The Use of Disabled Insecticidal Proteins (DIPs) to Investigate the Interaction Between Aedes aegypti-Active Toxins from Bacillus thuringiensis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Strains and Plasmids
2.2. Toxin Preparation and Mosquito Bioassay
3. Results
3.1. Cry2AaDIP and Cry2Ab Inhibit the Activity of Cry2Aa to Different Extents
3.2. Interactions Between Other A. aegypti-Active Toxins
3.3. Cry11AaDIP and Cry41Aa Also Only Partially Inhibit Cry2Aa
3.4. Cry1Aa and Cry1Ac Could Also Inhibit the Activity of the Mosquitocidal Toxins
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schnepf, E.; Crickmore, N.; Van Rie, J.; Lereclus, D.; Baum, J.; Feitelson, J.; Zeigler, D.R.; Dean, D.H. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 1998, 62, 775–806. [Google Scholar] [CrossRef]
- Jurat-Fuentes, J.L.; Crickmore, N. Specificity determinants for Cry insecticidal proteins: Insights from their mode of action. J. Invertebr. Pathol. 2017, 142, 5–10. [Google Scholar] [CrossRef]
- Jurat-Fuentes, J.L.; Heckel, D.G.; Ferre, J. Mechanisms of Resistance to Insecticidal Proteins from Bacillus thuringiensis. Annu. Rev. Entomol. 2021, 66, 121–140. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, M.U.G.; Reiner, R.C., Jr.; Brady, O.J.; Messina, J.P.; Gilbert, M.; Pigott, D.M.; Yi, D.; Johnson, K.; Earl, L.; Marczak, L.B.; et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol. 2019, 4, 854–863. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, K.D.S.; Crespo, M.M.; Araujo, A.P.; da Silva, R.S.; de Melo-Santos, M.A.V.; de Oliveira, C.M.F.; Silva-Filha, M. Long-term exposure of Aedes aegypti to Bacillus thuringiensis svar. israelensis did not involve altered susceptibility to this microbial larvicide or to other control agents. Parasit. Vectors 2018, 11, 673. [Google Scholar] [CrossRef] [PubMed]
- Wirth, M.C.; Jiannino, J.A.; Federici, B.A.; Walton, W.E. Synergy between toxins of Bacillus thuringiensis subsp. israelensis and Bacillus sphaericus. J. Med. Entomol. 2004, 41, 935–941. [Google Scholar] [CrossRef]
- Jimenez, A.I.; Reyes, E.Z.; Cancino-Rodezno, A.; Bedoya-Perez, L.P.; Caballero-Flores, G.G.; Muriel-Millan, L.F.; Likitvivatanavong, S.; Gill, S.S.; Bravo, A.; Soberon, M. Aedes aegypti alkaline phosphatase ALP1 is a functional receptor of Bacillus thuringiensis Cry4Ba and Cry11Aa toxins. Insect Biochem. Mol. Biol. 2012, 42, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Aimanova, K.; Gill, S.S. Functional characterization of Aedes aegypti alkaline phosphatase ALP1 involved in the toxicity of Cry toxins from Bacillus thuringiensis subsp. israelensis and jegathesan. Peptides 2017, 98, 78–85. [Google Scholar] [CrossRef]
- Pacheco, S.; Gallegos, A.S.; Pelaez-Aguilar, A.E.; Sanchez, J.; Gomez, I.; Soberon, M.; Bravo, A. CRISPR-Cas9 knockout of membrane-bound alkaline phosphatase or cadherin does not confer resistance to Cry toxins in Aedes aegypti. PLoS Negl. Trop. Dis. 2024, 18, e0012256. [Google Scholar] [CrossRef]
- Chen, J.; Aimanova, K.G.; Fernandez, L.E.; Bravo, A.; Soberon, M.; Gill, S.S. Aedes aegypti cadherin serves as a putative receptor of the Cry11Aa toxin from Bacillus thuringiensis subsp. israelensis. Biochem. J. 2009, 424, 191–200. [Google Scholar] [CrossRef]
- Dechklar, M.; Tiewsiri, K.; Angsuthanasombat, C.; Pootanakit, K. Functional expression in insect cells of glycosylphosphatidylinositol-linked alkaline phosphatase from Aedes aegypti larval midgut: A Bacillus thuringiensis Cry4Ba toxin receptor. Insect Biochem. Mol. Biol. 2011, 41, 159–166. [Google Scholar] [CrossRef]
