An Integrative Revision of the Genus Rhamphus (Curculionidae) from the Western Palearctic: Morphological and Molecular Data Reveal the Radiation of Multiple Species †
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Acronyms
- BMNH—British Museum of Natural History, London, UK (M. Barclay)
- CBCC—Cesare Bellò collection, Castelfranco Veneto, Italy
- CBCM—Cosimo Baviera collection, Messina, Italy
- DLCQ—David Lessieur collection, Queyrac, France
- GACC—Gabriel Alziar collection, Cassagnes-Bégonhès, France
- HMCL—Howard Mendel collection, c/o British Museum of Natural History, London, UK
- ITCB—Ivo Toševski collection, Belgrade, Serbia
- IUCA—Iñigo Ugarte San Vicente, Agurain/Salvatierra, Spain
- JKCH—Jiri Kràtký collection, Hradec Králové, Czech Republic
- LFCP—Leonardo Forbicioni collection, Portoferraio, Italy
- MHNN—Muséum d’Histoire Naturelle de Nice, Nice, France (G. Lambert)
- MNHN—Muséum National d’Histoire Naturelle, Paris, France (H. Perrin)
- MSNM—Museo civico di Storia Naturale, Milano, Italy (F. Rigato)
- MTCM—Michele Tedeschi collection, Milano, Italy
- PSCC—Peter E. Stüben collection, Curculio Institute, Mönchengladbach, Germany.
- RCCM—Roberto Caldara collection, Milano, Italy
- SMCM—Sergio Monzini collection, Milano, Italy
- RGCL—Rafał Gosik collection, Lublin, Poland
2.2. Insect Sampling
2.3. Morphological Analysis
2.4. Molecular Analysis
2.5. Evolutionary Tree Construction and Haplotype Networks
3. Results
3.1. Morphological Study
3.2. Molecular Analysis
3.3. Treatment of the Species
- Rhamphus [Clairville]
- Rhamphus [Clairville], 1798: pl. xii type species Rhamphus flavicornis [Clairville], 1798 nomen oblitum (= Curculio oxyacanthae Marsham, 1802 nomen protectum) [31], Morimoto, 1984: 20 [32]. Kojima & Morimoto, 1996: 112, 114 [33]. Caldara et al., 2022: 375 [14]. Alonso-Zarazaga et al., 2023: 213 [1]. Caldara & Tedeschi, 2025: 3 [7].
- (1)
- Rhamphus oxyacanthae group
- Curculio oxyacanthae Marsham, 1802: 263 (nomen protectum). Caldara et al., 2022: 373 [14].
- Rhamphus oxyacanthae (Marsham). Hering, 1921: 126 [36].
- Rhamphus flavicornis [Clairville], 1798: 104 (nomen oblitum). Caldara et al. 2022: 375 [14].
- b. Rhamphus bavierai Diotti, Caldara & Toševski, 2021 (Figure 2C)
- Rhamphus bavierai Diotti, Caldara & Toševski, 2021: 115 [11].
- c. Rhamphus hampsicora Diotti, Caldara & Toševski, 2021 (Figure 2B)
- Rhamphus hampsicora Diotti, Caldara & Toševski, 2021: 117 [11].
- (2)
- Rhamphus cypricus group
- a. Rhamphus cypricus Toševski & Caldara sp. nov. (Figure 2G)
- LSID urn:lsid:zoobank.org:act:54F1C08D-2B97-4108-90FA-236008A59D8C
- b. Rhamphus macedonicus Toševski & Caldara sp. nov. (Figure 2H)
- LSID urn:lsid:zoobank.org:act:8A053162-AE6E-435F-A325-980CDD7EDB87
- (3)
- Rhamphus monzinii group
- b. Rhamphus diottii Toševski & Caldara sp. nov. (Figure 2E)
- LSID urn:lsid:zoobank.org:act:AFF3D3BD-6809-4991-AE34-7C22B806A2E4
- c. Rhamphus ibericus Toševski & Caldara sp. nov. (Figure 2F)
- LSID urn:lsid:zoobank.org:act:C32079EE-7E69-42EB-AB30-847265D913F3
- (4)
- Rhamphus subaeneus group
- a. Rhamphus subaeneus Illiger, 1808 (Figure 3G)
- (5)
- Rhamphus cerdanicus group
- (6)
- Rhamphus pulicarius group
- Curculio pulicarius Herbst, 1795:429 [41].
