Comparative Transcriptome Analysis of Rhynchophorus ferrugineus (Coleoptera: Curculionidae) Reveals Potential Mechanisms Involved in the Toxication and Detoxification of the External Immune Compound p-Benzoquinone Present in Oral Secretions
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Collection and Rearing
2.2. Preparation of Pathogen Suspensions
2.3. In Vitro Infection of RPW Larvae by Pathogens
2.4. Effects of Pathogen Stress on the External Immune Defense of RPW Larvae
2.4.1. Collection of Oral Secretions
2.4.2. Measurement of Secretion Levels
2.4.3. Quantitative Determination of PBQ in Oral Secretions
2.4.4. Antimicrobial Efficacy Assay
2.5. Evaluation of the Biological Activity of the External Immune Compound PBQ on RPW Larvae
2.6. Screening of Key Regulatory Genes from RPW Larvae Involved in the Toxication and Detoxification of PBQ
2.6.1. Extraction of Total RNA
2.6.2. Transcriptome Sequencing
2.7. Data Analysis
3. Results
3.1. Differences in the External Immune Responses of RPW Larvae to Pathogen Stress
3.1.1. Changes in the Levels of Oral Secretions in Response to Pathogen Stress
3.1.2. The Effect of Pathogen Infection on the Concentration of PBQ in Oral Secretions
3.1.3. The Effect of Pathogen Infection on the Antimicrobial Efficacy of Oral Secretions
3.2. Toxic Effects of PBQ on RPW Larvae
3.2.1. The Poisoning Symptoms of Larvae Exposed to PBQ
3.2.2. Toxicity of PBQ to Larvae
3.3. Key Genes in RPW Larvae That Regulate the Toxication and Detoxification of the External Immune Factor PBQ
3.3.1. Transcriptome Analysis
3.3.2. Potential Mechanisms of Toxicity of PBQ in RPW Larvae
3.3.3. Potential Metabolic Detoxification Mechanisms of RPW Larvae Against PBQ
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, W.; Tettamanti, G.; Bassa, T.; Heryanto, C.; Eleftherianos, I.; Mohamed, A. Regulators and signalling in insect antimicrobial innate immunity: Functional molecules and cellular pathways. Cell. Signal. 2021, 83, e110003. [Google Scholar] [CrossRef] [PubMed]
- Zeng, T.; Jaffar, S.; Xu, Y.J.; Qi, Y.X. The intestinal immune defense system in insect. Int. J. Mol. Sci. 2022, 23, e15132. [Google Scholar] [CrossRef] [PubMed]
- Otti, O.; Tragust, S.; Feldhaar, H. Unifying external and internal immune defences. Trends Ecol. Evol. 2014, 29, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.W.S.; Araujo, L.S.; Azevedo, D.O.; Serräo, J.E.; Elliot, S.L. Physical and chemical properties of primary defences in Tenebrio molitor. Physiol. Entomol. 2016, 41, 121–126. [Google Scholar] [CrossRef]
- Pu, Y.C.; Wang, R.; Liu, H.H.; Lu, S.P.; Tang, F.X.; Hou, Y.M. Immunosenescence along with direct physiological allocation trade-offs between life history and immunity in the red palm weevil Rhynchophorus ferrugineus. Dev. Comp. Immunol. 2021, 123, e104143. [Google Scholar] [CrossRef]
- Pu, Y.C.; Hou, Y.M.; Shi, Z.H.; Liang, X.Y. Defensive secretions and the trade-off between internal and external immunity in insects. Acta Entomol. Sin. 2017, 60, 962–974. (In Chinese) [Google Scholar]
- Kowalski, K.; Marciniak, P.; Rychlik, L. Proteins from toad’s parotoid macroglands: Do they play a role in gland functioning and chemical defence? Front. Zool. 2023, 20, e21. [Google Scholar] [CrossRef]
