Biological Control Strategies and Integrated Arthropod Pest Management for Camellia oleifera
Simple Summary
Abstract
1. Introduction
2. Surveys and Taxonomy of Natural Enemies
2.1. Entomopathogens
2.1.1. Viruses
2.1.2. Bacteria
2.1.3. Fungi
2.1.4. Nematodes
2.2. Parasitoids
2.3. Predators
2.3.1. Predatory Insects
2.3.2. Spiders and Predatory Mites
3. Implementation of Biological Control and Development of Integrated Management Strategies
3.1. Application of Natural Enemies
3.1.1. Viruses
3.1.2. Bacteria
3.1.3. Fungi
3.1.4. Parasitoids and Predators
3.2. Development of IPM Strategies for C. oleifera
3.2.1. Selection of Pest-Resistant Camellia Cultivars
3.2.2. Research and Application of Semiochemicals
3.2.3. Physical Control Methods
3.2.4. Forecasting Indicators and Systems
3.3. Development and Prospects of Nucleic Acid-Based Pesticides (RNAi Pesticides)
4. Conclusions
5. Policy Implementation Recommendations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.Z. Scientific and technological progress and future core technologies of oil-tea Camellia in China. J. Cent. South Univ. For. Technol. 2023, 43, 1–22. [Google Scholar]
- Deng, S.L.; Chen, Y.Z. Chinese Oil-Tea; Hunan Science and Technology Press: Changsha, China, 2019; pp. 62–93. [Google Scholar]
- Chen, Y.Z.; Chen, L.S. High-Yield Innovative Techniques Supporting Promoted Improved Varieties of Tea-Oil Tree; Hunan Science and Technology Press: Changsha, China, 2024. [Google Scholar]
- Li, Q.P. Analysis of sustainable development in China’s Camellia oleifera industry. In Proceedings of the 2008 International Symposium on Sustainable Forest Management and Ecological Civilization, Zhengzhou, China, 17–19 September 2008; pp. 211–213. [Google Scholar]
- Wang, Y. Comprehensive Evaluation of Different Composite Management Models of Camellia oleifera and Construction of Its Management Technology System; Central South University of Forestry & Technology: Changsha, China, 2024. [Google Scholar]
- Cheng, J. A Study on Industrial Chain of Camellia Industry and Cooperating Pattern in China; Beijing Jiaotong University: Beijing, China, 2011. [Google Scholar]
- He, X.Y.; Cai, S.P.; Zeng, L.Q.; Lin, G.; Guo, J.J.; Huang, J.C. Three newly recorded pests on Camellia oleifera in China. Fujian For. 2016, 1, 33–37. [Google Scholar]
- He, X.Y.; Cai, S.P.; Zeng, L.Q.; Wu, P.Y.; Pan, A.F.; Chen, Y. Descriptions of eight new insect pests to Camellia oil-tea. In Proceedings of the 2015 China Forestry Youth Science and Technology Innovation Academic Symposium, Yichang, China, 22–24 July 2015; p. 153. [Google Scholar]
- He, X.Y.; Cai, S.P.; Zhan, Z.R.; Han, G.Y.; Chen, Y.D.; Li, Z.Z. Nine newly recorded Lepidopterous insect pests on Camellia oleifera in China. J. Fujian Coll. For. 2014, 34, 237–243. [Google Scholar]
- He, X.Y.; Xiong, Y.; Cai, S.P.; Han, G.Y.; Zhan, Z.R.; Chen, D.L.; Zhong, J.H. A pest insects and mites list of Camellia oleifera in China. Wuyi Sci. J. 2010, 26, 11–30. [Google Scholar]
- Luo, J.; Jiang, X.J.; Chen, W.G.; Zhao, J.J.; Li, F.S.; Huang, W.Z.; Xie, Q.R.; Deng, Y. New records of Camellia spp. pests and their damage in Guangxi. China Plant Prot. 2020, 40, 28–34. [Google Scholar]
- Shi, L.; Yin, G.L.; Yang, J.L.; Shen, Y.X. The newly recorded Lepidopterous pests on Camellia oleifera in Sichuan province and their prevention and control method. J. Sichuan For. Sci. Technol. 2016, 37, 125–127. [Google Scholar]