- b. Rhamphus crypticus Toševski & Caldara sp. nov. (Figure 3D)
- LSID urn:lsid:zoobank.org:act:4C1DA04C-9AAA-4765-91A3-E9AB75D66D28
- c. Rhamphus pullus Hustache, 1920 (stat. rev.) (Figure 3B)
- d. Rhamphus betulae Toševski & Caldara sp. nov. (Figure 3C)
- LSID urn:lsid:zoobank.org:act: 945DE07C-78E2-45DE-932E-8E3AC2B43A05
- (7)
- Rhamphus loebli group
- a. Rhamphus loebli Germann & Colonnelli, 2018 (Figure 3F)
- Rhamphus loebli Germann & Colonnelli, 2018: 192 [10].
- (8)
- Rhamphus hisamatsui group
- a. Rhamphus hisamatsui Chûjô & Morimoto, 1960 (Figure 3H)
- Rhamphus hisamatsui Chûjô & Morimoto, 1960: 4 [51].
3.4. Dichotomous Key to the Groups with a Synoptic Key to the Species
- Dorsal vestiture with distinct hair-like scales, which are recumbent on pronotum and subrecumbent on elytra. Claws appendiculate. On Sapindaceae and Betulaceae ........................................................................................................................................................... R. hisamatsui group (monobasic)
- (a)
- R. hisamatsui Chûjô & Morimoto (Figure 3H). Length 1.4–1.6 mm. Far Eastern Palearctic countries.
- −
- Dorsal vestiture without or at least with recumbent, indistinct, very short hair-like scales. Claws without appendices ...........................................................................…....………………………………………………………….…………………………... 2
- 2.
- Pro- and mesotibiae with long and thin uncus at outer angle reaching far beyond apex of tibiae. Metafemora very big. Corbels of metatibiae at the margin with conspicuous row of short and strong black thorns around apical half, reaching up half corbel length at outer margin, and only with sparse bright long spines. On Halimium (Cistaceae) ...………......……………………………….……….……………………..…………….……..……………. R. loebli group (monobasic)
- (a)
- R. loebli Germann & Colonnelli (Figure 3F). Length 1.4–1.8 mm. Portugal, Spain.
- −
- Pro- and mesotibiae with shorter uncus, hardly reaching beyond apex of tibiae. Metafemora smaller. Corbels of metatibiae mainly with long, stiff, and dense erect bright spines; black thorns are quite inconspicuous and only around the apex………................................................................................................................................................................................................. 3
- 3.
- Elytra and pronotum with distinctly rugulose, thick, somewhat opaque microsculpture……….............................................................................................................................................................................. 4
- −
- At least the elytral surface is rather shiny.…...................................................................................................................................................................................................... 5
- 4.
- Elytra black, without any metallic reflection. Body of penis slender and longer, distinctly gradually narrowing from base to apex in dorsal view, with apex delimited with thin membranous line. On Prunus spinosa (Rosaceae) ..............................................………………………………………………………………………...… R. cerdanicus group (monobasic)
- (a)
- R. cerdanicus Tempére (Figure 3E). Length 1.3–1.4 mm. France (Eastern Pyrenees), Northern Spain.
- −
- Elytra black with slight but evident bronze or greenish metallic shine. Body of penis shorter, with subparallel sides in dorsal view. On Crataegus (Rosaceae) ........................................................................................................ R. subaeneus group (monobasic)
- (a)
- R. subaeneus Illiger (Figure 3G). Length 1.5–1.8 mm. All of Europe.
- 5.
