higes, M.; Martín-Hernández, R.; Hernández-Rodríguez, C.S.; González-Cabrera, J. Assessing the resistance to acaricides in Varroa destructor from several Spanish locations. Parasitol. Res. 2020, 119, 3595–3601. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Rodríguez, C.S.; Moreno-Martí, S.; Almecija, G.; Christmon, K.; Johnson, J.D.; Ventelon, M.; Vanengelsdorp, D.; Cook, S.C.; González-Cabrera, J. Resistance to amitraz in the parasitic honey bee mite Varroa destructor is associated with mutations in the β-adrenergic-like octopamine receptor. J. Pest Sci. 2022, 95, 1179–1195. [Google Scholar] [CrossRef]
- Kita, T.; Hayashi, T.; Ohtani, T.; Takao, H.; Takasu, H.; Liu, G.; Ohta, H.; Ozoe, F.; Ozoe, Y. Amitraz and its metabolite differentially activate α- and β-adrenergic-like octopamine receptors. Pest Manag. Sci. 2017, 73, 984–990. [Google Scholar] [CrossRef] [PubMed]
- Maeda, T.; Sakamoto, Y. Range expansion of the tracheal mite Acarapis woodi (Acari: Tarsonemidae) among Japanese honey bee, Apis cerana japonica, in Japan. Exp. Appl. Acarol. 2020, 80, 477–490. [Google Scholar] [CrossRef]
- Janashia, I.; Uzunov, A.; Chen, C.; Costa, C.; Cilia, G. First Report on Tropilaelaps mercedesae Presence in Georgia: The Mite is Heading Westward! J. Apic. Sci. 2024, 68, 183–188. [Google Scholar] [CrossRef]
- Brandorf, A.; Ivoilova, M.M.; Yañez, O.; Neumann, P.; Soroker, V. First report of established mite populations, Tropilaelaps mercedesae, in Europe. J. Apic. Res. 2024, 1–3. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- Anderson, D.L.; Trueman, J.W.H. Varroa jacobsoni (Acari: Varroidae) is more than one species. Exp. Appl. Acarol. 2000, 24, 165–189. [Google Scholar] [CrossRef]
- Marchetti, S.; Barbattini, R.; D’Agaru, M. Comparative effectiveness of treatments used to control Varroa jacobsoni Oud. Apidologie 1984, 15, 363–378. [Google Scholar] [CrossRef]
- Woyke, J. Infestation of Honeybee (Apis mellifera) Colonies by the Parasitic Mites Varroa jacobsoni and Tropilaelaps clareae in South Vietnam and Results of Chemical Treatment. J. Apic. Res. 1987, 26, 64–67. [Google Scholar] [CrossRef]
- Colin, M.E. Essential oils of Labiatae for controlling honey bee varroosis. J. Appl. Èntomol. 1990, 110, 19–25. [Google Scholar] [CrossRef]
- Kulinčević, J.M.; Rinderer, T.E.; Mladjan, V.J.; Buco, S.M. Control of Varroa jacobsoni in honey-bee colonies in Yugoslavia by fumigation with low doses of fluvalinate or amitraz. Apidologie 1991, 22, 147–153. [Google Scholar] [CrossRef]
- Mathieu, L.; Faucon, J.-P. Changes in the response time for Varroa jacobsoni exposed to amitraz. J. Apic. Res. 2000, 39, 155–158. [Google Scholar] [CrossRef]
- Lupo, A.; Gerling, D. A comparison between the efficiency of summer treatments using formic acid and Taktic® against Varroa jacobsoni in beehives. Apidologie 1990, 21, 261–267. [Google Scholar] [CrossRef]
- Scott-Dupree, C.D.; Otis, G.W. The efficacy of four miticides for the control of Acarapis woodi (Rennie) in a fall treatment program. Apidologie 1992, 23, 97–106. [Google Scholar] [CrossRef]
- Dag, A.; Slabezki, Y.; Efrat, H.; Kamer, Y.; Yakobson, B.A.; Mozes-Koch, R.; Gerson, U. Control of honey bee tracheal mite infestation with Amitraz fumigation in Israel. Am. Bee J. 1997, 137, 599–602. [Google Scholar]
- Slabezki, Y.; Efrat, H.; Dag, A.; Kamer, Y.; Yakobson, B.A.; Mozes-Koch, R.; Gerson, U. The Effect of Honey Bee Tracheal Mite Infestation on Colony Development and Honey Yield of Buckfast and Italian Honey Bee Strains in Israel. Am. Bee J. 2000, 140, 231–234. [Google Scholar]