- Zhao, D.Y.; Huang, H.H.; Huang, H.Y.; Huang, Y.H.; Hu, L.L.; Chen, L.S. Redescriptions and notes on the biology of Acalolepta speciosa (Gahan) (Coleoptera, Cerambycidae), a new pest of Camellia trees in northern Guangdong Province, Southern China. J. Environ. Entomol. 2021, 43, 1446–1452. [Google Scholar]
- Li, M.; Yu, J.X.; Deng, W. Atlas for Identification and Management of Pests and Diseases in Camellia oleifera of Hunan Province; China Forestry Publishing House: Changsha, China, 2022. [Google Scholar]
- Hua, Z.Y.; Wang, J.T.; Liu, J.; Wang, H.J.; Shu, J.P.; Xu, T.S. Insect pests of Camellia oleifera and their natural enemies in Quzhou, China. J. Zhejiang A F Univ. 2012, 29, 232–243. [Google Scholar]
- Zhang, Q.; Shu, J.P.; Hua, Z.Y.; Ye, B.H.; Wu, X.S.; Liu, D.F.; Jin, Y.M.; Geng, X.S.; Wang, H.J. Diversity and population dynamics of pest insects of Camellia oleifera captured by ultra violet light in Quzhou. Chin. J. Ecol. 2015, 34, 2201–2209. [Google Scholar]
- Huang, D.Y.; Yu, J.F.; Hao, J.S.; Zhang, Q.S.; Zhu, C.D. Comparison of occurrence and damage degrees of Dasmithius camellia in Camellia forest of different habitats. J. Cent. South Univ. For. Technol. 2010, 30, 59–64. [Google Scholar]
- Liu, L.; Ze, S.Z.; Ji, M.; Yan, Z.L.; Zhou, N.; Chen, F. Review on the pests, mites and natural enemies on Camellia oleifera in China. J. West China For. Sci. 2013, 42, 96–104. [Google Scholar]
- Li, M.; He, Z.; Xia, Y.G.; Wu, Y.P.; Liu, Y.J.; Tan, J.C. Occurrence and control of Basilepta melanopus Lefevre in main oil Camellia production area of Hunan Province. For. Pest Dis. 2013, 32, 32–35. [Google Scholar]
- Tan, J.C.; Lu, X.C. A preliminary study on Bacillus thuringiensis var. tea garden strain for controlling tea caterpillar. J. Hunan Agric. Coll. 1985, 2, 45–53. [Google Scholar]
- Li, D.Z.; Xu, L.; Liu, H.Y.; Chen, X.L.; Zhou, L. Metabolism and antioxidant activity of SlGSTD1 in Spodoptera litura as a detoxification enzyme to pyrethroids. Sci. Rep. 2022, 12, 10108. [Google Scholar] [CrossRef]
- Yao, B.Z.; Ling, Z.Z.; Zhou, D.F. Current situation and response measures for the prevention and control of oil-tea diseases and pests. Rural Sci. Exp. 2025, 1, 120–122. [Google Scholar]
- Liu, P.P.; Li, S.J.; Deng, H.B.; Zhang, J.X.; Shen, H.F.; Sun, D.Y.; Yang, Q.Y.; Pu, X.M. Current knowledge to auto-dissemination strategies of entomopathogen combined with semiochemicals. J. Environ. Entomol. 2024, 46, 578–588. [Google Scholar]
- Qiu, D.W. Research progress and prospects of bio-pesticides. Plant Prot. 2013, 39, 81–89. [Google Scholar]
- Xi, F.S. Insect virus. J. Guangxi For. Sci. 1978, 4, 36–46. [Google Scholar]
- Tsai, S.Y.; Hwang, G.H.; Ding, T. Some insect viruses discovered in China. Acta Enotomol. Sin. 1978, 21, 101–102. [Google Scholar]
- Zhang, H.H.; Tan, J.C. Tea Pests in China and Their Contaminant-Free Management; Anhui Scientific and Technical Publishers: Hefei, China, 2004. [Google Scholar]
- Forestry, C.I. A Bacillus thuringiensis subsp. galleriae isolated from Biston marginata. J. Fujian For. Sci. Technol. 1976, 2, 59–64. [Google Scholar]
- Pu, Z.L.; Li, Z.Z. Entomopathogenic Mycology; Anhui Scientific and Technical Publishers: Hefei, China, 1996. [Google Scholar]
