Insects’ and Farmers’ Responses to Pollinator-Related Habitat Improvement in Small and Large Faba Bean Fields in Morocco
Simple Summary
Abstract
1. Introduction
- Measure the impacts of the FAP approach on pollinator abundance and diversity by comparing of “FAP fields” vs. “control fields” at two spatial scales (i.e., small and large fields).
- Evaluate the diversity and abundance of pests and their natural enemies in FAP and control fields using the same approach.
- Compare net income between FAP and control fields in small and large fields.
- Assess farmer perceptions of FAP through a questionnaire survey.
2. Materials and Methods
2.1. Study Sites
2.2. Experimental Design
2.3. Pollinator Sampling
2.4. Pests and Natural Enemies
2.5. Assessing Average Net Income from FAP and Control Fields
2.6. Farmers’ Perceptions of the FAP Approach
2.7. Statistical Analysis
3. Results
3.1. Pollinator Abundance and Diversity in Small and Large Fields
3.1.1. Field Level
3.1.2. MHEP Level
3.1.3. FAP Versus Control
3.2. Pests and Natural Enemy Abundance and Diversity in Small and Large Fields
3.3. Net Incomes from FAP and Control Fields in Small and Large Fields
3.4. Farmers’ Perceptions of FAP Practice
4. Discussion
4.1. FAP Enhances the Abundance and Diversity of Pollinators in Faba Bean Fields
4.2. Habitat Enhancement Plants and Different Functional Groups
4.3. Pest and Natural Enemy Abundance and Diversity
4.4. Income Benefits from FAP Fields
4.5. Farmers’ Point of View Concerning the FAP Approach
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hallmann, C.A.; Sorg, M.; Jongejans, E.; Siepel, H.; Hofland, N.; Schwan, H.; Stenmans, W.; Müller, A.; Sumser, H.; Hörren, T.; et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 2017, 12, e0185809. [Google Scholar] [CrossRef]
- Zattara, E.E.; Aizen, M.A. Worldwide occurrence records suggest a global decline in bee species richness. One Earth 2021, 4, 114–123. [Google Scholar] [CrossRef]
- Christmann, S. Do we realize the full impact of pollinator loss on other ecosystem services and the challenges for any restoration in terrestrial areas? Restor. Ecol. 2019, 27, 720–725. [Google Scholar] [CrossRef]
- Powney, G.D.; Carvell, C.; Edwards, M.; Morris, R.K.; Roy, H.E.; Woodcock, B.A.; Isaac, N.J. Widespread losses of pollinating insects in Britain. Nat. Commun. 2019, 10, 1018. [Google Scholar] [CrossRef] [PubMed]
- Dangles, O.; Casas, J. Ecosystem services provided by insects for achieving sustainable development goals. Ecosyst. Serv. 2019, 35, 109–115. [Google Scholar] [CrossRef]
- Vanbergen, A.J.; The Insect Pollinators Initiative. Threats to an ecosystem service: Pressures on pollinators. Front. Ecol. Environ. 2013, 11, 251–259. [Google Scholar] [CrossRef]
- Christmann, S. Regard and protect ground-nesting pollinators as part of soil biodiversity. Ecol. Appl. 2022, 32, e2564. [Google Scholar] [CrossRef]
- Deguines, N.; Jono, C.; Baude, M.; Henry, M.; Julliard, R.; Fontaine, C. Large-scale trade-off between agricultural intensification and crop pollination services. Front. Ecol. Environ. 2014, 12, 212–217. [Google Scholar] [CrossRef]
- Tschumi, M.; Albrecht, M.; Entling, M.H.; Jacot, K. High effectiveness of tailored flower strips in reducing pests and crop plant damage. Proc. R. Soc. B Biol. Sci. 2015, 282, 20151369. [Google Scholar] [CrossRef]