- Vandenberg, J.D.; Shimanuki, H. Effect of amitraz treatments on honey bees and on the honey bee tracheal mite. Apidologie 1990, 21, 243–247. [Google Scholar] [CrossRef]
- Pettis, J.S.; Rose, R.; Chaimanee, V. Chemical and cultural control of Tropilaelaps mercedesae mites in honeybee (Apis mellifera) colonies in Northern Thailand. PLoS ONE 2017, 12, e0188063. [Google Scholar] [CrossRef]
- Almecija, G.; Poirot, B.; Ventelon, M.; Suppo, C. Modelling the impact of Apivar treatment on a Varroa mite population and the influence of resistance. Pest Manag. Sci. 2022, 78, 831–840. [Google Scholar] [CrossRef]
- McGruddy, R.A.; Bulgarella, M.; Felden, A.; Baty, J.W.; Haywood, J.; Stahlmann-Brown, P.; Lester, P.J. Are increasing honey bee colony losses attributed to Varroa destructor in New Zealand driven by miticide resistance? J. Apic. Res. 2024, 63, 648–659. [Google Scholar] [CrossRef]
- Alonso-Prados, E.; González-Porto, A.-V.; Bernal, J.L.; Bernal, J.; Martín-Hernández, R.; Higes, M. A Case Report of Chronic Stress in Honey Bee Colonies Induced by Pathogens and Acaricide Residues. Pathogens 2021, 10, 955. [Google Scholar] [CrossRef] [PubMed]
- Bahreini, R.; Nasr, M.; Docherty, C.; de Herdt, O.; Muirhead, S.; Feindel, D. Evaluation of potential miticide toxicity to Varroa destructor and honey bees, Apis mellifera, under laboratory conditions. Sci. Rep. 2020, 10, 21529. [Google Scholar] [CrossRef] [PubMed]
- Bahreini, R.; Nasr, M.; Docherty, C.; Feindel, D.; Muirhead, S.; de Herdt, O. New bioassay cage methodology for in vitro studies on Varroa destructor and Apis mellifera. PLoS ONE 2021, 16, e0250594. [Google Scholar] [CrossRef]
- Bahreini, R.; Docherty, C.; Feindel, D.; Muirhead, S. Comparing the efficacy of synthetic Varroacides and Varroa destructor phenotypic resistance using Apiarium and Mason jar bioassay techniques. Pest Manag. Sci. 2023, 80, 1577–1592. [Google Scholar] [CrossRef]
- Bava, R.; Castagna, F.; Piras, C.; Palma, E.; Cringoli, G.; Musolino, V.; Lupia, C.; Perri, M.R.; Statti, G.; Britti, D.; et al. In Vitro Evaluation of Acute Toxicity of Five Citrus spp. Essential Oils towards the Parasitic Mite Varroa destructor. Pathogens 2021, 10, 1182. [Google Scholar] [CrossRef]
- Bava, R.; Castagna, F.; Lupia, C.; Ruga, S.; Musella, V.; Conforti, F.; Marrelli, M.; Argentieri, M.P.; Britti, D.; Statti, G.; et al. Chemical Profile of Essential Oils of Selected Lamiaceae Plants and In Vitro Activity for Varroosis Control in Honeybees (Apis mellifera). Vet. Sci. 2023, 10, 701. [Google Scholar] [CrossRef]
- Castagna, F.; Bava, R.; Piras, C.; Carresi, C.; Musolino, V.; Lupia, C.; Marrelli, M.; Conforti, F.; Palma, E.; Britti, D.; et al. Green Veterinary Pharmacology for Honey Bee Welfare and Health: Origanum heracleoticum L. (Lamiaceae) Essential Oil for the Control of the Apis mellifera Varroatosis. Vet. Sci. 2022, 9, 124. [Google Scholar] [CrossRef]
- Jack, C.J.; Kleckner, K.; Demares, F.; Rault, L.C.; Anderson, T.D.; Carlier, P.R.; Bloomquist, J.R.; Ellis, J.D. Testing new compounds for efficacy against Varroa destructor and safety to honey bees (Apis mellifera). Pest Manag. Sci. 2022, 78, 159–165. [Google Scholar] [CrossRef]
- Lee, J.; Kim, Y.H.; Kim, K.; Kim, D.; Lee, S.H.; Kim, S. Selection of stable reference genes for quantitative real-time PCR in the Varroa mite, Varroa destructor. Arch. Insect Biochem. Physiol. 2022, 110, e21905. [Google Scholar] [CrossRef]
- Morfin, N.; Rawn, D.; Petukhova, T.; Kozak, P.; Eccles, L.; Chaput, J.; Pasma, T.; Guzman-Novoa, E. Surveillance of synthetic acaricide efficacy against Varroa destructor in Ontario, Canada. Can. Èntomol. 2022, 154, e17. [Google Scholar] [CrossRef]
