Valuing Insect Pollination Services to Safeguard Crop Pollination in South Africa
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
pollination = crop yield (tons) × price per ton × crop insect
dependence factor, or alternatively, the economic value of insect
pollinators (EPV) = TPV × insect dependence factor.
- It assumes pollination as a critical production factor and consequently attributes the total production value to pollination before applying the crop dependence factor. It discounts production inputs (labour cost) before applying the dependence factor, which leads to an inflated value estimate for pollination [Remedying this would involve following a residual value approach after the dependence factors have been applied].
- It assumes infinitely high demand elasticities, meaning that decreases in production would not affect market prices. Consumers are consequently forced to seek substitute products. However, not all crops are indeed substitutable, and it is highly likely that farmers would respond to the pollination challenge since doing so could provide them with a competitive advantage over their competition. The resulting decrease in production would not be as severe as been assumed.
- It ignores a possible replacement for insect pollination. Arguably there is no instant replacement for insect pollination due to current labour costs, logistic limitations (thousands of flowers must be pollinated at the same time over a short period), and the lack of any tested method. Replacements can thus be said to be difficult but not impossible [24].
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klein, A.-M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. Biol. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Aizen, M.A.; Aguiar, S.; Biesmeijer, J.C.; Garibaldi, L.A.; Inouye, D.W.; Jung, C.; Martins, D.J.; Medel, R.; Morales, C.L.; Ngo, H.; et al. Global agricultural productivity is threatened by increasing pollinator dependence without a parallel increase in crop diversification. Glob. Change Biol. 2019, 25, 3516–3527. [Google Scholar] [CrossRef] [PubMed]
- Biesmeijer, J.C.; Roberts, S.P.M.; Reemer, M.; Ohlemüller, R.; Edwards, M.; Peeters, T.; Schaffers, A.P.; Potts, S.G.; Kleukers, R.; Thomas, C.D.; et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 2006, 313, 351–354. [Google Scholar] [CrossRef] [PubMed]
- Dicks, L.V.; Breeze, T.D.; Ngo, H.T.; Senapathi, D.; An, J.; Aizen, M.A.; Basu, P.; Buchori, D.; Galetto, L.; Garibaldi, L.A.; et al. A global-scale expert assessment of drivers and risks associated with pollinator decline. Nat. Ecol. Evol. 2021, 5, 1453–1461. [Google Scholar] [CrossRef]
- Aizen, M.A.; Garibaldi, L.A.; Harder, L.D. Myth and reality of a global crisis for agricultural pollination. Ecol. Austral. 2022, 32, 698–715. [Google Scholar] [CrossRef]
- Allen-Wardell, G.; Bernhardt, P.; Bitner, R.; Burquez, A.; Buchmann, S.; Cane, J.; Cox, P.A.; Dalton, V.; Feinsinger, P.; Ingram, M. The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conserv. Biol. 1998, 12, 8–17. [Google Scholar]
- Entomology: The bee-all and end-all. Nature 2015, 521, S57–S59. [CrossRef]
- Aizen, M.A.; Harder, L.D. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr. Biol. 2009, 19, 915–918. [Google Scholar] [CrossRef]
- Gallai, N.; Garibaldi, L.A.; Li, X.; Breeze, T.D.; Espirito Santo, M.M.; Rodriguez Fernandez, J.; Kelbessa Worati, E.; Salles, J.-M.; Sandhu, H.; Veldtman, R. Chapter 4: Economic valuation of pollinator gains and losses. In IPBES (2016): The Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on Pollinators, Pollination and Food Production; Potts, S.G., Imperatriz-Fonseca, V.L., Ngo, H.T., Eds.; Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services: Bonn, Germany, 2016; pp. 205–273. [Google Scholar]