- Liu, Y.J.; Chen, L.S.; Zhou, H.B.; Cai, Q.X.; Xu, S.W. Species diversity and seasonal variation of entomopathogenic fungi in Camellia oleifera forest in She County of Anhui Province. Plant Prot. 2019, 45, 178–181. [Google Scholar]
- Hu, J.X.; Liu, Y.J.; Han, Y.R.; Wang, T.; Li, J.; Chen, M.J. Species diversity and temporal niche of entomopathogenic fungi in Camellia oleifera rhizosphere from Xianyu mountains, Qimen. Chin. J. Biol. Control 2023, 39, 533–541. [Google Scholar]
- Deng, X.J.; Zhou, G.Y.; Liu, J.A.; Wu, Y.; Bu, T.T.; Zhao, Y.; Li, S.L. Mutation breeding of a high virulence Beauveria bassiana strain by N+ implantation and its virulence against the pests of Camellia oleifera. Chin. J. Biol. Control 2012, 28, 341–347. [Google Scholar]
- Li, W.L. The Pathogenicity of Beauveria bassiana and Metarhizium anisopliae Against Empoasca Vitis and Transcriptional Analysis of M. anisopliae; Fujian Agriculture and Forestry University: Fuzhou, China, 2015. [Google Scholar]
- Lian, T.; Qin, C.S.; Jie, Y.Z.; Xu, J.Z.; Zhao, D.Y.; Qiu, H.L.; Yang, H.; Lai, G.D. Biological characteristics of six strains of entomophytic fungi and their pathogenicity against Curculio chinensis (Coleoptera: Curculionidae). J. Environ. Entomol. 2019, 41, 642–649. [Google Scholar]
- Cai, S.P.; Lu, J.M.; He, X.Y.; Han, G.Y.; Ding, B.; Huang, J.S. Study on the biocontrol experiment of Porthesia atereta by Beauveria bassiana in the field. J. Fujian For. Sci. Technol. 2013, 40, 25–28. [Google Scholar]
- He, X.Y.; Cai, S.P.; Du, Y.F.; Chen, D.L.; Huang, J.S.; Li, K.Q. Screening of Metarhizium anisopliae strain with high virulence against larvae of Curculio chinensis (Coleoptera: Curculionidae). Sci. Silvae Sin. 2015, 51, 52–59. [Google Scholar]
- Georgis, R.; Koppenhöfer, A.M.; Lacey, L.A.; Bélair, G.; Duncan, L.W.; Grewal, P.S.; Samish, M.; Tan, L.; Torr, P.; van Tol, R. Successes and failures in the use of parasitic nematodes for pest control. Biol. Control 2006, 38, 103–123. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, X.J.; Zhu, L.Y.; He, X.C.; Jiang, L. The control effect of entomopathogenic nematodes on larvae of Curculio chinensis. J. Zhejiang Agric. Sci. 2019, 60, 1768–1769. [Google Scholar]
- Wang, W.J. Studies on the Combination of Beauveria asiatica and Entomopathogenic Nematodes for the Control of Anomala corpulenta Larvae; Chinese Academy of Agricultural Sciences: Beijing, China, 2023. [Google Scholar]
- Chen, T.L.; Tong, X.W. A new species of Telenomus (Hymenoptera: Scelionidae) parasitic on the eggs of Lebeda nobilis. Acta Zootaxonomica Sin. 1980, 4, 310–311. [Google Scholar]
- Sun, D.Y. Preliminary studies on parasitic wasps as natural enemies of Metaceronema japonica. Nat. Enemies Insects 1987, 9, 130–134. [Google Scholar]
- Sun, D.Y. Observations on two parasitic wasp species associated with Ceroplastes rubens. J. Zhejiang For. Sci. Technol. 1984, 4, 33–35. [Google Scholar]
- Gan, J.S. Preliminary observations on Poecilocoris latus and its egg parasitoid wasp (Scelionidae). J. West China For. Sci. 1982, 1, 61–63. [Google Scholar]
- Wu, T.L.; Dai, M.Z.; Xie, F.Y. Preliminary report on the damage of Camellia oleifera scale insects and their biological control. For. Prot. 2013, 10, 38–39. [Google Scholar]