- Potts, S.G.; Imperatriz-Fonseca, V.; Ngo, H.T.; Aizen, M.A.; Biesmeijer, J.C.; Breeze, T.D.; Dicks, L.V.; Garibaldi, L.A.; Hill, R.; Settele, J.; et al. Safeguarding pollinators and their values to human well-being. Nature 2016, 540, 220–229. [Google Scholar] [CrossRef]
- Rani, L.; Thapa, K.; Kanojia, N.; Sharma, N.; Singh, S.; Singh, A.; Srivastav, A.L.; Kaushal, J. An extensive review on the consequences of chemical pesticides on human health and environment. J. Clean. Prod. 2021, 283, 124657. [Google Scholar] [CrossRef]
- Keulemans, W.; Bylemans, D.; De Coninck, B. Farming Without Plant Protection Products: Can We Grow Without Using Herbicides, Fungicides and Insecticides? European Parliament: Panel for the Future of Science and Technology: Brussels, Belgium, 2019; p. 44. [Google Scholar] [CrossRef]
- Christmann, S.; Aw-Hassan, A.; Rajabov, T.; Khamraev, A.S.; Tsivelikas, A. Farming with alternative pollinators increases yields and incomes of cucumber and sour cherry. Agron. Sustain. Dev. 2017, 37, 24. [Google Scholar] [CrossRef]
- Christmann, S.; Aw-Hassan, A.; Güler, Y.; Sarisu, H.C.; Bernard, M.; Smaili, M.C.; Tsivelikas, A. Two enabling factors for farmer-driven pollinator protection in low- and middle-income countries. Int. J. Agric. Sustain. 2021, 20, 54–67. [Google Scholar] [CrossRef]
- Schouten, C.; Calon, M.; Tweel, V.D.T. NL Pollinator Strategy “Bed & Breakfast for Bees”; Ministry of Agriculture, Nature and Food Quality Bezuidenhoutseweg: The Hague, The Netherlands, 2018. [Google Scholar]
- Anougmar, S. Economics of Pollination in Drylands: Farmers’ and Consumers’ Perspectives in a Middle-Income Country. Ph.D. Thesis, Université de Montpellier, Montpellier, France, 2021. [Google Scholar]
- Christmann, S.; Smaili, M.C.; Bencharki, Y. Synergies of Farming with Alternative Pollinators (FAP) and Certified Organic Farming for Transformative Change of Agriculture; CABI: Wallingford, UK, 2025; pp. 138–145. [Google Scholar] [CrossRef]
- Kleijn, D.; Bommarco, R.; Fijen, T.P.M.; Garibaldi, L.A.; Potts, S.G.; van der Putten, W.H. Ecological Intensification: Bridging the Gap between Science and Practice. Trends Ecol. Evol. 2019, 34, 154–166. [Google Scholar] [CrossRef]
- Kremen, C. Ecological intensification and diversification approaches to maintain biodiversity, ecosystem services and food production in a changing world. Emerg. Top Life Sci. 2020, 4, 229–240. [Google Scholar] [CrossRef]
- Christmann, S.; Bencharki, Y.; Anougmar, S.; Rasmont, P.; Smaili, M.C.; Tsivelikas, A.; Aw-Hassan, A. Farming with Alternative Pollinators benefits pollinators, natural enemies, and yields, and offers transformative change to agriculture. Sci. Rep. 2021, 11, 18206. [Google Scholar] [CrossRef]
- Christmann, S.; Bencharki, Y.; Sentil, A.; Smaili, M.C.; Ssymank, A.; Tsivelikas, A.; Aw-Hassan, A. Advantages of marketable habitat enhancement plants for pollinator protection notably in low-and middle-income countries. J. Environ. Manag. 2025, 389, 126088. [Google Scholar] [CrossRef]
- Christmann, S.; Aw-Hassan, A. Ecosystems and Environment Farming with alternative pollinators (FAP)—An overlooked win-win-strategy for climate change adaptation. Agric. Ecosyst. Environ. 2012, 161, 161–164. [Google Scholar] [CrossRef]