- Calderone, N.W. Insect pollinated crops, insect pollinators and US agriculture: Trend analysis of aggregate data for the period 1992–2009. PLoS ONE 2012, 7, e37235. [Google Scholar] [CrossRef]
- Garibaldi, L.A.; Steffan-Dewenter, I.; Winfree, R.; Aizen, M.A.; Bommarco, R.; Cunningham, S.A.; Kremen, C.; Carvalheiro, L.G.; Harder, L.D.; Afik, O.; et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 2013, 339, 1608–1611. [Google Scholar] [CrossRef]
- Houdet, J.; Veldtman, R. How to account for bees and pollinators. In The Business of Bees: An Integrated Approach to Bee Decline and Corporate Responsibility; Atkins, J., Atkins, B.B., Eds.; Greenleaf Publishing: Sheffield, UK, 2016; pp. 188–197. [Google Scholar] [CrossRef]
- Naug, D. Nutritional stress due to habitat loss may explain recent honeybee colony collapses. Biol. Conserv. 2009, 142, 2369–2372. [Google Scholar] [CrossRef]
- Winfree, R.; Gross, B.J.; Kremen, C. Valuing pollination services to agriculture. Ecol. Econ. 2011, 71, 80–88. [Google Scholar] [CrossRef]
- Melathopoulos, A.P.; Cutler, G.C.; Tyedmers, P. Where is the value in valuing pollination ecosystem services to agriculture? Ecol. Econ. 2015, 109, 59–70. [Google Scholar] [CrossRef]
- Veldtman, R. Are managed pollinators ultimately linked to the pollination ecosystem service paradigm? S. Afr. J. Sci. 2018, 114, a0292. [Google Scholar] [CrossRef]
- Carvalheiro, L.G.; Seymour, C.L.; Nicolson, S.W.; Veldtman, R. Creating patches of native flowers facilitates crop pollination in large agricultural fields: Mango as a case study. J. Appl. Ecol. 2012, 49, 1373–1383. [Google Scholar] [CrossRef]
- Garibaldi, L.A.; Carvalheiro, L.G.; Vaissière, B.E.; Gemmill-Herren, B.; Hipólito, J.; Freitas, B.M.; Ngo, H.T.; Azzu, N.; Sáez, A.; Åström, J.; et al. Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science 2016, 351, 388–391. [Google Scholar] [CrossRef]
- Carvalheiro, L.G.; Seymour, C.L.; Veldtman, R.; Nicolson, S.W. Pollination services decline with distance from natural habitat even in biodiversity-rich areas. J. Appl. Ecol. 2010, 47, 810–820. [Google Scholar] [CrossRef]
- Carvalheiro, L.G.; Veldtman, R.; Shenkute, A.; Tesfay, G.B.; Pirk, C.W.W.; Donaldson, J.S.; Nicolson, S.W. Natural and within-farmland biodiversity enhances crop productivity. Ecol. Lett. 2011, 14, 251–259. [Google Scholar] [CrossRef]
- De Lange, W.J.; Veldtman, R.; Allsopp, M.H. Valuation of pollinator forage services provided by Eucalyptus cladocalyx. J. Environ. Manag. 2013, 125, 12–18. [Google Scholar] [CrossRef]
- Parks, S.; Gowdy, J. What have economists learned about valuing nature? A review essay. Ecosyst Serv. 2013, 3, e1–e10. [Google Scholar] [CrossRef]
- TEEB. The Economics of Ecosystems and Biodiversity: Mainstreaming the Economics of Nature: A Synthesis of the Approach, Conclusions and Recommendations of TEEB. 2010. Available online: https://wedocs.unep.org/20.500.11822/7851 (accessed on 20 July 2023).
- Allsopp, M.H.; De Lange, W.J.; Veldtman, R. Valuing insect pollination services with the cost of replacement. PLoS ONE 2008, 3, e3128. [Google Scholar] [CrossRef] [PubMed]
- Alebachew, G.W. Economic value of pollination service of agricultural crops in Ethiopia: Biological pollinators. J. Apic. Sci. 2018, 62, 265–273. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: https://faostat.fao.org (accessed on 5 October 2021).