- Antennal scape subcylindrical, nearly as long as first funicular segment, and reddish like first funicular segments. Spaces of pronotal disc among punctures larger and more regular. Pro- and mesotibiae with distinctly more robust uncus (Figure 8B). Penis in lateral view curved only along its basal portion, then almost straight towards apex. On Salicaceae and Betulaceae ........................................................................................................…….....…….....…….....……..... R. pulicarius group (four species)
- (a)
- R. pulicarius (Herbst) (Figure 3A). Scape twice as long as it is wide, slightly longer, or as long as first segment of funicle, which is twice as long as it is wide. Body of penis long, with sides convergent from base to apex, with length of 1.5–2.0 mm. It is likely to be found throughout Europe on Salix spp.
- (b)
- R. crypticus Toševski & Caldara sp. nov. (Figure 3D). Scape 1.5× longer than wide and slightly shorter than segment of funicle, which is 1.5× longer than wide; antennae sometimes almost completely dark. Body of penis long, with parallel sides, and 1.5–2.0 mm in length. Great Britain, France, and Spain. Salix spp.
- (c)
- R. pullus Hustache (Figure 3B). Scape 1.5× longer than wide, slightly longer or as long as first segment of funicle, which is 1.5× longer than wide. Body of penis long, with parallel sides. Length 1.5–2.0 mm. Japan. Betula spp.
- (d)
- R. betulae Toševski & Caldara sp. nov. (Figure 3C). Scape 1.5× longer than wide, as long as first segment of funicle, which is 1.3× longer than wide. Body of penis short with sides convergent from base to apex. Length 1.5–2.0 mm. Italy, France, and Poland. Betula spp.
- −
- Antennal scape clubbed, much shorter than first funicular segment, and distinctly darker than first funicular segments. Spaces of pronotal disc among punctures narrower, confused, and irregular. Pro- and mesotibiae with distinctly smaller uncus (Figure 8A,C). Body of penis in lateral view strongly curved at least along its entire basal half..................................................................……....................................................................................................................………… 6
- 6.
- Pro- and mesotibiae with thinner uncus (Figure 8C). First segment of antennal funicle 1.7–1.8× longer than wide, subglobose, and widest at middle. Body of penis in dorsal view very stout, with sclerotized portion largely expanded over its dorsal portion; in lateral view, it uniformly tapers towards apex only at distal third. On Prunus spinosa and P. cerasifera (Rosaceae).................R. monzinii group (three species)
- (a)
- R. monzinii Pesarini & Diotti (Figure 2D). Second segment of antennal funicle 1.8–2.0× longer than wide, with elliptical elytral shape (El/Ew 1.25–1.30). Body of penis with sides slightly divergent in apical half, in lateral view with shorter apex. Length 1.2–1.5 mm. Northern Italy, Serbia, and Greece.
- (b)
- R. diottii Toševski & Caldara sp. nov. (Figure 2E). Second segment of funicle 2.0–2.2× longer than wide, with elliptical elytral shape (El/Ew 1.20–1.25). Body of penis with sides slightly convergent from base, in lateral view with longer apex. Length 1.4–1.7 mm. Serbia.
- (c)
- R. ibericus Toševski & Caldara sp. nov. (Figure 2F) Second segment of funicle 1.9–2.1× longer than wide. Elytra narrow (El/Ew 1.30–1.35), with sides only little rounded. Body of penis with parallel sides, not enlarged in apical third. Length 1.4–1.6 mm. Northern Spain.
- −
- Pro- and mesotibiae with more robust uncus (Figure 8A). First segment of antennal funicle 2.0–2.2× longer than wide, subconical, and gradually enlarged from base to apex. Penis in dorsal view moderately stout, its sclerotized portion not or only very slightly extended dorsally, and in lateral view gradually tapers towards apex at more than its distal half. On Rosaceae…...................................................…………………………....................................................................................................... 7
- 7.