- Batáry, P.; Dicks, L.V.; Kleijn, D.; Sutherland, W.J. The role of agri-environment schemes in conservation and environmental management. Conserv. Biol. 2015, 29, 1006–1016. [Google Scholar] [CrossRef]
- Allebone-webb, A.S.; Gossrau, F.; Orland, C.; Bara, G.; Fioekou, C. Farming with Alternative Pollinators for Increased Biodiversity and Smallholder Incomes in Zimbabwe. Front. Agron. 2025, 7, 1646610. [Google Scholar] [CrossRef]
- Bencharki, Y.; Christmann, S.; Lhomme, P.; Ihsane, O.; Sentil, A.; El-Abdouni, I.; Hamroud, L.; Rasmont, P.; Michez, D. ‘Farming with alternative pollinators’ approach supports diverse and abundant pollinator community in melon fields in a semi-arid landscape. Renew. Agric. Food Syst. 2022, 38, e6. [Google Scholar] [CrossRef]
- Sentil, A.; Lhomme, P.; Michez, D.; Reverté, S.; Rasmont, P.; Christmann, S. “Farming with Alternative Pollinators” approach increases pollinator abundance and diversity in faba bean fields. J. Insect Conserv. 2021, 26, 401–414. [Google Scholar] [CrossRef]
- Clough, Y.; Kirchweger, S.; Kantelhardt, J. Field sizes and the future of farmland biodiversity in European landscapes. Conserv. Lett. 2020, 13, e12752. [Google Scholar] [CrossRef] [PubMed]
- Moretti, E.; Loreau, M.; Benzaquen, M. Farm Size Matters: A Spatially Explicit Ecological-Economic Framework for Biodiversity and Pest Management. arXiv 2025, arXiv:2505.17687. Available online: http://arxiv.org/abs/2505.17687 (accessed on 9 June 2025). [CrossRef]
- Garibaldi, L.A.; Carvalheiro, L.G.; Vaissière, B.E.; Gemmill-herren, B.; Hipólito, J.; Freitas, B.M.; Ngo, H.T.; Azzu, N.; Sáez, A.; Åström, J.; et al. Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science 2016, 351, 388–391. [Google Scholar] [CrossRef]
- El-Abdouni, I.; Lhomme, P.; Christmann, S.; Dorchin, A.; Sentil, A.; Pauly., A.; Hamroud, L.; Ihsane, O.; Reverté, S.; Patiny, S.; et al. Diversity and Relative Abundance of Insect Pollinators in Moroccan Agroecosystems. Front. Ecol. Evol. 2022, 10, 866581. [Google Scholar] [CrossRef]
- Michez, D.; Rasmont, P.; Terzo, M.; Vereecken, N.J. Bees of Europe; NAP Editions: Paris, France, 2019; Volume 1, p. 548. ISBN 978-2-913688-34-6. [Google Scholar]
- Bonsignore, C.P.; Vacante, V. Natural enemies. Integr. Control Citrus Pests Mediterr. Reg. 2012, 2016, 66–87. [Google Scholar] [CrossRef]
- R Development Core Team. A Language and Environment for Statistical Computing; R Foundation for Stat Computing: Vienna, Austria, 2023. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Lenth, R.V.; Bolker, B.; Buerkner, P.; Giné-Vázquez, I.; Herve, M.; Jung, M.; Love, J.; Miguez, F.; Piaskowski, J.; Riebl, H.; et al. Package ‘emmeans’: Estimated Marginal Means, aka Least-Squares Means. Am. Stat. 2023, 34, 216–221. [Google Scholar] [CrossRef]
- Kleiber, C.; Zeileis, A. Applied Econometrics with R; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–9. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019; ISBN 9781544336473. [Google Scholar]
- Kassambara, A. Practical Statistics in R II-Comparing Groups: Numerical Variables; Datanovia: Montpellier, France, 2019; p. 129. Available online: https://www.datanovia.com/en (accessed on 9 June 2025).