- Fang, T.S.; Zhao, D.Y.; Ye, Y.H.; Qin, C.S.; Xu, J.Z.; Jie, Y.Z.; Liao, F.Y.; Pan, Z.P. Three species of natural enemies on Lepidopera pests of oil-tea. J. Environ. Entomol. 2015, 37, 671–674. [Google Scholar]
- Li, M.; He, Z.; Liao, X.W.; Xia, Y.G.; Yan, X.W. Investigation on resources and appraisal of dominant species of natural enemies in Camellia oleifera forests in Hunan Province. Hunan For. Sci. Technol. 2015, 42, 43–49. [Google Scholar]
- Su, G.H.; Ou, L.S.; Qin, L.H.; He, Y.Q.; Jian, F. Preliminary report on Camellia oleifera Abel diseases and insects and their natural enemy insect’s species in Jinxiu County of Guangxi. J. Guangxi Agric. 2014, 29, 37–41. [Google Scholar]
- Liu, S.L. Investigation on pests, diseases, and natural enemy species in Leiyang city’s oil-tea forests. In Proceedings of the 2004 Academic Symposium of the Entomological Society of Hunan Province, Changsha, China, 1–2 December 2004; pp. 27–36. [Google Scholar]
- Liu, L.; Ji, M.; Ze, S.Z.; Zhou, N.; Chen, F.; Yan, Z.L. Community structure of arthropod in Camellia oleifera garden in the southeast of Yunnan. Southwest China J. Agric. Sci. 2016, 29, 1623–1627. [Google Scholar]
- Zhou, S.F. Biological characteristics of Chrysocoris grandis. Guangxi Plant Prot. 1994, 7, 12–14. [Google Scholar]
- Wang, R.Z.; Wan, L. Investigation and research on the species of tachinid flies and nematodes as natural enemies of tea tree pests in Jiangxi province. Newsl. Seric. Tea 2015, 6, 33–34. [Google Scholar]
- Chen, C.M.; Song, H.Y.; Xiao, T.G. Insect natural enemies of tea pests in Hunan. Chin. J. Biol. Control 1999, 15, 121–123. [Google Scholar]
- Wang, D.L. Spider community in oil-tea Camellia plantations of Hunan province. Econ. For. Res. 1999, 17, 19–21. [Google Scholar]
- Liu, L.; Yan, Z.L.; Zhou, N.; Ze, S.Z.; Ji, M.; Chen, F. The composition and diversity of arthropod community in Camellia oleifera garden in Guangnan county of Yunnan province. J. West China For. Sci. 2015, 44, 33–38. [Google Scholar]
- Li, Z.W.; Sun, H.S. Interactions of Camellia meiocarpa, Curculio chinensis (Coleoptera: Curculionidae) and a rodent (Rodentia: Muridae) in oil-tea Camellia meiocarpa) farm in Yiyang, Hunan, South Central China. Acta Enotomol. Sin. 2016, 59, 1123–1132. [Google Scholar]
- Shen, F.J.; Shen, X.F. Preliminary observation of the black-fate ladybug, Chilocorus rubidus. Chin. J. Appl. Entomol. 1960, 1, 12–13. [Google Scholar]
- Sun, D.Y. Chilocorus rubidus, natural enemy of the oil-tea scale (Metaceronema japonica). Chin. J. Biol. Control 1985, 1, 18. [Google Scholar]
- Sun, D.Y.; Lei, Q.Q. Research on Hyperaspis sinensis, a natural enemy of the oil-tea scale (Metaceronema japonica). J. Environ. Entomol. 1983, 3, 142–145. [Google Scholar]
- Jin, D.C.; Guan, H.Q.; Xiong, J.W. Primary study on the biology of Amblysius nicholsi (Parasitiformes: Phytoseiidae). J. Guizhou Agric. Coll. 1988, 2, 42–45. [Google Scholar]
- Tang, M.J.; Li, T.J.; Guo, W.H.; Leng, Y.; Xiao, Q. Preliminary study and promotion overview of the application effect of Ectropis obliqua virus preparation. China Plant Prot. 2021, 41, 78–80. [Google Scholar]
- Xiao, Q.; Yin, K.S.; Tang, M.J.; Jin, W.D. Effectiveness on the large-scale control of Euproctis pseudoconspersa by using the NPV preparation. China Tea 2004, 26, 19–20. [Google Scholar]
- Tang, M.J.; Xiao, Q.; Guo, H.W.; Yin, K.S. Demonstration application test of nuclear polyhedral virus preparation for Iragoides fasciata. China Tea 2007, 29, 28–29. [Google Scholar]