- Wang, J.; Yang, X.; He, H.; Chen, J.; Liu, Y.; Huang, W.; Ou, L.; Yang, Z.; Guan, X.; Zhang, L.; et al. Knockout of Two Cry-Binding Aminopeptidase N Isoforms Does Not Change Susceptibility of Aedes aegypti Larvae to Bacillus thuringiensis subsp. israelensis Cry4Ba and Cry11Aa Toxins. Insects 2021, 12, 223. [Google Scholar] [CrossRef] [PubMed]
- Jerga, A.; Evdokimov, A.G.; Moshiri, F.; Haas, J.A.; Chen, M.; Clinton, W.; Fu, X.; Halls, C.; Jimenez-Juarez, N.; Kretzler, C.N.; et al. Disabled insecticidal proteins: A novel tool to understand differences in insect receptor utilization. Insect Biochem. Mol. Biol. 2019, 105, 79–88. [Google Scholar] [CrossRef]
- Widner, W.R.; Whiteley, H.R. Two highly related insecticidal crystal proteins of Bacillus thuringiensis subsp. kurstaki possess different host range specificities. J. Bacteriol. 1989, 171, 965–974. [Google Scholar] [CrossRef]
- Shu, C.; Zhang, F.; Chen, G.; Joseph, L.; Barqawi, A.; Evans, J.; Song, F.; Li, G.; Zhang, J.; Crickmore, N. A natural hybrid of a Bacillus thuringiensis Cry2A toxin implicates Domain I in specificity determination. J. Invertebr. Pathol. 2017, 150, 35–40. [Google Scholar] [CrossRef]
- Goje, L.J.; Elmi, E.D.; Bracuti, A.; Courty, T.; Rao, T.; Alzahrani, F.A.; Crickmore, N. Identification of Aedes aegypti specificity motifs in the N-terminus of the Bacillus thuringiensis Cry2Aa pesticidal protein. J. Invertebr. Pathol. 2020, 174, 107423. [Google Scholar] [CrossRef] [PubMed]
- Ay Alzahrani, F.; Crickmore, N. N-terminal proteolysis determines the differential activity of Bacillus thuringiensis Cry2A toxins towards Aedes aegypti. J. Invertebr. Pathol. 2024, 204, 108100. [Google Scholar] [CrossRef]
- Bryce-Sharron, N.; Nasiri, M.; Powell, T.; West, M.J.; Crickmore, N. A shared receptor suggests a common ancestry between an insecticidal Bacillus thuringiensis Cry protein and an anti-cancer parasporin. Biomolecules 2024, 14, 795. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Villarreal, S.E.; Garcia-Montelongo, M.; Ibarra, J.E. Insecticidal Activity of a Cry1Ca toxin of Bacillus thuringiensis Berliner (Firmicutes: Bacillaceae) and Its Synergism with the Cyt1Aa Toxin Against Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 2020, 57, 1852–1856. [Google Scholar] [CrossRef]
- Crickmore, N.; Bone, E.J.; Williams, J.A.; Ellar, D.J. Contribution of the individual components of the delta-endotoxin crystal to the mosquitocidal activity of Bacillus thuringiensis subsp. israelensis. FEMS Microbiol. Lett. 1995, 131, 249–254. [Google Scholar] [CrossRef]
- Carmona, D.; Rodriguez-Almazan, C.; Munoz-Garay, C.; Portugal, L.; Perez, C.; de Maagd, R.A.; Bakker, P.; Soberon, M.; Bravo, A. Dominant negative phenotype of Bacillus thuringiensis Cry1Ab, Cry11Aa and Cry4Ba mutants suggest hetero-oligomer formation among different Cry toxins. PLoS ONE 2011, 6, e19952. [Google Scholar] [CrossRef]
- Knight, P.J.; Crickmore, N.; Ellar, D.J. The receptor for Bacillus thuringiensis CrylA(c) delta-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N. Mol. Microbiol. 1994, 11, 429–436. [Google Scholar] [CrossRef]
- Sangadala, S.; Walters, F.S.; English, L.H.; Adang, M.J. A mixture of Manduca sexta aminopeptidase and phosphatase enhances Bacillus thuringiensis insecticidal CryIA(c) toxin binding and 86Rb(+)-K+ efflux in vitro. J. Biol. Chem. 1994, 269, 10088–10092. [Google Scholar] [CrossRef]