- Bencharki, Y.; Michez, D.; Smaili, M.C.; Ihsane, O.; Aw-hassan, A.; Ssymank, A. Beyond biodiversity: Does “Farming with Alternative Pollinators” also boost farmers’ income in wheat (Triticum aestivum L.) fields? A case study in Morocco. Front. Ecol. Evol. 2025, 13, 1551190. [Google Scholar] [CrossRef]
- Bencharki, Y.; Michez, D.; Ihsane, O.; Sara, R.; Aw-Hassan, A.; Smaili, M.C.; Ssymank, A.; Rasmont, P.; Christmann, S. “Farming with alternative pollinators” provides benefits also in large-scale fields. Acta Oecologica 2024, 122, 103978. [Google Scholar] [CrossRef]
- Garibaldi, L.A.; Bartomeus, I.; Bommarco, R.; Klein, A.M.; Cunningham, S.A.; Aizen, M.A.; Boreux, V.; Garratt, M.P.D.; Carvalheiro, L.G.; Kremen, C.; et al. Trait matching of flower visitors and crops predicts fruit set better than trait diversity. J. Appl. Ecol. 2015, 52, 1436–1444. [Google Scholar] [CrossRef]
- Ranjitha, M.; Koteswara, S.R.S.; Rajesh, A.; Reddi Shekhar, M.; Revanasidda. Insect pollinator fauna of coriander (Coriandrum sativum L.) ecosystem. J. Entomol. Zool. Stud. 2019, 7, 1609–1616. [Google Scholar]
- Kral-O’Brien, K.C.; Hovick, T.J.; Harmon, J.P. Quid Pro Quo? A Review on Bee Utilization of Pollinator-Independent Crops. Ann. Entomol. Soc. Am. 2022, 115, 1–9. [Google Scholar] [CrossRef]
- Beyer, N.; Kirsch, F.; Gabriel, D.; Westphal, C. Identity of mass-flowering crops moderates functional trait composition of pollinator communities. Landsc. Ecol. 2021, 36, 2657–2671. [Google Scholar] [CrossRef]
- Masierowska, M.L. Floral nectaries and nectar production in brown mustard (Brassica juncea) and white mustard (Sinapis alba) (Brassicaceae). Plant Syst. Evol. 2003, 238, 97–107. [Google Scholar] [CrossRef]
- Westphal, C.; Steffan-Dewenter, I.; Tscharntke, T. Mass flowering crops enhance pollinator densities at a landscape scale. Ecol. Lett. 2003, 6, 961–965. [Google Scholar] [CrossRef]
- Martin, E.A.; Reineking, B.; Seo, B.; Steffan-Dewenter, I. Natural enemy interactions constrain pest control in complex agricultural landscapes. Proc. Natl. Acad. Sci. USA 2013, 110, 5534–5539. [Google Scholar] [CrossRef]
- Losey, J.E.; Vaughan, M. The economic value of ecological services provided by insects. Bioscience 2006, 56, 311–323. [Google Scholar] [CrossRef]
- Albrecht, M.; Tschumi, M.; Blaauw, B.R. Global synthesis of the effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield. Environ. Sci. Agric. Food Sci. 2020, 23, 1488–1498. [Google Scholar] [CrossRef]
- Herrera, A.R.; Cotes, B.; Agustí, N.; Tasin, M.; Porcel, M. Using flower strips to promote green lacewings to control cabbage insect pests. J. Pest Sci. 2022, 95, 669–683. [Google Scholar] [CrossRef]
- Tschumi, M.; Albrecht, M.; Dubsky, V.; Herzog, F.; Jacot, K. Les bandes fleuries pour auxiliaires limitent les ravageurs dans les grandes cultures. Rech. Agron. Suisse 2016, 7, 260–267. [Google Scholar]
- Bianchi, F.J.J.A.; Booij, C.J.H.; Tscharntke, T. Sustainable pest regulation in agricultural landscapes: A review on landscape composition, biodiversity and natural pest control. Proc. R. Soc. B Biol. Sci. 2006, 273, 1715–1727. [Google Scholar] [CrossRef]
- Jonsson, M.; Kaartinen, R.; Straub, C.S. Relationships between natural enemy diversity and biological control. Curr. Opin. Insect Sci. 2017, 20, 1–6. [Google Scholar] [CrossRef]
- Gaba, S.; Bretagnolle, F.; Rigaud, T.; Philippot, L. Managing biotic interactions for ecological intensification of agroecosystems. Front. Ecol. Evol. 2014, 2, 29. [Google Scholar] [CrossRef]