- Body of penis in dorsal view with sides slightly narrowing from base to apex (Figure 2A–C). Associated with diverse genera of Rosaceae (Crataegus, Pyrus, Mespilus, and Prunus)........……………...………………………………………………………...…...………… R. oxyacanthae group (three species)
- (a)
- R. oxyacanthae (Marsham) (Figure 2A). Pronotum moderately conical (Pw/Pl 1.60–1.70). First tarsomere 2.2–2.5× longer than wide, second tarsomere 1.2–1.4× longer than wide. Body of penis in dorsal view nearly similar in width from base to apex, with rectilinear sides slightly narrowing from base to apex. Length 1.3–1.7 mm. Probably all of Europe.
- (b)
- R. bavierai Diotti, Caldara & Toševski (Figure 2C). Pronotum moderately conical (Pw/Pl 1.60–1.70). First tarsomere 3.0–3.3× longer than wide, second tarsomere 1.6–1.8× longer than wide. Body of penis in dorsal view with rectilinear sides slightly narrowing from base to apex. Length 1.4–1.9 mm. Sicily.
- (c)
- R. hampsicora Diotti, Caldara & Toševski (Figure 2B). Pronotum distinctly conical (Pw/Pl 1.75–1.85). First tarsomere 2.2–2.5× longer than wide, second tarsomere 1.2–1.4× longer than wide. Body of penis in dorsal view with slightly curved sides, moderately narrowing from base to apex. Length 1.5–2.0 mm. Sardinia.
- −
- Body of penis in dorsal view with parallel sides (Figure 2G,H). On Crataegus................................................................................................................................................ R. cypricus group (two species)
- (a)
- R. cypricus Toševski & Caldara sp. nov. (Figure 2G) Pronotum moderately conical (Pw/Pl 1.50–1.55). First tarsomere 2.7–2.9× longer than wide, second tarsomere 1.1–1.3× longer than wide. Length 1.4–1.7 mm. Cyprus.
- (b)
- R. macedonicus Toševski & Caldara sp. nov. (Figure 2H) Pronotum distinctly conical (Pw/Pl 1.45–1.50). First tarsomere is 2.8–3.1× longer than wide, second tarsomere 1.1–1.3× longer than wide. Length 1.2–1.5 mm. Greece.
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alonso–Zarazaga, M.A.; Barrios, H.; Borovec, R.; Bouchard, P.; Caldara, R.; Colonnelli, E.; Gültekin, L.; Hlaváč, P.; Korotyaev, B.; Lyal, C.H.C.; et al. Cooperative Catalogue of Palaearctic Coleoptera Curculionoidea, 2nd edition. Sociedad Entomológica Aragonesa. Monogr. Electrónicas SEA 2023, 14, 780. Available online: http://sea-entomologia.org/MeSEA14_2023.pdf (accessed on 1 November 2024).
- Hustache, A. Entomological expedition to Abyssinia, 1926–1927: Coleoptera, Curculionidae. Ann. Mag. Nat. Hist. 1936, 18, 483–505. [Google Scholar] [CrossRef]
- Marshall, G.A.K. New Curculionidae (Col.) from tropical Africa. Ann. Mag. Nat. Hist. 1946, 12, 429–448. [Google Scholar] [CrossRef]
- Voss, E. Ergebnisse der Zoologischen Nubien-Expedition 1962. Teil XXII. Coleoptera: Curculionidae (181. Beitrag zur Kenntnis der Curculioniden) (mit 2 Tafeln und 1 Textabbildung). Ann. Nat. Hist. Mus. Wien 1964, 67, 583–681. [Google Scholar]
- Korotyaev, B.A. New and little known species of the weevil genus Rhamphus from Sri Lanka, Ethiopia and Namibia (Coleoptera: Curculionidae). Zoosyst. Ross. 1994, 3, 107–110. [Google Scholar]
- Pullen, K.R.; Jennings, D.; Oberprieler, R.G. Annotated catalogue of Australian weevils (Coleoptera: Curculionoidea). Zootaxa 2014, 3896, 1–481. [Google Scholar] [CrossRef] [PubMed]