- SABPA. The Economic Contribution of the South African Blueberry Industry; Division for Macro and Resource Economics of the Western Cape Department of Agriculture in Collaboration with the South African Berry Producers’ Association (SABPA): San Diego, CA, USA, 2019. (In English) [Google Scholar]
- SAMAC Macadamia South Africa NPC. 2020. Available online: https://www.samac.org.za/industry-statistics/ (accessed on 20 August 2022).
- Sibulali, A. Market Intelligence Report: Macadamia Nuts Industry; Western Cape Government, Elsenburg: Cape Town, South Africa, 2021; Available online: https://www.elsenburg.com/wp-content/uploads/2022/03/2021-Macadamias-MIR.pdf (accessed on 20 July 2023).
- Ratto, F.; Steward, P.; Sait, S.M.; Pryke, J.S.; Gaigher, R.; Samways, M.J.; Kunin, W. Proximity to natural habitat and flower plantings increases insect populations and pollination services in South African apple orchards. J. Appl. Ecol. 2021, 58, 2540–2551. [Google Scholar] [CrossRef]
- Garratt, M.P.; Breeze, T.D.; Jenner, N.; Polce, C.; Biesmeijer, J.C.; Potts, S.G. Avoiding a bad apple: Insect pollination enhances fruit quality and economic value. Agric. Ecosyst. Environ. 2014, 184, 34–40. [Google Scholar] [CrossRef]
- Melin, A.; Rouget, M.; Midgley, J.; Donaldson, J.S. Pollination ecosystem services in South African agricultural systems. S. Afr. J. Sci. 2014, 110, 9. [Google Scholar] [CrossRef]
- Mouton, M. Significance of Direct and Indirect Pollination Ecosystem Services to the Apple Industry in the Western Cape of South Africa. Master’s Thesis, Stellenbosch University, Stellenbosch, South Africa, 2011. [Google Scholar]
- Lonsdorf, E.; Kremen, C.; Ricketts, T.; Winfree, R.; Williams, N.; Greenleaf, S. Modelling pollination services across agricultural landscapes. Ann. Bot. 2009, 103, 1589–1600. [Google Scholar] [CrossRef]
- Lautenbach, S.; Seppelt, R.; Liebscher, J.; Dormann, C.F. Spatial and temporal trends of global pollination benefit. PLoS ONE 2012, 7, e35954. [Google Scholar] [CrossRef]
- Polce, C.; Termansen, M.; Aguirre-Gutiérrez, J.; Boatman, N.D.; Budge, G.E.; Crowe, A.; Garratt, M.P.; Pietravalle, S.; Potts, S.G.; Ramirez, J.A.; et al. Species distribution models for crop pollination: A modelling framework applied to Great Britain. PLoS ONE 2013, 8, e76308. [Google Scholar] [CrossRef]
- Breeze, T.D.; Bailey, A.P.; Balcombe, K.G.; Potts, S.G. Pollination services in the UK: How important are honeybees? Agric. Ecosyst. Environ. 2011, 142, 137–143. [Google Scholar] [CrossRef]
- Allsopp, M.H.; Veldtman, R. Managed honeybee industry and honeybee forage dependencies: The cost of being important. S. Afr. Bee J. 2012, 84, 160–165. [Google Scholar]
- Masehela, T.S. An Assessment of Different Beekeeping Practices in South Africa Based on Their Needs (Bee Forage Use), Services (Pollination Services) and Threats (Hive Theft and Vandalism). Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2017. [Google Scholar]
- Kleijn, D.; Winfree, R.; Bartomeus, I.; Carvalheiro, L.G.; Henry, M.; Isaacs, R.; Klein, A.M.; Kremen, C.; M’Gonigle, L.K.; Rader, R.; et al. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nat. Commun. 2015, 6, 7414. [Google Scholar] [CrossRef]
- Trigo, A.; Marta-Costa, A.; Fragoso, R. Principles of sustainable agriculture: Defining standardized reference points. Sustainability 2021, 13, 4086. [Google Scholar] [CrossRef]
- SAI Platform. Available online: https://saiplatform.org/ (accessed on 1 November 2022).