- Tang, M.J.; Xiao, Q.; Guo, H.W.; Yin, K.S. Development of Iragoides fasciata Moore nuclear polyhedrosis virus (IfNPV) preparations. J. Tea 2007, 33, 82–84. [Google Scholar]
- Ye, G.Y.; Xiao, Q.; Chen, M.; Chen, X.X.; Yuan, Z.J.; Stanley, D.W.; Hu, C. Tea: Biological control of insect and mite pests in China. Biol. Control 2014, 68, 73–91. [Google Scholar] [CrossRef]
- Liu, D.F.; Wang, J.T.; Jin, Y.M.; Li, M.M.; Shu, J.P. Study on the control of Casmarona patrona in field. J. Anhui Agric. Sci. 2018, 46, 143–145. [Google Scholar]
- Zheng, X.Z. The trial report on the control of Bt formulation (Sudeli) to Dasychira baibarana. J. Tea Bus. 2001, 23, 29. [Google Scholar]
- He, W.X.; Xie, X.Q.; Yang, P.X.; Li, W.J.; Li, Y.S. Identification and culture optimization of effective biocontrol agent on Thosea senensis for tea plantations. Fujian J. Agric. Sci. 2022, 37, 1463–1469. [Google Scholar]
- He, W.X.; Xie, X.Q.; Li, Y.S.; Li, W.J.; Yang, P.X.; Jiang, X.F.; Jiang, L.H.; Zhang, C.Y. Control effect of two strains of biocontrol bacteria mixed with Bacillus thuringiensis on Thosea sinensis in tea garden. Acta Agric. Jiangxi 2024, 36, 79–83. [Google Scholar]
- Lin, H.Y. Preliminary study on the control effectiveness of Beauveria bassiana against Andraca bipunctata. Wuyi Sci. J. 2024, 40, 132–135. [Google Scholar]
- Nong, H.Q.; Lin, X.Q.; Cai, X.Y.; Lin, M.X.; Liang, C.E.; Liang, Y.P.; Li, J.L. Test for the effect of white marrow prevention and treatment of Basilepta melanopus. Guangdong Tea Ind. 2021, 3, 13–17. [Google Scholar]
- Li, H.L.; Liu, F.J.; Zhang, H.; Li, L.D.; Li, J.Y.; Wang, D.F. Control efficacy of Beauveria bassiana on Myllocerinus aurolineatus at tea plantations. Acta Tea Sin. 2023, 64, 48–52. [Google Scholar]
- Zhang, Y. Demonstration trial on the control of Empoasca vitis using 8×109 spores/ml Metarhizium anisopliae CQMA421 dispersible oil-based suspension (od). Mod. Agric. Sci. Technol. 2021, 18, 107–108. [Google Scholar]
- Li, W.L.; Bao, Y.X.; Lin, X.T.; Xu, C.; Tong, Y.H. Control over Empoasca vitis Gothe with Beauveria bassiana and Metarhizium anisopliae powder and mixture. Acta Agric. Univ. Jiangxiensis 2017, 39, 699–705. [Google Scholar]
- Qiu, J.Z.; Song, F.F.; Qiu, Y.F.; Li, X.X.; Guan, X. Optimization of the medium composition of a biphasic production system for mycelial growth and spore production of Aschersonia placenta using response surface methodology. J. Invertebr. Pathol. 2013, 112, 108–115. [Google Scholar] [CrossRef]
- Lei, Y.H.; Lan, Y.L.; Chen, Y.S.; Luo, Z.D. Research and demonstration of biological control technology of Chreonoma atritarsis Pic. on Camellia oleifera. Mod. Agric. Sci. Technol. 2023, 14, 79–82. [Google Scholar]
- Huang, H. Research on Green Control Techniques for Major Pests of Camellia oleifera in Guizhou Province; Guizhou University: Guiyang, China, 2023. [Google Scholar]
- Sun, D.Y. Artificial breeding and application of the natural enemy of Metaceronema japonica—Ladybug Chilocores rubidus and Hyperaspis sinensis. J. Zhejiang For. Sci. Technol. 1985, 1, 39–44. [Google Scholar]
- Zhao, D.Y.; Qin, C.S.; Xu, J.Z.; Liao, F.Y.; Jie, Y.Z. Relative preferences of Curculio chinensis adults for different varieties of tea-oil tree, Camellia oleifera. Chin. Agric. Sci. Bull. 2015, 31, 100–104. [Google Scholar]