- Caldara, R.; Tedeschi, M. The Weevil Genus Rhamphus (Curculionidae, Curculioninae) in Southern Africa—Description of Thirteen New Species. Insects 2025, 16, 454. [Google Scholar] [CrossRef]
- Tempère, G. Les Rhamphus de la faune française. Description d’une espèce nouvelle (Col. Curculionidae). L’Entomologiste 1982, 38, 9–16. [Google Scholar]
- Pesarini, C.; Diotti, L. Rhamphus monzinii, nuova specie del Piemonte (Coleoptera Curculionidae). Nat. Hist. Sci. 2012, 153, 111–117. [Google Scholar] [CrossRef]
- Germann, C.; Colonnelli, E. A new species from Portugal and a replacement name in Rhamphus Clairville, 1798 (Coleoptera, Curculionidae). Entomol. Blätter Und Coleopt. 2018, 114, 191–195. [Google Scholar]
- Diotti, L.; Caldara, R.; Toševski, I. Description of two new species of Rhamphus related to R. oxyacanthae (Curculionidae, Curculioninae, Rhamphini) from Italy based on a morphological study supported by molecular data. Zootaxa 2021, 4995, 111–128. [Google Scholar] [CrossRef]
- Bickford, D.; Lohman, D.J.; Sodhi, N.S.; Ng, P.K.; Meier, R.; Winker, K.; Ingram, K.K.; Das, I. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 2007, 22, 148–155. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, Q.; Deng, J.; Liu, Q.; Huang, X. The devil is in the details: Problems in DNA barcoding practices indicated by systematic evaluation of insect barcodes. Front. Ecol. Evol. 2023, 11, 1149839. [Google Scholar] [CrossRef]
- Caldara, R.; Toševski, I.; Mendel, H.; Germann, C. In search of some type-specimens of Rhamphus [Clairville], 1798 (Coleoptera: Curculionidae). Zootaxa 2022, 5169, 371–380. [Google Scholar] [CrossRef]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoanin vertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Hebert, P.D.N.; Penton, E.H.; Burns, J.M.; Janzen, D.H.; Hallwachs, W. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci. USA 2004, 101, 14812–14817. [Google Scholar] [CrossRef]
- Germain, J.F.; Chatot, C.; Meusnier, I.; Artige, E.; Rasplus, J.Y.; Cruaud, A. Molecular identification of Epitrix potato flea beetles (Coleoptera: Chrysomelidae) in Europe and North America. Bull. Entomol. Res. 2013, 103, 354–362. [Google Scholar] [CrossRef]
- Hernández-Vera, G.; Caldara, R.; Toševski, I.; Emerson, B.C. Molecular phylogenetic analysis of archival tissue reveals the origin of a disjunct southern African–Palaearctic weevil radiation. J. Biogeogr. 2013, 40, 1348–1359. [Google Scholar] [CrossRef]
- Dole, S.A.; Jordal, B.H.; Cognato, A.I. Polyphyly of Xylosandrus Reitter inferred from nuclear and mitochondrial genes (Coleoptera: Curculionidae: Scolytinae). Mol. Phylo. Evol. 2010, 54, 773–782. [Google Scholar] [CrossRef]
- Danforth, B.N.; Fang, J.; Sipes, S. Analysis of family-level relationships in bees (Hymenoptera: Apiformes) using 28S and two previously unexplored nuclear genes: CAD and RNA polymerase II. Mol. Phylo. Evol. 2006, 39, 358–372. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Huelsenbeck, J.P.; Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17, 754–755. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef]
- Degnan, J.H.; Rosenberg, N.A. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol. Evol. 2009, 24, 332–340. [Google Scholar] [CrossRef]
- Linnen, C.R.; Farrell, B.D. Mitonuclear discordance is caused by rampant mitochondrial introgression in Neodiprion (Hymenoptera: Diprionidae) sawflies. Evolution 2007, 61, 1417–1438. [Google Scholar] [CrossRef]