- Santiago, G.P.; Otero-Colina, G.; Sanchez, D.M.; Guzman, M.E.R.; Vandame, R. Comparing Effects of Three Acaricides on Varroa jacobsoni (Acari: Varroidae) and Apis mellifera (Hymenoptera: Apidae) Using Two Application Techniques. Fla. Èntomol. 2000, 83, 468. [Google Scholar] [CrossRef]
- Vu, P.D.; Rault, L.C.; Jenson, L.J.; Bloomquist, J.R.; Anderson, T.D. Voltage-gated chloride channel blocker DIDS as an acaricide for Varroa mites. Pestic. Biochem. Physiol. 2020, 167, 104603. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, R.M.; Taylor, M.A.; McBrydie, H.M.; Cox, H.M. Base levels of resistance to common control compounds by a New Zealand population of Varroa destructor. N. Z. J. Crop. Hortic. Sci. 2005, 33, 347–352. [Google Scholar] [CrossRef]
- Hernández-Rodríguez, C.S.; Moreno-Martí, S.; Emilova-Kirilova, K.; González-Cabrera, J. A new mutation in the octopamine receptor associated with amitraz resistance in Varroa destructor. Pest Manag. Sci. 2025, 81, 308–315. [Google Scholar] [CrossRef]
- Rinkevich, F.D.; Moreno-Martí, S.; Hernández-Rodríguez, C.S.; González-Cabrera, J. Confirmation of the Y215H mutation in the β2-octopamine receptor in Varroa destructor is associated with contemporary cases of amitraz resistance in the United States. Pest Manag. Sci. 2023, 79, 2840–2845. [Google Scholar] [CrossRef]
- Marsky, U.; Rognon, B.; Douablin, A.; Viry, A.; Rodríguez Ramos, M.A.; Hammaidi, A. Amitraz Resistance in French Varroa Mite Populations—More Complex Than a Single-Nucleotide Polymorphism. Insects 2024, 15, 390. [Google Scholar] [CrossRef]
- Bakar, M.A.; Aqueel, M.A.; Raza, A.B.M.; Arshad, M.; Mahmood, R.; Qadir, Z.A. Comparative Efficacy of Five Commercial Synthetic Acaricides against Varroa destructor (Anderson and Trueman) in Apis mellifera L. Colonies. Pak. J. Zool. 2018, 50, 857–861. [Google Scholar] [CrossRef]
- Al Naggar, Y.; Tan, Y.; Rutherford, C.; Connor, W.; Griebel, P.; Giesy, J.P.; Robertson, A.J. Effects of treatments with Apivar® and Thymovar® on V. destructor populations, virus infections and indoor winter survival of Canadian honey bee (Apis mellifera L.) colonies. J. Apic. Res. 2015, 54, 548–554. [Google Scholar] [CrossRef]
- Almecija, G.; Poirot, B.; Mielgo, P.; Watkins, M.; Suppo, C. Influence of Amitraz-Based Product Characteristics on Varroa Mite Population Control. Parasitologia 2024, 4, 71–81. [Google Scholar] [CrossRef]
- Aurell, D.; Wall, C.; Bruckner, S.; Williams, G.R. Combined treatment with amitraz and thymol to manage Varroa destructor mites (Acari: Varroidae) in Apis mellifera honey bee colonies (Hymenoptera: Apidae). J. Insect Sci. 2024, 24, 12. [Google Scholar] [CrossRef] [PubMed]
- Bąk, B.; Wilde, J.; Siuda, M. Efficiency of Varroa destructor management with medications used in Poland*). Med. Weter. 2013, 69, 744–748. [Google Scholar]
- Botías, C.; Martín-Hernández, R.; Barrios, L.; Garrido-Bailón, E.; Nanetti, A.; Meana, A.; Higes, M. Nosema spp. parasitization decreases the effectiveness of acaricide strips (Apivar®) in treating varroosis of honey bee (Apis mellifera iberiensis) colonies. Environ. Microbiol. Rep. 2012, 4, 57–65. [Google Scholar] [CrossRef]
- Floris, I.; Satta, A.; Garau, V.L.; Melis, M.; Cabras, P.; Aloul, N. Effectiveness, persistence, and residue of amitraz plastic strips in the apiary control of Varroa destructor. Apidologie 2001, 32, 577–585. [Google Scholar] [CrossRef]
- Gregorc, A.; Planinc, I. Use of Thymol Formulations, Amitraz, and Oxalic Acid for the Control of the Varroa Mite in Honey Bee (Apis mellifera carnica) Colonies. J. Apic. Sci. 2012, 56, 61–69. [Google Scholar] [CrossRef]