- Li, M.M. Research on the Hazards of Curculio chinensis to Camellia oleifera and Risk Assessment; Chinese Academy of Forestry: Beijing, China, 2016. [Google Scholar]
- Xu, C.Y. Study on Behavioral Responses of Curculio chinensis to Extracts of Plant and Function of Olfactory Recognition on Its Head; Hunan Agricultural University: Changsha, China, 2020. [Google Scholar]
- Zeng, J.C.; Qin, C.S.; Zhao, D.Y.; Xu, J.Z.; Yang, H. Electroantennogram and behavioral responses of Curculio chinensis to volatiles of Camellia oleifera fruits. For. Environ. Sci. 2020, 36, 30–34. [Google Scholar]
- Zhong, Y.Z. Host Location of Trissolcus japonicus by Utilizing the Infochemicals Released by Halymorpha halys; Anhui Normal University: Hefei, China, 2015. [Google Scholar]
- Ye, H.X.; Han, S.J.; Zheng, Y.C.; Han, B.Y. Trapping lacewings at tea plantations by colored sticky boards or tea aphid sexpheromone. Acta Tea Sin. 2015, 56, 254–258. [Google Scholar]
- Chang, M.S.; Deng, Y.; Jiang, X.J.; Wu, Y.J.; Zhou, H.Y.; Luo, J.; Huang, H.Y. Two yellow trap board trapping pests in different varieties of Camellia oleifera. For. Environ. Sci. 2019, 35, 78–84. [Google Scholar]
- Wang, F.; Fu, H.M.; Hu, S.Y.; Wen, C.Y.; Zhang, N.F.; Zhang, W. Study on biological properties and light trap of Conogethes punctiferalis damaging to Camellia oleifera Seeds. J. Zhejiang For. Sci. Technol. 2020, 40, 54–59. [Google Scholar]
- Qiao, L.; Zhang, M.M.; Gong, Z.J.; Geng, S.B.; Hong, F. Effects of yellow LED light of different intensity on the development and reproduction of Ectropis grisescens Warren. Chin. J. Appl. Entomol. 2022, 59, 785–793. [Google Scholar]
- Qiao, L.; Zhang, T.H.; Zhou, G.T.; Geng, S.B.; Jiang, Y.L.; Pan, P.L.; Lei, Z.S. Effects of green light intensity on development and reproduction of Ectropis grisescens Warren. J. Northwest A F Univ. 2023, 51, 95–100. [Google Scholar]
- Qiao, L.; Zhao, X.C.; Chen, L.; Zhou, Z.; Geng, S.B. Effects of LED light on the activities of protective enzymes in Ectropis grisescens (Lepidoptera: Geometridae) adults. Acta Enotomol. Sin. 2023, 66, 1510–1517. [Google Scholar]
- Owens, A.C.S.; Lewis, S.M. Artificial light impacts the mate success of female fireflies. R. Soc. Open Sci. 2022, 9, 220468. [Google Scholar] [CrossRef]
- Hong, H.L.; Hong, D.F.; Li, L.; Li, G.; Ding, K.M. The prevention and treatment effect of lamp and sexual inducement and their combination on Ectropis obliqua. Hubei Plant Prot. 2023, 2, 27–29. [Google Scholar]
- Lin, H.Y.; Qin, C.S.; Zhao, D.Y.; Xu, J.Z.; Qiu, H.L. Study on early-warning index system to insect attack of Curculio chinensis. For. Environ. Sci. 2017, 33, 53–57. [Google Scholar]
- Chen, Y.S.; Huang, J.L.; Luo, Z.D.; Pan, Y.L. A study on ecological characteristics and occurrence prediction of Casmara patrona larvae. Biol. Disaster Sci. 2024, 47, 7–12. [Google Scholar]
- Wytinck, N.; Manchur, C.L.; Li, V.H.; Whyard, S.; Belmonte, M.F. dsRNA uptake in plant pests and pathogens: Insights into RNAi-based insect and fungal control technology. Plants 2020, 9, 1780. [Google Scholar] [CrossRef]
- Ma, S.; Li, L.L.; Yao, W.C.; Yin, M.Z.; Li, J.Q.; Xu, J.W.; Dewer, Y.; Zhu, X.Y.; Zhang, Y.N. Two odorant-binding proteins involved in the recognition of sex pheromones in Spodoptera litura larvae. J. Agric. Food Chem. 2022, 70, 12372–12382. [Google Scholar] [CrossRef]