- Lhomme, P.; Michez, D.; Christmann, S.; Scheuchl, E.; El-Abdouni, I.; Hamroud, L.; Ihsane, O.; Sentil, A.; Smaili, M.C.; Schwarz, M.; et al. The wild bees (Hymenoptera: Apoidea) of Morocco. Zootaxa 2020, 4892, 1–159. [Google Scholar] [CrossRef]
- Fijen, T.P.M.; Scheper, J.A.; Boom, T.M.; Janssen, N.; Raemakers, I.; Kleijn, D. Insect pollination is at least as important for marketable crop yield as plant quality in a seed crop. Ecol. Lett. 2018, 21, 1704–1713. [Google Scholar] [CrossRef]
- Sabbahi, R.; El Abdouni, I.; Lhomme, P.; Boubker, O.; Azzaoui, K.; Hammouti, B.; Neffa, M.; Hock, V. Public Attitudes towards Insect Pollinators in Morocco: Insights from a Pilot Study with Broader Applications. Diversity 2024, 16, 383. [Google Scholar] [CrossRef]
- Porto, R.G.; de Almeida, R.F.; Cruz-Neto, O.; Tabarelli, M.; Viana, B.F.; Peres, C.A.; Lopes, A.V. Pollination ecosystem services: A comprehensive review of economic values, research funding and policy actions. Food Secur. 2020, 12, 1425–1442. [Google Scholar] [CrossRef]
- Fijen, T.P.M.; Scheper, J.A.; Vogel, C.; van Ruijven, J.; Kleijn, D. Insect pollination is the weakest link in the production of a hybrid seed crop. Agric. Ecosyst. Environ. 2020, 290, 106743. [Google Scholar] [CrossRef]






| Region | Family | Species | Blooming Period | Blooming Duration (Day) | Small Fields | Large Fields |
|---|---|---|---|---|---|---|
| Sub-humid | Fabaceae | Vicia faba | 2 February to 1 April | 58 | - | 2021 |
| Apiaceae | Coriandrum sativum | 4 February to 1 April | 56 | - | 2021 | |
| Brassicaceae | Brassica napus | 1 February to 5 April | 62 | - | 2021 | |
| Fabaceae | Vicia faba | 31 January to 23 March | 51 | 2018–2019 | - | |
| Apiaceae | Coriandrum sativum | 2 March to 2 April | 31 | 2019 | ||
| Brassicaceae | Brassica napus | 10 February to 8 April | 57 | 2018–2019 | ||
| Lamiaceae | Salvia hispanica | 5 February to 14 April | 74 | 2018–2019 | - | |
| Apiaceae | Apium graveolens | 23 March to 14 May | 53 | 2019 | - | |
| Brassicaceae | Eruca vesicaria | 8 February to 12 April | 52 | 2018–2019 | - | |
| Fabaceae | Lupinus luteus | 26 February to 16 April | 59 | 2018 | - | |
| Fabaceae | Lathyrus sativus | 6 March to 12 April | 37 | 2019 | - | |
| Fabaceae | Medicago sativa | 2 March to 19 April | 48 | 2018 | - | |
| Fabaceae | Lupinus albus | 24 February to 11 April | 46 | 2018–2019 | ||
| Semi-arid | Fabaceae | Vicia faba | 2 February to 1 April | 58 | - | 2021 |
| Apiaceae | Coriandrum sativum | 10 February to 1 April | 48 | - | 2021 | |
| Brassicaceae | Brassica napus | 2 February to 5 April | 60 | - | 2021 | |
| Fabaceae | Vicia faba | 1 February to 19 March | 44 | 2018–2019 | - | |
| Apiaceae | Coriandrum sativum | 12 February to 21 March | 35 | 2019 | - | |
| Brassicaceae | Brassica napus | 8 February to 1 April | 50 | 2018–2019 | - | |
| Fabaceae | Lupinus albus | 13 February to 27 March | 40 | 2018 | - | |
| Fabaceae | Medicago sativa | 23 March to 12 April | 20 | 2018 | - |
| Region | Functional Group | Control | FAP | Region | Functional Group | Control | FAP |
|---|---|---|---|---|---|---|---|
| Semi-arid Settat | Long-tongue (L-T) bees | 47 | 215 | Sub-humid kenitra | Long-tongue (L-T) bees | 519 | 1230 |
| Short-tongue (L-T) bees | 225 | 723 | Short-tongue (L-T) bees | 58 | 331 | ||