- Posada, D.; Crandall, K.A. Intraspecific gene genealogies: Trees grafting into networks. Trends Ecol. Evol. 2001, 16, 37–45. [Google Scholar] [CrossRef]
- Leigh, J.W.; Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Bandelt, H.J.; Forster, P.; Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. and Evol. 1999, 16, 37–48. [Google Scholar] [CrossRef]
- Kolaczkowski, B.; Thornton, J.W. Long-branch attraction bias and inconsistency in Bayesian phylogenetics. PLoS ONE 2009, 4, e7891. [Google Scholar] [CrossRef]
- Clairville, J.P. Entomologie Helvetique ou Catalogue des Insectes de la Suisse Ranges D’Après une Nouvelle Methode, avec Descriptions et Figures (Helvetische Entomologie oder Verzeichniss der Schweizerischen Insecten Nach Einer Neuen Methode Geordnet. Mit Beschreibungen und Abbildungen); Chez Orell, Fussli et Compagnie, Zuric/Zurich and Fussli und Compagnie, Bei Orell: Zurich, Switzerland, 1798; Volume 1, p. 149. [Google Scholar]
- Morimoto, K. The family Curculionidae of Japan. IV. Subfamily Rhynchaeninae. Esakia 1984, 22, 5–76. [Google Scholar] [CrossRef]
- Kojima, H.; Morimoto, K. Systematics of the flea weevils of the tribe Ramphini (Coleoptera, Curculionidae) from East Asia 2. Phylogenetic analysis and higher classification. Esakia 1996, 36, 97–134. [Google Scholar] [CrossRef]
- Magnano, L.; Colonnelli, E.; Caldara, R. Order Coleoptera, superfamily Curculionoidea. Families Anthribidae, Brentidae, Apionidae, Nanophyidae, Curculionidae and Dryophthoridae. Arthropod Fauna UAE 2009, 2, 216–266. [Google Scholar]
- Korotyaev, B.A. K poznaniyu fauny zhukov-dolgonosikov (Coleoptera, Apionidae, Curculionidae) Mongolii i sopredel’nyh s ney territoriy. II. Nasek. Mongolii 1984, 9, 311–355. [Google Scholar]
- Hering, M. Minenstudien II. Neue Blattminen, Neubeschreibung von Rhamphus oxyacanthae Marsh. und eine Bestimmungstabelle der Blattminen an Crataegus L.(Mit einer Tafel und 3 Textabbildungen.). Berliner Entomol. Z. 1921, 3, 123–147. [Google Scholar] [CrossRef]
- Hustache, A. Tableaux analytiques des coléoptères de la Faune Franco-Rhénane (France, Hollande, Belgique, Région rhénane, Valais). In Famille LXXIX Curculionidae Tribu: Apioninae; Publications des Miscellanea Entomologica: Toulouse, France, 1931; p. 286. [Google Scholar]
- Boheman, C.H. [new taxa]. In Genera et species curculionidum, cum synonymia hujus familiae. Species Novae aut Hactenus Minus Cognitae, Descriptionibus a Dom. Leonardo Gyllenhal, C.H. Boheman, et Entomologis Aliis Illustratae; Tomus primus.—Pars prima; Schoenherr, C.J., Ed.; Roret: Paris, France, 1833; pp. i–xv+1–381. [Google Scholar]
- Csiki, E. Coleoptera nova ex Hungaria. Ann. Hist.-Nat. Musei Natl. Hung. 1905, 3, 575–582. [Google Scholar]
- Hoffmann, A. Faune de France 62 Coléoptères curculionides (Troisième partie); Lechevalier: Paris, France, 1958; pp. 1209–1839. [Google Scholar]
- Herbst, J.F.W. Natursystem Aller Bekannten in und Ausländischen Insekten, als eine Fortsetzung der von Büffonschen Naturgeschichte; Der Käfer Sechster Theil; Joachim Pauli: Berlin, Germany, 1795; pp. xxiv+520, pls. LX-XCV. [Google Scholar]
- Stephens, J.F. Illustrations of British Entomology; or, a Synopsis of Indigenous Insects: Containing Their Generic and Specific Distinctions; with an Account of Their Metamorphoses, Times of Appearance, Localities, Food, and Economy, as Far as Practicable. Mandibulata; Baldwin, Cradock: London, UK, 1831; 413p. [Google Scholar]