- Zhang, X.F.; Liu, P.J.; Qin, Q.J.; Li, M.; Meng, R.J.; Zhang, T. Characterizing the role of orco gene in detecting aggregation pheromone and food resources in Protaetia brevitarsis Leiws (Coleoptera: Scarabaeidae). Front. Physiol. 2021, 12, 649590. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.L.; Zhu-Salzman, K.; Baerson, S.R.; Xin, X.W.; Li, J.; Su, Y.J.; Zeng, R.S. Identification of a novel cytochrome P450 CYP321B1 gene from tobacco cutworm (Spodoptera litura) and RNA interference to evaluate its role in commonly used insecticides. Insect Sci. 2017, 24, 235–247. [Google Scholar] [CrossRef]
- Sun, Z.X.; Shi, Q.; Li, Q.L.; Wang, R.M.; Xu, C.C.; Wang, H.H.; Ran, C.X.; Song, Y.Y.; Zeng, R.S. Identification of a cytochrome P450 CYP6AB60 gene associated with tolerance to multi-plant allelochemicals from a polyphagous caterpillar tobacco cutworm (Spodoptera litura). Pestic. Biochem. Physiol. 2019, 154, 60–66. [Google Scholar] [CrossRef]
- Jin, L.; Yan, K.P.; Kong, H.R.; Li, J.Y.; Fan, C.C.; Pan, Y.; Shang, Q.L. The fat body-specific gst gene slgste11 enhances the tolerance of Spodoptera litura to cyantraniliprole and nicotine. J. Agric. Food Chem. 2024, 72, 19680–19688. [Google Scholar] [CrossRef]
- Zou, X.P.; Xu, Z.B.; Zou, H.W.; Liu, J.S.; Chen, S.N.; Feng, Q.L.; Zheng, S.C. Glutathione S-transferase SIGSTE1 in Spodoptera litura may be associated with feeding adaptation of host plants. Insect Biochem. Mol. Biol. 2016, 70, 32–43. [Google Scholar] [CrossRef]
- Dai, Y.; Yang, F.Q.; Li, J.; Fu, H.N.; Wang, X.; Wan, B.; Cai, M.T.; Xin, T.R.; Xia, B.; Zhong, L.; et al. Sublethal effects of emamectin benzoate on development and reproduction and RNAi of the vitellogenin gene in Spodoptera frugiperda. J. Agric. Food Chem. 2023, 72, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.R.; Xu, Y.H.; Liu, J.; Yang, L.Y.; Cui, G.F.; Zhong, G.H.; Yi, X. Proteomic profiling for ovarian development and azadirachtin exposure in Spodoptera litura during metamorphosis from pupae to adults. Ecotoxicol. Environ. Saf. 2022, 237, 113548. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.F.; Tan, Y.F.; Wen, X.Y.; Deng, W.; Yu, J.X.; Li, M.; Meng, F.H.; Wang, X.D.; Zhu, D.H. The expression and function of notch involved in ovarian development and fecundity in Basilepta melanopus. Insects 2024, 15, 292. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.Q. Peptide Selection and Modification of Bacillus thuringiensis Cry Against Empoasca vitis; Fujian Agriculture and Forestry University: Fuzhou, China, 2016. [Google Scholar]
- Chen, M.F. Cloning, Expression, and In Vitro Binding Analysis of the Potential Receptor of APN7, a Empoasca flavescens, Bt, and Its Potential Binding to Cry Toxin; Fujian Agriculture and Forestry University: Fuzhou, China, 2018. [Google Scholar]
- Mao, T.F.; Fu, J.Y.; Sun, L.; Zhou, X.G.; Bai, J.H. The Expression of the Antibacterial Peptide Genes from Two Sibling Species of Tea Geometrid was Different in Resistance to EoNPV Infection. Chin. J. Biol. Control 2017, 33, 472–480. [Google Scholar]

| Class/Order | Family Number | Species Number | Species Proportion (%) | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Pests | Parasitoids | Predators | Pests | Parasitoids | Predators | Pests | Parasitoids | Predators | |