- Joop, G.; Roth, O.; Schmid-Hempel, P.; Kurtz, J. Experimental evolution of external immune defences in the red flour beetle. J. Evol. Biol. 2014, 27, 1562–1571. [Google Scholar] [CrossRef]
- Khan, I.; Prakash, A.; Agashe, D. Immunosenescence and the ability to survive bacterial infection in the red flour beetle Tribolium castaneum. J. Anim. Ecol. 2016, 85, 291–301. [Google Scholar] [CrossRef]
- Pu, Y.C.; Liang, X.Y.; Zhang, H.; Zhang, H.J.; Xu, L.N.; Ji, Y.N.; Huang, S.N.; Bai, J.; Hou, Y.M. Identification of novel ARSB genes necessary for p-benzoquinone biosynthesis in the larval oral secretion participating in external immune defense in the red palm weevil. Int. J. Mol. Sci. 2020, 21, e1610. [Google Scholar] [CrossRef]
- Eggenberger, F.; Rowell-Rahier, M. Genetic component of variation in chemical defense of Oreina gloriosa (Coleoptera: Chrysomelidae). J. Chem. Ecol. 1992, 18, 1375–1387. [Google Scholar] [CrossRef] [PubMed]
- Whitman, D.W.; Jones, C.G.; Blum, M.S. Defensive secretion production in lubber grasshoppers (Orthoptera: Romaleidae): Influence of age, sex, diet, and discharge frequency. Ann. Entomol. Soc. Am. 1992, 85, 96–102. [Google Scholar] [CrossRef]
- Smith, T.R.; Koprivnikar, J. Influences of compound age and identity in the effectiveness of insect quinone secretions against the fungus Beauveria bassiana. Parasitol. Res. 2024, 123, e121. [Google Scholar] [CrossRef] [PubMed]
- Li, J.W.; Lehmann, S.; Weiβbecker, B.; Naharros, I.O.; Schütz, S.; Joop, G.; Wimmer, E.A. Odoriferous defensive stink gland transcriptome to identify novel genes necessary for quinone synthesis in the red flour beetle, Tribolium castaneum. PLoS Genet. 2013, 9, e1003596. [Google Scholar] [CrossRef]
- Xiao, H.; Dong, J.W.; Zhou, D.J.; Wu, X.M.; Luo, J.R.; Zhang, C.G.; Guo, N.N.; Li, Y.; Cai, L.; Ding, Z.T. Cytotoxicity of the defensive secretion from the medicinal insect Blaps rynchopetera. Molecules 2018, 23, e10. [Google Scholar] [CrossRef]
- Mofty, M.M.; Khudoley, V.V.; Sakr, S.A.; Fathala, N.G. Flour infested with Tribolium castaneum, biscuits made of this flour, and 1,4-benzoquinone induce neoplastic lesions in Swiss albino mice. Nutr. Cancer 1992, 17, 97–104. [Google Scholar] [CrossRef]
- Chambers, P.L.; Rowan, M.J. The toxicity of p-benzoquinone on the central nervous system of the cockroach. Arch. Toxicol. 1982, 5, 107–111. [Google Scholar]
- Xu, G.; Wei, H.F.; Ma, L.; Gu, L.Q. Reduction of quinones by immobilized Baker’s yeast. Chin. J. Org. Chem. 1998, 18, 442–446. (In Chinese) [Google Scholar]
- Almeida, R.G.; Valença, W.O.; Rosa, L.G.; Simone, C.A.; Castro, S.L.; Barbosa, J.M.C.; Pinheiro, D.P.; Paier, C.R.K.; Carvalho, G.G.C.; Pessoa, C.; et al. Synthesis of quinone imine and sulphur-containing compounds with antitumor and trypanocidal activities: Redox and biological implications. RSC Med. Chem. 2020, 11, 1145–1160. [Google Scholar] [CrossRef]
- Anselmo, L.T.; Souza, T.A.; Brito, T.A.M.; Peres, E.G.; Silva, F.M.A.; Silva, V.R.; Santos, L.S.; Soares, M.B.P.; Bezerra, D.P.; Costa, E.V.; et al. Pleonotoquinones, cytotoxic oxepinenaphthoquinones from Pleonotoma jasminifolia. J. Nat. Prod. 2024, 87, 1217–1221. [Google Scholar] [CrossRef]