- Krishnamoorthy, M.; Jurat-Fuentes, J.L.; McNall, R.J.; Andacht, T.; Adang, M.J. Identification of novel Cry1Ac binding proteins in midgut membranes from Heliothis virescens using proteomic analyses. Insect Biochem. Mol. Biol. 2007, 37, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Ayra-Pardo, C.; Raymond, B.; Gulzar, A.; Rodriguez-Cabrera, L.; Moran-Bertot, I.; Crickmore, N.; Wright, D.J. Novel genetic factors involved in resistance to Bacillus thuringiensis in Plutella xylostella. Insect Mol. Biol. 2015, 24, 589–600. [Google Scholar] [CrossRef]
- Tanaka, S.; Endo, H.; Adegawa, S.; Kikuta, S.; Sato, R. Functional characterization of Bacillus thuringiensis Cry toxin receptors explains resistance in insects. FEBS J. 2016, 283, 4474–4490. [Google Scholar] [CrossRef] [PubMed]
- Ballester, V.; Granero, F.; Tabashnik, B.E.; Malvar, T.; Ferre, J. Integrative model for binding of Bacillus thuringiensis toxins in susceptible and resistant larvae of the diamondback moth (Plutella xylostella). Appl. Environ. Microbiol. 1999, 65, 1413–1419. [Google Scholar] [CrossRef] [PubMed]
- Endo, H. Molecular and Kinetic Models for Pore Formation of Bacillus thuringiensis Cry Toxin. Toxins 2022, 14, 433. [Google Scholar] [CrossRef]
- Tetreau, G.; Stalinski, R.; David, J.P.; Despres, L. Monitoring resistance to Bacillus thuringiensis subsp. israelensis in the field by performing bioassays with each Cry toxin separately. Mem. Inst. Oswaldo Cruz 2013, 108, 894–900. [Google Scholar] [CrossRef]
- Gressel, J.; Gassmann, A.J.; Owen, M.D. How well will stacked transgenic pest/herbicide resistances delay pests from evolving resistance? Pest. Manag. Sci. 2017, 73, 22–34. [Google Scholar] [CrossRef]
- Canton, P.E.; Zanicthe Reyes, E.Z.; Ruiz de Escudero, I.; Bravo, A.; Soberon, M. Binding of Bacillus thuringiensis subsp. israelensis Cry4Ba to Cyt1Aa has an important role in synergism. Peptides 2011, 32, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Perez, C.; Fernandez, L.E.; Sun, J.; Folch, J.L.; Gill, S.S.; Soberon, M.; Bravo, A. Bacillus thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor. Proc. Natl. Acad. Sci. USA 2005, 102, 18303–18308. [Google Scholar] [CrossRef] [PubMed]

| Competitor | Cry2AaDIP | Cry1CaDIP | Cry2Ab | Cry11AaDIP | Cry41Aa | |
|---|---|---|---|---|---|---|
| Toxin | ||||||
| Cry2Aa | Complete | Partial | Partial | Partial | Partial | |
| Cry1Ca | Complete | Complete | Complete | Complete | Complete | |
| Cry4Aa | Complete | ND | Complete | Complete | Complete | |
| Cry4Ba | Complete | Complete | Complete | Complete | Complete | |
| Cry11Aa | Complete | Complete | Complete | Complete | Complete | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Igwe, N.; Crickmore, N. The Use of Disabled Insecticidal Proteins (DIPs) to Investigate the Interaction Between Aedes aegypti-Active Toxins from Bacillus thuringiensis. Insects 2025, 16, 1085. https://doi.org/10.3390/insects16111085
Igwe N, Crickmore N. The Use of Disabled Insecticidal Proteins (DIPs) to Investigate the Interaction Between Aedes aegypti-Active Toxins from Bacillus thuringiensis. Insects. 2025; 16(11):1085. https://doi.org/10.3390/insects16111085
Chicago/Turabian StyleIgwe, Nelly, and Neil Crickmore. 2025. "The Use of Disabled Insecticidal Proteins (DIPs) to Investigate the Interaction Between Aedes aegypti-Active Toxins from Bacillus thuringiensis" Insects 16, no. 11: 1085. https://doi.org/10.3390/insects16111085
APA StyleIgwe, N., & Crickmore, N. (2025). The Use of Disabled Insecticidal Proteins (DIPs) to Investigate the Interaction Between Aedes aegypti-Active Toxins from Bacillus thuringiensis. Insects, 16(11), 1085. https://doi.org/10.3390/insects16111085