| Insecta | |||||||||
| Lepidoptera | 28 | 155 | 39.55 | ||||||
| Coleoptera | 9 | 5 | 49 | 125 | 12.50 | 37.20 | |||
| Hemiptera | 20 | 6 | 153 | 29 | 39.04 | 8.64 | |||
| Orthoptera | 5 | 2 | 14 | 3 | 3.58 | 0.89 | |||
| Phasmida | 1 | 1 | 0.27 | ||||||
| Isoptera | 1 | 6 | 1.54 | ||||||
| Thysanoptera | 1 | 1 | 4 | 1 | 1.03 | 0.32 | |||
| Hymenoptera | 1 | 21 | 4 | 2 | 148 | 8 | 0.52 | 89.16 | 2.39 |
| Diptera | 1 | 1 | 3 | 2 | 18 | 30 | 0.52 | 10.84 | 8.94 |
| Odonata | 3 | 13 | 3.89 | ||||||
| Dermaptera | 3 | 5 | 1.49 | ||||||
| Mantodea | 1 | 6 | 1.79 | ||||||
| Neuroptera | 5 | 20 | 5.97 | ||||||
| Arachnida | |||||||||
| Acarina | 3 | 4 | 6 | 7 | 1.54 | 2.09 | |||
| Araneida | 20 | 89 | 26.49 | ||||||
| Total | 70 | 22 | 57 | 392 | 166 | 336 | 100 | 100 | 100 |
| Tea-Growing Region | Common Species | Damage Site | Main Region-Own Species (Damage Site) | Damage Site |
|---|---|---|---|---|
| The South China region | Hemiptera: * Poecilocoris latus Lepidoptera: Casmara patrona Biston marginata * Euproctis pseudoconspersa Strand Parametriotes theae Coleoptera: * Curculio chinensis * Basilepta melanopus | YL L L L L Fr YL | Orthoptera: | |
| Brachytrupes portentosus Licht | SS | |||
| Lepidoptera: | ||||
| Ectopis excellens Butler | L | |||
| Hymenoptera: | ||||
| Odontotermes formosanus | R | |||
| Coleoptera: | ||||
| Aeolesthes induta | S | |||
| The Central and East China region | Hemiptera: | |||
| Toxoptera aurantii | F | |||
| Mctaccronemajaponic | SS | |||
| Ricania speculum | F | |||
| Eurostus validus | L | |||
| Coleoptera: | ||||
| Chreonoma atritarsi | S | |||
| Lepidoptera: | ||||
| Clania minuscula | L | |||
| Phossa fasciata | L | |||
| Latoia consocia | L | |||
| Linocstis gonatias | L | |||
| Hymenoptera: | ||||
| Dasmithius camellia | L | |||
| The Southwest region | Hemiptera: | |||
| Pseudaulacaspis cockerelli | YL | |||
| Chrysocoris grandis | S, L | |||
| Coleoptera: | ||||
| Anoplophora elegan | S | |||
| Chreonoma atritarsi | S | |||
| The Northwest region | Hemiptera: | |||
| Dialeurodes citri | F | |||
| Ceroplastes rubens | F | |||
| Leucaspis japonic | F | |||
| Lepidoptera: | ||||
| Lebeda nobilis | L | |||
| Coleoptera: | ||||
| Anomala corpulenta | S | |||
| Eurythrus blairi | S | |||
| Chreonoma atritarsi | S |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Yu, J.; Deng, W.; Peng, S.; Li, C.; Wen, X.; Zhong, W.; Li, M. Biological Control Strategies and Integrated Arthropod Pest Management for Camellia oleifera. Insects 2025, 16, 1244. https://doi.org/10.3390/insects16121244
Xie Y, Yu J, Deng W, Peng S, Li C, Wen X, Zhong W, Li M. Biological Control Strategies and Integrated Arthropod Pest Management for Camellia oleifera. Insects. 2025; 16(12):1244. https://doi.org/10.3390/insects16121244
Chicago/Turabian StyleXie, Yifei, Jinxiu Yu, Wan Deng, Shaofeng Peng, Chi Li, Xuanye Wen, Wuhong Zhong, and Mi Li. 2025. "Biological Control Strategies and Integrated Arthropod Pest Management for Camellia oleifera" Insects 16, no. 12: 1244. https://doi.org/10.3390/insects16121244
APA StyleXie, Y., Yu, J., Deng, W., Peng, S., Li, C., Wen, X., Zhong, W., & Li, M. (2025). Biological Control Strategies and Integrated Arthropod Pest Management for Camellia oleifera. Insects, 16(12), 1244. https://doi.org/10.3390/insects16121244