| Syrphidae | 21 | 102 | Syrphidae | 10 | 46 | ||
| Wasps | 139 | 173 | Wasps | 16 | 70 |
| Region | Functional Group | Control | FAP | Region | Functional Group | Control | FAP |
|---|---|---|---|---|---|---|---|
| Semi-arid Settat | Long-tongue (L-T) bees | 214 | 622 | Sub-humid Sidi Slimane | Long-tongue (L-T) bees | 392 | 473 |
| Short-tongue (L-T) bees | 27 | 104 | Short-tongue (L-T) bees | 7 | 97 | ||
| Syrphidae | 105 | 283 | Syrphidae | 33 | 66 | ||
| Wasps | 28 | 54 | Wasps | 21 | 51 |
| Year | Region | Treatment | Average Number of Harvested Faba Bean 75–Zone | Average Weight of Harvested Faba Bean in kg/75% Zone | Average Income from 75% Zone in MAD | Average Total Net Income from 25% Zone | Average Net Income from 0.03 ha in MAD |
|---|---|---|---|---|---|---|---|
| 2018 | Semi-arid Settat | FAP | 8746 | 252 | 670 | 250 | 920 |
| Control | 5091 | 153 | 318 | 20 | 338 | ||
| Diff% | 72 | 64 | 110 | 1177 | 172 | ||
| 2019 | FAP | 6284 | 158 | 473 | 98 | 571 | |
| Control | 4225 | 92 | 275 | 34 | 309 | ||
| Diff% | 49 | 72 | 72 | 187 | 85 | ||
| 2018 | Sub-humid Kenitra | FAP | 7898 | 304 | 1011 | 602 | 1612 |
| Control | 8663 | 250 | 757 | 6 | 763 | ||
| Diff% | −9 | 21 | 34 | 10,035 | 111 | ||
| 2019 | FAP | 6493 | 254 | 762 | 195 | 957 | |
| Control | 5085 | 156 | 467 | 104 | 572 | ||
| Diff% | 27.69 | 63 | 63 | 87 | 67 |
| Region | Treatment | Average Number of Harvested Faba Bean 93–Zone | Average Weight of Harvested Faba Bean in kg/93% Zone | Average Income from 93% Zone in MAD | Average Total Net Income from 7% Zone | Average Net Income from 1 ha in MAD |
|---|---|---|---|---|---|---|
| Semi-arid Settat | FAP | 292,206 | 6972 | 20,916 | 854 | 21,770 |
| Control | 253,580 | 5387 | 16,162 | 1257 | 17,419 | |
| Difference% | 15 | 29 | 29 | −32 | 25 | |
| Sub-humid Sidi Slimane | FAP | 921,320 | 7651 | 19,127 | 965 | 20,092 |
| Control | 694,090 | 5026 | 12,565 | 1100 | 13,666 | |
| Difference% | 33 | 52 | 52 | −12 | 47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bencharki, Y.; Michez, D.; Lhomme, P.; Reverté Saiz, S.; Ihsane, O.; Sentil, A.; El Abdouni, I.; Hamroud, L.; Aw-Hassan, A.; Smaili, M.C.; et al. Insects’ and Farmers’ Responses to Pollinator-Related Habitat Improvement in Small and Large Faba Bean Fields in Morocco. Insects 2025, 16, 1164. https://doi.org/10.3390/insects16111164
Bencharki Y, Michez D, Lhomme P, Reverté Saiz S, Ihsane O, Sentil A, El Abdouni I, Hamroud L, Aw-Hassan A, Smaili MC, et al. Insects’ and Farmers’ Responses to Pollinator-Related Habitat Improvement in Small and Large Faba Bean Fields in Morocco. Insects. 2025; 16(11):1164. https://doi.org/10.3390/insects16111164
Chicago/Turabian StyleBencharki, Youssef, Denis Michez, Patrick Lhomme, Sara Reverté Saiz, Oumayma Ihsane, Ahlam Sentil, Insafe El Abdouni, Laila Hamroud, Aden Aw-Hassan, Moulay Chrif Smaili, and et al. 2025. "Insects’ and Farmers’ Responses to Pollinator-Related Habitat Improvement in Small and Large Faba Bean Fields in Morocco" Insects 16, no. 11: 1164. https://doi.org/10.3390/insects16111164
APA StyleBencharki, Y., Michez, D., Lhomme, P., Reverté Saiz, S., Ihsane, O., Sentil, A., El Abdouni, I., Hamroud, L., Aw-Hassan, A., Smaili, M. C., Rasmont, P., & Christmann, S. (2025). Insects’ and Farmers’ Responses to Pollinator-Related Habitat Improvement in Small and Large Faba Bean Fields in Morocco. Insects, 16(11), 1164. https://doi.org/10.3390/insects16111164