- Drets, M.E.; Folle, G.A.; Aznarez, A. Clastogenic action of a dimethyl p-benzoquinone of animal origin. Mutat. Res. 1982, 102, 159–172. [Google Scholar] [CrossRef]
- Holmes, T.H.; Winn, L.M. DNA damage and perturbed topoisomerase IIα as a target of 1,4-benzoquinone toxicity in murine fetal liver cells. Toxicol. Sci. 2019, 171, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Chapman, R.N. Inhibiting the process of metamorphosis in the confused flour beetle (Tribolium confusum Duval). J. Exp. Zool. 1926, 45, 293–299. [Google Scholar]
- Alexander, P.; Barton, D.H.R. The excretion of ethylquinone by the flour beetle. Biochem. J. 1943, 37, 463–465. [Google Scholar] [CrossRef] [PubMed]
- Yezerski, A.; Gilmor, T.P.; Stevens, L. Genetic analysis of benzoquinone production in Tribolium confusum. J. Chem. Ecol. 2004, 30, 1035–1044. [Google Scholar] [CrossRef]
- Gokhale, C.S.; Traulsen, A.; Joop, G. Social dilemma in the external immune system of the red flour beetle? It is a matter of time. Ecol. Evol. 2017, 7, 6758–6765. [Google Scholar] [CrossRef]
- Blum, M.S. Chemical Defenses of Arthropods; Academic Press: London, UK, 1981. [Google Scholar]
- Suderman, R.J.; Dittmer, N.T.; Kanost, M.; Kramer, K.J. Model reactions for insect cuticle sclerotization: Cross-linking of recombinant cuticular proteins upon their laccase-catalyzed oxidative conjugation with catechols. Insect Biochem. Mol. Biol. 2006, 36, 353–365. [Google Scholar] [CrossRef]
- Happ, G.M. Quinone and hydrocarbon production in the defensive glands of Eleodes longicollis and Tribolium castaneum (Coleoptera, Tenebrionidae). J. Insect Physiol. 1968, 14, 1821–1837. [Google Scholar] [CrossRef]
- Bourguignon, T.; Šobotník, J.; Brabcová, J.; Sillam-Dussès, D.; Buček, A.; Krasulová, J.; Vytisková, B.; Demianová, Z.; Mareš, M.; Roisin, Y.; et al. Molecular mechanism of the two-component suicidal weapon of Neocapritermes taracua old workers. Mol. Biol. Evol. 2016, 33, 809–819. [Google Scholar]
- He, S.; Johnston, P.R.; Kuropka, B.; Lokatis, S.; Wesise, C.; Plarre, R.; Kunte, H.J.; McMahon, D.P. Termite soldiers contribute to social immunity by synthesizing potent oral secretions. Insect Mol. Biol. 2018, 27, 564–576. [Google Scholar] [CrossRef]
- Qin, Z.Q.; Li, D.W.; Luo, Y.W.; Huang, X.; Goebel, F.R.; Zhou, Z.S. First record of damage by the red palm weevil, Rhynchophorus ferrugineus (Olivier, 1790) in sugarcane fields in China. Int. J. Pest Manag. 2024, 70, 1463–1469. [Google Scholar] [CrossRef]
- Pu, Y.C.; Xiang, H.J.; Liang, X.Y.; Wang, Y.; Hou, Y.M.; Fu, L.; Wang, R. External immune inhibitory efficiency of external secretions and their metabolic profiling in red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae). Front. Physiol. 2020, 10, e1624. [Google Scholar] [CrossRef]
- Pu, Y.C.; Zheng, Z.W.; Ding, C.H.; Chen, X.D. Development of potential microbial agents with two new entomopathogenic fungal strains to control the red palm weevil Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae). Egypt. J. Biol. Pest Co. 2023, 33, e107. [Google Scholar] [CrossRef]