- Velten, S.; Leventon, J.; Jager, N.; Newig, J. What Is Sustainable Agriculture? A systematic review. Sustainability 2015, 7, 7833–7865. [Google Scholar] [CrossRef]


| Crop | Crop Species | Crop Category (Following FAO) | Average Dependence Factor | Production 2018 (Metric Tonnes) | Producer Price 2018 (USD) |
|---|---|---|---|---|---|
| Apples | Malus domestica | Fruits | 0.65 | 829,636 | 545.8 |
| Apricots | Prunus armeniaca | Fruits | 0.65 | 26,512 | 1087.7 |
| Avocados | Persea americana | Fruits | 0.65 | 127,568 | 762.5 |
| Beans, dry | Phaseolus lunatus, P. angularis, P. aureus, P. mungo, P. coccineus, P. calcaratus, P. aconitifolius, P. acutifolius | Pulse | 0.05 | 69,360 | 992.2 |
| Beans, green | Vigna spp., V. unguiculata, V. subterranean (syn. Voandzeia subterranea), Phaseolus spp. | Vegetables | 0.05 | 23,999 | 489.7 |
| Berries Nes | Rubus fruiticosus, R. chamaemorus, R. flagellaris, R. trivalis | Fruits | 0.65 | 2763 | 6439.2 |
| Blueberries | Vaccinium corymbosum, V. angustifolium, V. ashei, V. myrtillus | Fruits | 0.65 | 6000 | 3909 |
| Cherries | Prunus cerasus, P. avium | Fruits | 0.65 | 410 | 4709.1 |
| Chillies and peppers, dry | Capscium annuum, C. frutescens | Spices | 0.05 | 17,582 | 3000 |
| Chillies and peppers, green | Capscium annuum, C. frutescens | Vegetables | 0.05 | 1027 | 794.7 |
| Cow peas, dry | Vigna unguiculata | Vegetables | 0.05 | 4821 | 631 |
| Cucumbers and gherkins | Cucumis sativus | Vegetables | 0.65 | 26,767 | 707 |
| Figs | Ficus carica | Fruits | 0.25 | 2197 | 1104.2 |
| Gooseberries | Physalis peruviana | Fruits | 0.65 | 150 | 2954.6 |
| Grapefruit | Citrus grandis, C. maxima, C. paradisi, | Fruits | 0.05 | 445,385 | 396.2 |
| Groundnuts (shelled) | Arachis hypogaea | Oil crops | 0.05 | 57,000 | 590.2 |
| Lemons and limes | Citrus aurantifolia, C. limetta, C. limon | Fruits | 0.05 | 474,149 | 505.9 |
| Litchi | Litchi chinensis | Fruits | 0.65 | 10,400 | 1136.3 |
| Macadamias | Macadamia intergrifolia | Tree nuts | 0.95 | 56,550 | 6733 |
| Mangoes, mangosteens, and guavas | Mangifera indica | Fruits | 0.65 | 91,261 | 539.1 |
| Melons | Cucumis melo | Vegetables | 0.95 | 21,247 | 627 |
| Papayas | Carica papaya | Fruits | 0.05 | 12,909 | 696.7 |
| Peaches and nectarines | Prunus persica, Persica laevis | Fruits | 0.65 | 152,444 | 1055.1 |
| Pears | Pyrus communis | Fruits | 0.65 | 397,555 | 507.7 |
| Peas, green | Pisum sativum | Vegetables | 0.05 | 4832 | 509.4 |
| Plums and sloes | Prunus domestica, P. spinosa | Fruits | 0.65 | 74,254 | 583 |
| Pumpkins, squash, and gourds | Cucurbita maxima, C. mixta, C. moschata, C. pepo | Vegetables | 0.95 | 266,746 | 354.4 |
| Quinces | Cydonia oblonga, C. vulgaris, C. japonica | Fruits | 0.65 | 194 | 462.1 |
| Rapeseed | Brassica napus, B. alba, B. hirta, Sinapis alba, B. nigra | Oil crops | 0.25 | 103,950 | 364.73 |