- Jack, C.J.; van Santen, E.; Ellis, J.D. Evaluating the Efficacy of Oxalic Acid Vaporization and Brood Interruption in Controlling the Honey Bee Pest Varroa destructor (Acari: Varroidae). J. Econ. Èntomol. 2020, 113, 582–588. [Google Scholar] [CrossRef]
- Kanelis, D.; Tananaki, C.; Liolios, V.; Rodopoulou, M. Evaluation of oxalic acid with glycerin efficacy against Varroa destructor (Varroidae): A four year assay. J. Apic. Res. 2024, 63, 847–855. [Google Scholar] [CrossRef]
- Karp, F.; A Luna, J.; Mengatto, L.N. Recyclable amitraz-ethylene vinyl acetate strips used for beehives treatment against Varroa destructor. J. Elastomers Plast. 2018, 50, 391–402. [Google Scholar] [CrossRef]
- Leza, M.M.; Lladó, G.; Miranda-Chueca, M.A. Short communication. Comparison of the efficacy of Apiguard (thymol) and Apivar (amitraz) in the control of Varroa destructor (Acari: Varroidae). Span. J. Agric. Res. 2015, 13, e05SC01. [Google Scholar] [CrossRef]
- Loucif-Ayad, W.; Aribi, N.; Smagghe, G.; Soltani, N. Comparative Effectiveness of Some Acaricides used to Control Varroa destructor (Mesostigmata: Varroidae) in Algeria. Afr. Èntomol. 2010, 18, 259–266. [Google Scholar] [CrossRef]
- Özüiçli, M.; Baykalir, Y. Evaluation of Efficiency of Thyme Oil, Cinnamomum verum, Melaleuca viridiflora, Syzygium aromaticum Essential Oils, and Amitraz for Varroa Mite (Acari: Varroidae) Control in Honey Bee (Hymenoptera: Apidae) Colonies Under Field Conditions. Kafkas Univ. Vet. Fak. Derg. 2024, 30, 541–548. [Google Scholar] [CrossRef]
- Payne, A.N.; Walsh, E.M.; Rangel, J. Initial Exposure of Wax Foundation to Agrochemicals Causes Negligible Effects on the Growth and Winter Survival of Incipient Honey Bee (Apis mellifera) Colonies. Insects 2019, 10, 19. [Google Scholar] [CrossRef] [PubMed]
- Plamondon, L.; Paillard, M.; Julien, C.; Dubreuil, P.; Giovenazzo, P. Effects of summer treatments against Varroa destructor on viral load and colony performance of Apis mellifera colonies in Eastern Canada. J. Insect Sci. 2024, 24, 14. [Google Scholar] [CrossRef] [PubMed]
- Pohorecka, K.; Skubida, P.; Semkiw, P. Varroacidal Efficiency of Treatment with Amitraz in Honey Bee Colonies with Brood. J. Apic. Sci. 2018, 62, 285–292. [Google Scholar] [CrossRef]
- Rangel, J.; Ward, L. Evaluation of the predatory mite Stratiolaelaps scimitus for the biological control of the honey bee ectoparasitic mite Varroa destructor. J. Apic. Res. 2018, 57, 425–432. [Google Scholar] [CrossRef]
- Rinkevich, F.D.; Danka, R.G.; Healy, K.B. Influence of Varroa Mite (Varroa destructor) Management Practices on Insecticide Sensitivity in the Honey Bee (Apis mellifera). Insects 2017, 8, 9. [Google Scholar] [CrossRef]
- Romo-Chacón, A.; Martínez-Contreras, L.J.; Molina-Corral, F.J.; Acosta-Muñiz, C.H.; Ríos-Velasco, C.; de León-Door, A.P.; Rivera, R. Evaluation of Oregano (Lippia berlandieri) Essential Oil and Entomopathogenic Fungi for Varroa destructor Control in Colonies of Honey Bee, Apis mellifera. Southwest. Èntomol. 2016, 41, 971–982. [Google Scholar] [CrossRef]
- Norain Sajid, Z.; Aziz, M.A.; Bodlah, I.; Rana, R.M.; Ghramh, H.A.; Khan, K.A. Efficacy assessment of soft and hard acaricides against Varroa destructor mite infesting honey bee (Apis mellifera) colonies, through sugar roll method. Saudi J. Biol. Sci. 2020, 27, 53–59. [Google Scholar] [CrossRef]