- Chen, C.Y.; Liu, Y.Q.; Song, W.M.; Chen, D.Y.; Chen, F.Y.; Chen, F.Y.; Chen, X.Y.; Chen, Z.W.; Ge, S.X.; Wang, C.Z.; et al. An effector from cotton bollworm oral secretion impairs host plant defense signaling. Proc. Natl. Acad. Sci. USA 2019, 116, 14331–14338. [Google Scholar] [CrossRef] [PubMed]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Yang, H.J.; Xu, D.P.; Zhuo, Z.H.; Hu, J.M.; Lu, B.Q. SMRT sequencing of the full-length transcriptome of the Rhynchophorus ferrugineus (Coleoptera: Curculionidae). PeerJ 2020, 8, e9133. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.C.; Jin, Z.P.; Zhao, D.X.; Qiao, C.L. Construction of a full-length cDNA library of the diamondback moth, Plutella xylostella. Zool. Res. 2003, 24, 215–219. [Google Scholar]
- Smith, T.R.; Tay, A.; Koprivnikar, J. Effects of insect host chemical secretions on the entomopathogenic nematode Steinernema carpocapsae. J. Helminthol. 2023, 97, e63. [Google Scholar] [CrossRef]
- Rzepka, Z.; Buszman, E.; Beberok, A.; Wrześniok, D. From tyrosine to melanin: Signaling pathways and factors regulating melanogenesis. Postep. Hig. Med. Dosw. 2016, 70, 695–708. [Google Scholar] [CrossRef]
- Gao, H.; Wang, Y.S.; Yang, J.H.; Qiu, M.; Lei, Z.X.; Zhang, W.M.; Jiang, W.K.; Xin, F.X.; Jiang, M. Microbial synthesis of pyrroloquinoline quinone. World J. Microb. Biot. 2024, 40, e31. [Google Scholar] [CrossRef]
- Li, W.; Dou, W.; Wang, J.J. BdcSP10 is a prophenoloxidase-activating protease in Bactrocera dorsalis. Dev. Comp. Immunol. 2022, 138, e104558. [Google Scholar] [CrossRef]
- Cerenius, L.; Lee, B.L.; SöDerhäll, K. The proPO-system: Pros and cons for its role in invertebrate immunity. Trends Immunol. 2008, 29, 263–271. [Google Scholar] [CrossRef]
- Sugumaran, M.; Barek, H. Critical analysis of the melanogenic pathway in insects and higher animals. Int. J. Mol. Sci. 2016, 17, e1753. [Google Scholar] [CrossRef] [PubMed]
- Marieshwari, B.N.; Bhuvaragavan, S.; Sruthi, K.; Mullainadhan, P.; Janarthanan, S. Insect phenoloxidase and its diverse roles: Melanogenesis and beyond. J. Comp. Physiol. B 2023, 193, 1–23. [Google Scholar] [PubMed]
- Hu, Y.X.; Wang, Y.; Deng, J.P.; Jiang, H.B. The structure of a prophenoloxidase (PPO) from Anopheles gambiae provides new insights into the mechanism of PPO activation. BMC Biol. 2016, 14, e2. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Huang, F.S. Advances in the molecular mechanisms of melanization responses in insects. Foreign Med. Sci. (Parasitol. Sect.) 2003, 30, 164–168. [Google Scholar]
- Yu, A.; Beck, M.; Merzendorfer, H.; Yang, Q. Advances in understanding insect chitin biosynthesis. Insect Biochem. Mol. Biol. 2024, 164, e104058. [Google Scholar]
- Merzendorfer, H.; Zimoch, L. Chitin metabolism in insects: Structure, function and regulation of chitin synthases and chitinases. J. Exp. Biol. 2003, 206, 4393–4412. [Google Scholar] [CrossRef]
- Wu, Q.Y.; Liu, T.; Yang, Q. Cloning, expression and biocharacterization of OfCht5, the chitinase from the insect Ostrinia furnacalis. Insect Sci. 2013, 20, 147–157. [Google Scholar]
- Kim, B.E.; Choi, B.; Park, W.R.; Kim, Y.J.; Mun, S.; Choi, H.S.; Kim, D.K. Nuclear receptor HR3 mediates transcriptional regulation of chitin metabolic genes during molting in Tribolium castaneum. Pest Manag. Sci. 2022, 78, 4377–4387. [Google Scholar] [CrossRef]