- Scherf, H. Die Entwicklungsstadien mitteleuropaischen curculioniden (Morphologie, Bionomie, Okologie). Abh. Seckenberg. Naturforsch. Ges. 1964, 506, 1–335. [Google Scholar]
- Smreczyński, S. Klucze do oznaczania owadów polski. Coleoptera, Curculionidae, Curculioninae. Pol. Tow. Entomol. 1976, 19, 1–115. [Google Scholar]
- Hustache, A. Contribution à la faune entomologique du Japon: Coléoptères curculionides. Bull. Du Muséum Natl. D’histoire Nat. Paris 1920, 26, 630–637. [Google Scholar]
- Kôno, H. Die biologischen Gruppen der Rhynchitinen, Attelabinen und Apoderinen. J. Fac. Agric. Hokkaido Imp. Univ. 1930, 29, 1–36. [Google Scholar]
- Kôno, H. Die Curculioniden aus den Kurilen. II. (Fünfter Beitrag zur Kenntnis der Käferfauna der Kurilen). Insecta Matsumurana 1935, 10, 52–63. [Google Scholar]
- Voss, E. Ein Beitrag zur Kenntnis der Curculioniden im Grenzgebiet der orientalischen und paläarktischen Region (Col, Curc.). Die von J. Klapperich und Tschung Sen in der Provinz Fukien gesammelten Rüsselkäfer. (132. Beitrag zur Kenntnis der Curculioniden). Decheniana (Beihefte) 1958, 5, 1–140. [Google Scholar]
- Morimoto, K. Provisional check list of the family Curculionidae of Japan. I. Sci. Bull. Fac. Agric. Kyushu Univ. 1962, 19, 183–217. [Google Scholar]
- Nakane, T. Curculionidae. In Iconographia Insectorum Japonicorum Colore Natuurali Edita, II; Nakane, T., Obayashi, K., Nomura, S., Kurosawa, Y., Eds.; Hokuryukan: Tokyo, Japan, 1963; 443p, 192 col. pls. (In Japanese) [Google Scholar]
- Chûjô, M.; Morimoto, K. Curculionid-beetles from the Hachijô Islands (I). Entomol. Rev. Jpn. 1960, 11, 3–6. [Google Scholar]
- Hebert, P.D.; Cywinska, A.; Ball, S.L.; DeWaard, J.R. Biological identifications through DNA barcodes. Proc. R Soc. Lond. B Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef]
- Taylor, H.R.; Harris, W.E. An emergent science on the brink of irrelevance: A review of the past 8 years of DNA barcoding. Mol. Ecol Res. 2012, 12, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Cracraft, J. Species concepts in theoretical and applied biology: A systematic debate with consequences. In Species Concepts and Phylogenetic Theory; Wheeler, Q.D., Meier, R., Eds.; Columbia University Press: New York, NY, USA, 2000; pp. 3–15. [Google Scholar]
- Jacobsen, F.; Friedman, N.R.; Omland, K.E. Congruence between nuclear and mitochondrial DNA: Combination of multiple nuclear introns resolves a well-supported phylogeny of New World orioles (Icterus). Mol. Phylogenet. Evol. 2010, 56, 419–427. [Google Scholar] [CrossRef] [PubMed]
- De Queiroz, K. Species concepts and species delimitation. Syst. Biol. 2007, 56, 879–886. [Google Scholar] [CrossRef]
- Cho, S.; Mitchell, A.; Regier, J.C.; Mitter, C.; Poole, R.W.; Friedlander, T.P.; Zhao, S. A highly conserved nuclear gene for low-level phylogenetics: Elongation factor-1 alpha recovers morphology-based tree for heliothine moths. Mol. Biol Evol. 1995, 12, 650–656. [Google Scholar]
- Gorring, P.S.; Cognato, A.I. The case for a nuclear barcode: Using the CAD CPS region for species and genus level discrimination in beetles. Diversity 2023, 15, 847. [Google Scholar] [CrossRef]
- Zink, R.M.; Barrowclough, G.F. Mitochondrial DNA under siege in avian phylogeography. Mol. Ecol. 2008, 17, 2107–2121. [Google Scholar] [CrossRef]