- Sevin, S.; Bommuraj, V.; Chen, Y.; Afik, O.; Zarchin, S.; Barel, S.; Arslan, O.C.; Erdem, B.; Tutun, H.; Shimshoni, J.A. Lithium salts: Assessment of their chronic and acute toxicities to honey bees and their anti-Varroa field efficacy. Pest Manag. Sci. 2022, 78, 4507–4516. [Google Scholar] [CrossRef]
- Sokół, R.; Michalczyk, M. A Preliminary Study on “Personalised Treatment” against Varroa destructor Infestations in Honey Bee (Apis mellifera) Colonies. Animals 2023, 13, 987. [Google Scholar] [CrossRef]
- Stanimirović, Z.; Glavinić, U.; Lakić, N.; Radović, D.; Ristanić, M.; Tarić, E.; Stevanović, J. Efficacy of plant-derived formulation “Argus Ras” in Varroa destructor control. Acta Vet. 2017, 67, 191–200. [Google Scholar] [CrossRef]
- Stanimirovic, Z.; Glavinic, U.; Jovanovic, N.M.; Ristanic, M.; Milojković-Opsenica, D.; Mutic, J.; Stevanovic, J. Preliminary trials on effects of lithium salts on Varroa destructor, honey and wax matrices. J. Apic. Res. 2022, 61, 375–391. [Google Scholar] [CrossRef]
- Vandervalk, L.P.; Nasr, M.E.; Dosdall, L.M. New Miticides for Integrated Pest Management of Varroa destructor (Acari: Varroidae) in Honey Bee Colonies on the Canadian Prairies. J. Econ. Èntomol. 2014, 107, 2030–2036. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.-C.; Yao, J.; Wang, Y. Varroa mite and deformed wing virus infestations interactively make honey bees (Apis mellifera) more susceptible to insecticides. Environ. Pollut. 2022, 292, 118212. [Google Scholar] [CrossRef] [PubMed]
- Karapetkovska-Hristova, V.; Treneski, V.; Pavlović, I.; Mustafa, S.K. Assessing the Efficacy of Organic and Chemical Treatments for Varroa Mite Control in Macedonian Apiaries. Res. J. Biotechnol. 2024, 19, 47–55. [Google Scholar] [CrossRef]
- Smodiš Škerl, M.I.; Nakrst, M.; Žvokelj, L.; Gregorc, A. The acaricidal effect of flumethrin, oxalic acid and amitraz against Varroa destructor in honey bee (Apis mellifera carnica) colonies. Acta Vet. Brno 2011, 80, 51–56. [Google Scholar] [CrossRef]
- Adjlane, N.; Haddad, N. Evaluation of the resistance of the mite varroa destructor to the amitraz in colonies of honey bees (Apis mellifera) in Algeria. Ulu. Arıcılık. 2017, 17, 1–6. [Google Scholar] [CrossRef]
- Rodríguez-Dehaibes, S.R.; Otero-Colina, G.; Villanueva-Jiménez, J.A.; Corcuera, P. Susceptibility of Varroa destructor (Gamasida: Varroidae) to four pesticides used in three Mexican apicultural regions under two different management systems. Int. J. Acarol. 2011, 37, 441–447. [Google Scholar] [CrossRef]
- Rodríguez-Dehaibes, S.R.; Otero-Colina, G.; Sedas, V.P.; Jiménez, J.A.V. Resistance to amitraz and flumethrin in Varroa destructor populations from Veracruz, Mexico. J. Apic. Res. 2005, 44, 124–125. [Google Scholar] [CrossRef]
- Milani, N.; Della Vedova, G. Determination of the LC50 in the mite Varroa jacobsoni of the active substances in Perizin® and Cekafix®. Apidologie 1996, 27, 175–184. [Google Scholar] [CrossRef]
- Dietemann, V.; Ellis, J.; Neumann, P. The COLOSS BEEBOOK Volume I, standard methods for Apis mellifera research: Introduction. J. Apicult. Res. 2013, 52, 1–4. [Google Scholar] [CrossRef]
- Veterinary Medicinal Products Controlling Varroa destructor Parasitosis in Bees—Scientific Guideline|European Medicines Agency (EMA). 2022. Available online: https://www.ema.europa.eu/en/veterinary-medicinal-products-controlling-varroa-destructor-parasitosis-bees-scientific-guideline (accessed on 8 January 2025).
- Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December 2018 on Veterinary Medicinal Products and Repealing Directive 2001/82/EC. Off. J. Eur. Union 2019, L 4/43, 43–167. Available online: https://eur-lex.europa.eu/eli/reg/2019/6/oj/eng (accessed on 8 January 2025).