| Seed cotton | Gossypium hirsutum, G. barbadense, G. arboreum, G. herbaceum | Oil crops | 0.25 | 101,741 | 1733.33 |
| Soybeans | Glycine max, G. soja | Oil crops | 0.25 | 1,540,000 | 344.2 |
| Strawberries | Fragaria spp. | Fruits | 0.25 | 9008 | 2504 |
| Sunflower seed | Helianthus annuus | Oil crops | 0.25 | 862,000 | 321.6 |
| Tangerines, mandarins, and clementines | Citrus reticulata, C. unshiu | Fruits | 0.05 | 191,866 | 538.3 |
| Tomatoes | Lycopersicon esculentum | Vegetables | 0.05 | 537,257 | 355.3 |
| Watermelons | Citrullus lanatus | Vegetables | 0.95 | 75,160 | 227.9 |
| Crop Category | Average Value per Metric Ton | Total Production Value (TPV) | Economic Value of Insect Pollinators (EVP) | Ratio of Vulnerability |
|---|---|---|---|---|
| USD | Mil USD | Mil USD | % | |
| Fruits | 576 | 1643.21 | 740.93 | 45.1% |
| Oil crops | 396 | 1055.19 | 257.07 | 24.4% |
| Pulse | 992 | 68.82 | 3.44 | 5.0% |
| Spices | 3000 | 52.75 | 2.64 | 5.0% |
| Tree nuts | 6733 | 380.75 | 361.71 | 95.0% |
| Vegetables | 367 | 352.87 | 141.49 | 40.1% |
| Total | 3553.59 | 1507.28 | 42.4% |
| Rank | Production | % | TPV | % | EVP | % | Hives Rented |
|---|---|---|---|---|---|---|---|
| 1 | Soybeans | 23.25 | Soybeans | 14.92 | Macadamias | 23.99 | Yes |
| 2 | Sunflower seed | 13.01 | Apples | 12.74 | Apples | 19.53 | Yes |
| 3 | Apples | 12.52 | Macadamia | 10.71 | Soybeans | 8.79 | No |
| 4 | Tomatoes | 8.11 | Sunflower seed | 7.80 | Pears | 8.70 | Yes |
| 5 | Lemons and limes | 7.16 | Lemons and limes | 6.75 | Peaches and nec. | 6.94 | Yes |
| 6 | Grapefruit | 6.72 | Pears | 5.68 | Pumpkins, etc. | 5.96 | Yes |
| 7 | Pears | 6.00 | Tomatoes | 5.37 | Sunflower seed | 4.60 | No |
| 8 | Pumpkins, etc. | 4.03 | Grapefruit | 4.97 | Avocados | 4.19 | Yes |
| 9 | Tangerines, etc. | 2.90 | Seed cotton | 4.96 | Seed cotton | 2.92 | No |
| 10 | Peaches and nec. | 2.30 | Peaches and nec. | 2.94 | Mangoes, etc. | 2.12 | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veldtman, R.; de Lange, W.J. Valuing Insect Pollination Services to Safeguard Crop Pollination in South Africa. Insects 2025, 16, 1190. https://doi.org/10.3390/insects16121190
Veldtman R, de Lange WJ. Valuing Insect Pollination Services to Safeguard Crop Pollination in South Africa. Insects. 2025; 16(12):1190. https://doi.org/10.3390/insects16121190
Chicago/Turabian StyleVeldtman, Ruan, and Willem J. de Lange. 2025. "Valuing Insect Pollination Services to Safeguard Crop Pollination in South Africa" Insects 16, no. 12: 1190. https://doi.org/10.3390/insects16121190
APA StyleVeldtman, R., & de Lange, W. J. (2025). Valuing Insect Pollination Services to Safeguard Crop Pollination in South Africa. Insects, 16(12), 1190. https://doi.org/10.3390/insects16121190