- Ballard, J.W.O.; Whitlock, M.C. The incomplete natural history of mitochondria. Mol. Ecol. 2004, 13, 729–744. [Google Scholar] [CrossRef]
- Coope, G.R. The response of insect faunas to glacial-interglacial climatic fluctuations. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1994, 344, 19–26. [Google Scholar]
- Toews, D.P.; Brelsford, A. The biogeography of mitochondrial and nuclear discordance in animals. Mol. Ecol. 2012, 21, 3907–3930. [Google Scholar] [CrossRef]
- Vergilino, R.; Markova, S.; Ventura, M.; Manca, M.; Dufresne, F. Reticulate evolution of the Daphnia pulex complex as revealed by nuclear markers. Mol. Ecol. 2011, 20, 1191–1207. [Google Scholar] [CrossRef] [PubMed]
- Winkler, I.S.; Blaschke, J.D.; Davis, D.J.; Stireman, J.O., III; O’Hara, J.E.; Cerretti, P.; Moulton, J.K. Explosive radiation or uninformative genes? Origin and early diversification of tachinid flies (Diptera: Tachinidae). Mol. Phylo. Evol. 2015, 88, 38–54. [Google Scholar] [CrossRef] [PubMed]
- Choleva, L.; Musilova, Z.; Kohoutova-Sediva, A.; Paces, J.; Rab, P.; Janko, K. Distinguishing between incomplete lineage sorting and genomic introgressions: Complete fixation of allospecific mitochondrial DNA in a sexually reproducing fish (Cobitis; Teleostei), despite clonal reproduction of hybrids. PLoS ONE 2014, 9, e80641. [Google Scholar] [CrossRef] [PubMed]
- Rulik, B.; Eberle, J.; von der Mark, L.; Thormann, J.; Jung, M.; Köhler, F.; Apfel, W.; Weigel, A.; Kopetz, A.; Köhler, J.; et al. Using taxonomic consistency with semi-automated data pre-processing for high quality DNA barcodes. Methods Ecol. Evol. 2017, 8, 1878–1887. [Google Scholar] [CrossRef]
- Cicconardi, F.; Nardi, F.; Emerson, B.C.; Frati, F.; Fanciulli, P.P. Deep phylogeographic divisions and long-term persistence of forest invertebrates (Hexapoda: Collembola) in the North-Western Mediterranean basin. Mol. Ecol. 2010, 19, 386–400. [Google Scholar] [CrossRef]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toševski, I.; Caldara, R.; Jović, J.; Baviera, C.; Ugarte San Vicente, I.; Krstić, O. An Integrative Revision of the Genus Rhamphus (Curculionidae) from the Western Palearctic: Morphological and Molecular Data Reveal the Radiation of Multiple Species. Insects 2025, 16, 1123. https://doi.org/10.3390/insects16111123
Toševski I, Caldara R, Jović J, Baviera C, Ugarte San Vicente I, Krstić O. An Integrative Revision of the Genus Rhamphus (Curculionidae) from the Western Palearctic: Morphological and Molecular Data Reveal the Radiation of Multiple Species. Insects. 2025; 16(11):1123. https://doi.org/10.3390/insects16111123
Chicago/Turabian StyleToševski, Ivo, Roberto Caldara, Jelena Jović, Cosimo Baviera, Iñigo Ugarte San Vicente, and Oliver Krstić. 2025. "An Integrative Revision of the Genus Rhamphus (Curculionidae) from the Western Palearctic: Morphological and Molecular Data Reveal the Radiation of Multiple Species" Insects 16, no. 11: 1123. https://doi.org/10.3390/insects16111123
APA StyleToševski, I., Caldara, R., Jović, J., Baviera, C., Ugarte San Vicente, I., & Krstić, O. (2025). An Integrative Revision of the Genus Rhamphus (Curculionidae) from the Western Palearctic: Morphological and Molecular Data Reveal the Radiation of Multiple Species. Insects, 16(11), 1123. https://doi.org/10.3390/insects16111123