Mite Species | Efficacy Laboratory Study | Efficacy Field Study | Resistance Assessment |
---|---|---|---|
V. destructor * | 27 [28,31,32,33,38,48,49,54,61,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97] | 43 [28,37,48,50,60,62,69,71,72,74,80,85,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127] | 12 [22,29,31,38,51,62,73,95,96,97,128,129] |
T. clareae and V. destructor * (coinfestation) | 1 [70] | ||
T. mercedesae | 1 [79] | ||
A. woodi | 1 [78] | 4 [75,76,77,78] |
Commercial Miticidal Products | Method | Contact Time (Exposure) | Efficacy Assessment Duration | Dose | Mortality (%) | References |
---|---|---|---|---|---|---|
amitraz | Petri dish | 1 h | 1 h | 0.4 μg/mL | 61% | [80] |
Petri dish | 1 h | 1 h | 0.4 μg/mL | 64% | ||
Petri dish | 1 h | 1 h | 0.4 μg/mL | 72% | ||
glass vial | 4 h | 24 h | ≥10 mg/L | ≥90% | [83] * | |
microapplicator | not applicable | 24 h | ≥0.000117 μg/mite | ≥68% | ||
glass vial | 24 h | 4 h | 3.91 mg | 65% | [84] | |
glass vial | 24 h | 4 h | 0.391 mg | 47% | ||
glass vial | 24 h | 4 h | 0.0319 mg | 58% | ||
glass vial | 24 h | 24 h | 3.91 mg | 100% | ||
glass vial | 24 h | 24 h | 0.391 mg | 89% | ||
glass vial | 24 h | 24 h | 0.0319 mg | 60% | ||
apiarium | 4 h | 4 h | 3.91 mg | 34% | ||
apiarium | 4 h | 4 h | 0.391 mg | 27% | ||
apiarium | 4 h | 4 h | 0.0319 mg | 10% | ||
apiarium | 4 h | 24 h | 3.91 mg | 96% | ||
apiarium | 4 h | 24 h | 0.391 mg | 82% | ||
apiarium | 4 h | 24 h | 0.0319 mg | 31% | ||
Petri dish | 1 h | 1 h | 0.5 mg/mL | 60% | [86] | |
Petri dish | 1 h | 1 h | 1 mg/mL | 57% | ||
Petri dish | 1 h | 1 h | 2 mg/mL | 100% | ||
Petri dish | 1 h | 1 h | 0.5 mg/mL | 60% | [87] | |
Petri dish | 1 h | 1 h | 1 mg/mL | 67% | ||
Petri dish | 1 h | 1 h | 2 mg/mL | 93% | ||
Petri dish | 1 h | 1 h | 0.125 mg/mL | 46% | [88] | |
Petri dish | 1 h | 1 h | 0.25 mg/mL | 52% | ||
Petri dish | 1 h | 1 h | 0.5 mg/mL | 51% | ||
Petri dish | 1 h | 1 h | 1 mg/mL | 63% | ||
Petri dish | 1 h | 1 h | 2 mg/mL | 90% | ||
vial | 24 h | 24 h | 0.09 mg/L | 90% | [89] | |
vial | 24 h | 24 h | 0.0034 mg/L | 10% | [90] | |
vial | 24 h | 24 h | 0.02 mg/L | 50% | ||
Petri dish | 24 h | 24 h | 0.12 μg | 64% | [33] * | |
Petri dish | 24 h | 24 h | 0.25 μg | 72% | ||
Petri dish | 24 h | 24 h | 0.5 μg | 92% | ||
Petri dish | 24 h | 24 h | 1 μg | 100% | ||
not specified | 3, 6 and 24 h | 3 h | 100 mM | 33% | [93] * | |
not specified | 3, 6 and 24 h | 6 h | 100 mM | 40% | ||
not specified | 3, 6 and 24 h | 24 h | 100 mM | 80% | ||
Petri dish | 1 h | 49 h | 110 μg/g | 50% | [94] *** | |
Petri dish | 1 h | 24 h | 0.46 μg/mL (0.039 μg/cm2) | 50% | [49] ** | |
Petri dish | 1 h | 24 h | 0.39 μg/mL (0.22 μg/cm2) | 90% | ||
Petri dish | 24 h | 24 h | 0.4 μg/mL | 79% | ||
Petri dish | 24 h | 24 h | 0.4 μg/mL | 75% | ||
Petri dish | 24 h | 24 h | 0.4 μg/mL | 84% | ||
Petri dish | 24 h | 24 h | 0.4 μg/mL | 77% | ||
Paraffin capsules | 1 h | 24 h | 2020: 28 ppm | 90 | [97] ** | |
Paraffin capsules | 1 h | 24 h | 2021: 25 ppm | 90 | ||
Paraffin capsules | 1 h | 24 h | 28 ppm | 89% | ||
Paraffin capsules | 1 h | 24 h | 28 ppm | 78% | ||
Paraffin capsules | 1 h | 24 h | 28 ppm | 73% | ||
Paraffin capsules | 1 h | 24 h | 28 ppm | 95% | ||
Paraffin capsules | 1 h | 24 h | 28 ppm | 98% | ||
Paraffin capsules | 1 h | 24 h | 28 ppm | 74% | ||
Paraffin capsules | 1 h | 24 h | 28 ppm | 77% | ||
Paraffin capsules | 1 h | 24 h | 28 ppm | 100% | ||
Paraffin capsules | 1 h | 24 h | 28 ppm | 94% | ||
Paraffin capsules | 1 h | 24 h | 28 ppm | 91% | ||
Paraffin capsules | 1 h | 24 h | 28 ppm | 100% | ||
Paraffin capsules | 1 h | 24 h | 28 ppm | 96% | ||
Paraffin capsules | 1 h | 24 h | 28 ppm | 100% | ||
Paraffin capsules | 1 h | 24 h | 28 ppm | 96% | ||
Paraffin capsules | 1 h | 24 h | 28 ppm | 97% | ||
Paraffin capsules | 1 h | 24 h | 28 ppm | 98% | ||
Paraffin capsules | 1 h | 24 h | 28 ppm | 100% | ||
Paraffin capsules | 1 h | 24 h | 25 ppm | 93% | ||
Paraffin capsules | 1 h | 24 h | 25 ppm | 87% | ||
Paraffin capsules | 1 h | 24 h | 25 ppm | 68% | ||
Paraffin capsules | 1 h | 24 h | 25 ppm | 98% | ||
Paraffin capsules | 1 h | 24 h | 25 ppm | 92% | ||
Paraffin capsules | 1 h | 24 h | 25 ppm | 81% | ||
Paraffin capsules | 1 h | 24 h | 25 ppm | 85% | ||
Paraffin capsules | 1 h | 24 h | 25 ppm | 95% | ||
Paraffin capsules | 1 h | 24 h | 25 ppm | 91% | ||
Paraffin capsules | 1 h | 24 h | 25 ppm | 1% | ||
Paraffin capsules | 1 h | 24 h | 25 ppm | 66 | ||
Paraffin capsules | 1 h | 24 h | 25 ppm | 71% | ||
Paraffin capsules | 1 h | 24 h | 25 ppm | 60% | ||
Paraffin capsules | 1 h | 24 h | 25 ppm | 59% | ||
Paraffin capsules | 1 h | 24 h | 25 ppm | 36% | ||
Paraffin capsules | 1 h | 24 h | 25 ppm | 75% | ||
Paraffin capsules | 1 h | 24 h | 25 ppm | 83% | ||
Paraffin capsules | 1 h | 24 h | 25 ppm | 88% | ||
Paraffin capsules | 1 h | 24 h | 25 ppm | 86% | ||
Paraffin capsules | 1 h | 24 h | 25 ppm | 64% | ||
Paraffin capsules | 1 h | 24 h | 25 ppm | 44% | ||
Paraffin capsules | 1 h | 24 h | 25 ppm | 79% | ||
Paraffin capsules | 1 h | 24 h | 25 ppm | 75% | ||
Paraffin capsules | 1 h | 24 h | 25 ppm | 69% | ||
Paraffin capsules | 1 h | 24 h | 25 ppm | 48% | ||
glass scintillation vial | 24 h | 24 h | 2.16 mg | 10% | [28] | |
glass scintillation vial | 24 h | 24 h | 16.35 mg | 50% | ||
glass scintillation vial | 24 h | 24 h | 123.51 mg | 90% | ||
glass scintillation vial | 24 h | 24 h | 85.4 μg/mL | 90% | ||
glass scintillation vial | 24 h | 24 h | 32.3 μg/mL | 90% | ||
glass scintillation vial | 24 h | 24 h | 248 μg/vial | 80–100% | [22] **** | |
glass scintillation vial | 24 h | 24 h | 123 micrograms | >90% | [38] ***** | |
Petri dish | 1 h | 48 h | 141 μg/g | 50 | [81] * | |
Petri dish | 1 h | 48 h | 12 μg/g | 50 | ||
Apitraz® | mason jar | 6 h | 6 h | 10.42 mg | 89% | [82] |
mason jar | 6 h | 24 h | 10.42 mg | 100% | ||
Petri dish | 1 h | 4 h | 2.2 mg/cm2 | 100% | [61] | |
Petri dish | 1 h | 24 h | 2.2 mg/cm2 | 100% | ||
Petri dish | 1 h | 4 h | 2.1 mg/cm2 | 74% (2018) | [54] | |
Petri dish | 1 h | 4 h | 2.1 mg/cm2 | 81% (2019) | ||
Petri dish | 1 h | 4 h | 2.1 mg/cm2 | 92% | [95] | |
Petri dish | 1 h | 4 h | 2.1 mg/cm2 | 92% | ||
Petri dish | 1 h | 4 h | 2.1 mg/cm2 | 85% | ||
Petri dish | 1 h | 4 h | 2.1 mg/cm2 | 74% | ||
Petri dish | 1 h | 4 h | 2.1 mg/cm2 | 79% | ||
Petri dish | 1 h | 4 h | 2.1 mg/cm2 | 87% | ||
Petri dish | 1 h | 4 h | 2.1 mg/cm2 | 90% | ||
Petri dish | 1 h | 4 h | 2.1 mg/cm2 | 88% | ||
Petri dish | 1 h | 24 h | 2.1 mg/cm2 | 81% | ||
Petri dish | 1 h | 24 h | 2.1 mg/cm2 | 65% | ||
Petri dish | 1 h | 24 h | 2.1 mg/cm2 | 72% | ||
Petri dish | 1 h | 24 h | 2.1 mg/cm2 | 73% | ||
Petri dish | 1 h | 24 h | 2.1 mg/cm2 | 85% | ||
Petri dish | 1 h | 24 h | 2.1 mg/cm2 | 64% | ||
Petri dish | 1 h | 24 h | 2.1 mg/cm2 | 82% | ||
Petri dish | 1 h | 24 h | 2.1 mg/cm2 | 70% | ||
Apivar® | plastic cup | 3 h | 3 h | 4 × 4 cm | 100% | [31] |
apiarium | 4 h and 24 h | 4 h | 24.15 mg | 20% | [85] | |
mason jar | 4 h and 24 h | 4 h | 24.15 mg | 17% | ||
apiarium | 4 h and 24 h | 24 h | 24.15 mg | 68% | ||
mason jar | 4 h and 24 h | 24 h | 24.15 mg | 58% | ||
apiarium | 4 h and 24 h | 4 h | 24.15 mg | 48% | ||
apiarium | 4 h and 24 h | 4 h | 48.3 mg | 43% | ||
apiarium | 4 h and 24 h | 4 h | 72.45 mg | 49% | ||
apiarium | 4 h and 24 h | 4 h | 96.6 mg | 45% | ||
apiarium | 4 h and 24 h | 4 h | 120.75 mg | 53% | ||
apiarium | 4 h and 24 h | 24 h | 24.15 mg | 76% | ||
apiarium | 4 h and 24 h | 24 h | 48.3 mg | 63% | ||
apiarium | 4 h and 24 h | 24 h | 72.45 mg | 71% | ||
apiarium | 4 h and 24 h | 24 h | 96.6 mg | 51% | ||
apiarium | 4 h and 24 h | 24 h | 120.75 mg | 54% | ||
laboratory cage | 48 h | 6 h | 2.76 g of strip | 92% | [48] | |
laboratory cage | 48 h | 48 h | 2.76 g of strip | 98% | ||
mason jar | 24 h | 24 h | 12.5 mg | >92% | [91] | |
plastic container | 3 h | 24 h | 0.008 μg | 50% | [32] * | |
plastic container | 3 and 6 h | 3 h | 56.25 mg | 99% | [93] | |
plastic container | 3 and 6 h | 6 h | 56.25 mg | 100% | ||
Petri dish | 1 h | 4 h | 3.1 mg/cm2 | 2019: 79% | [54] | |
Mitaban® | glass vial | 4 h | 24 h | ≥1000 mg/L | ≥32% | [83] * |
Taktic® | Petri dish | 24 h | 24 h | 0.23 mg/L | 50% | [92] |
microapplicator | not applicable | 24 h | 1.7 mg/L | 90% |
Product | Investigated Population | Susceptible Population | Quantitative Resistance Assessment | References |
---|---|---|---|---|
amitraz | Czechia 2014 | Czechia 2014 | RR: 31.3, 7.5, 5.1 | [51] |
Argentina 2009 | Argentina 2007 | RI: 3.9, 3.5, 3.7 | [29] | |
USA 2019 | USA 2019 | RR: 1.7, 3.9, 6.6, 2.6, 22.5 9.5 13.2, 7.9, 6.2, 3.2, 1.7 | [31] | |
Taktic® | Mexico 2004 | Mexico 2000 | RI: 2.3, 12.77, 8.56, 26.66 | [129] |
Mexico 2006–2007 | Mexico 2000 | RI: 12.77, 8.56, 26.66 | [128] | |
Apivar® | France 1995 | France 1998 | MLT: 24.9 min (1995); 57.6 min, 45.5 min, 37.8 min (1998) | [73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertola, M.; Mutinelli, F. Sensitivity and Resistance of Parasitic Mites (Varroa destructor, Tropilaelaps spp. and Acarapis woodi) Against Amitraz and Amitraz-Based Product Treatment: A Systematic Review. Insects 2025, 16, 234. https://doi.org/10.3390/insects16030234
Bertola M, Mutinelli F. Sensitivity and Resistance of Parasitic Mites (Varroa destructor, Tropilaelaps spp. and Acarapis woodi) Against Amitraz and Amitraz-Based Product Treatment: A Systematic Review. Insects. 2025; 16(3):234. https://doi.org/10.3390/insects16030234
Chicago/Turabian StyleBertola, Michela, and Franco Mutinelli. 2025. "Sensitivity and Resistance of Parasitic Mites (Varroa destructor, Tropilaelaps spp. and Acarapis woodi) Against Amitraz and Amitraz-Based Product Treatment: A Systematic Review" Insects 16, no. 3: 234. https://doi.org/10.3390/insects16030234
APA StyleBertola, M., & Mutinelli, F. (2025). Sensitivity and Resistance of Parasitic Mites (Varroa destructor, Tropilaelaps spp. and Acarapis woodi) Against Amitraz and Amitraz-Based Product Treatment: A Systematic Review. Insects, 16(3), 234. https://doi.org/10.3390/insects16030234