- Palli, S.R. CncC/Maf-mediated xenobiotic response pathway in insects. Arch. Insect Biochem. Physiol. 2020, 104, e21674. [Google Scholar] [CrossRef] [PubMed]
- Kshatriya, K.; Gershenzon, J. Disarming the defenses: Insect detoxification of plant defense-related specialized metabolites. Curr. Opin. Plant Biol. 2024, 81, e102577. [Google Scholar] [CrossRef] [PubMed]
- Edi, C.V.; Djogbénou, L.; Jenkins, A.M.; Regna, K.; Muskavitch, M.A.T.; Poupardin, R.; Jones, C.M.; Essandoh, J.; Kétoh, G.K.; Paine, M.J.I.; et al. CYP6 P450 enzymes and ACE-1 duplication produce extreme and multiple insecticide resistance in the malaria mosquito Anopheles gambiae. PLoS Genet. 2014, 10, e1004236. [Google Scholar]
- Liu, J.; Li, R.M.; Zhou, X.M. Characteristics of mRNA expression of GSTs1 gene in Spodoptera exigua and the effect of chlorantraniliprole on its expression. Plant Prot. 2013, 39, 18–21. (In Chinese) [Google Scholar]
- Zhang, Z.X.; Wang, D.; Shan, Y.P.; Chen, J.X.; Hu, H.Y.; Song, X.P.; Ma, X.Y.; Ren, X.L.; Ma, Y. Knockdown of CYP9A9 increases the susceptibility to lufenuron, methoxyfenozide and a mixture of both in Spodoptera exigua. Insect Mol. Biol. 2023, 32, 263–276. [Google Scholar] [CrossRef]
- Hilliou, F.; Chertemps, T.; Maïbèche, M.; Goff, G.L. Resistance in the genus Spodoptera: Key insect detoxification genes. Insects 2021, 12, e544. [Google Scholar] [CrossRef]
- Wang, M.L.; Liang, P.; Jin, D.C. Expression of ABCC1-ABCC55 mRNA in the diamondback moth subject to chlorantraniliprole stress. Chin. J. Appl. Entomol. 2016, 53, 581–588. (In Chinese) [Google Scholar]
- Feyereisen, R. Evolution of insect P450. Biochem. Soc. Trans. 2006, 34, 1252–1255. [Google Scholar] [CrossRef]









| LC10 (95% Confidence Interval) (μg/mL) | LC50 (95% Confidence Interval) (μg/mL) | Slope (±SE) | χ2 (df) | Coefficient of Determination |
|---|---|---|---|---|
| 4.914 × 103 (4.044 × 103–5.462 × 103) | 6.982 × 103 (6.532 × 103–7.427 × 103) | 8.402 (±1.405) | 6.473 (13) | 0.9936 |
| Family | Homologous Genes | Species | log2 (FC) | Variations | GeneBank ID |
|---|---|---|---|---|---|
| CHI | CHI 3 isoform X2 | Tribolium castaneum | 6.300 | Up | Unigene0013264 |
| CHI | Sitophilus oryzae | −1.388 | Down | Unigene0009970 | |
| CHI -like protein Idgf4 isoform X1 | Dendroctonus ponderosae | 1.457 | Up | Unigene0025235 | |
| CHI -like protein Idgf4 | Dendroctonus ponderosae | 1.085 | Up | Unigene0021576 | |
| CHI | Gregarina niphandrodes | −2.332 | Down | Unigene0011156 | |
| PO | PO 2 | Dendroctonus ponderosae | 2.655 | Up | Unigene0030095 |
| PO 2 | Dendroctonus ponderosae | 2.385 | Up | Unigene0022841 | |
| PO 2 | Dendroctonus ponderosae | 1.037 | Up | Unigene0031065 |
| Family | Homologous Genes | Species | log2 (FC) | Variations | GeneBank ID |
|---|---|---|---|---|---|
| CYP450 | CYP450 CYP6CR2 | Dendroctonus ponderosae | −2.282 | Down | Unigene0007108 |
| CYP450 CYP6BX1 | Dendroctonus ponderosae | 1.147 | Up | Unigene0023500 | |
| CYP450 CYP6BX1 | Dendroctonus ponderosae | −2.450 | Down | Unigene0031050 | |
| CYP450 307a1-like | Dendroctonus ponderosae | 3.421 | Up | Unigene0020614 | |
| CYP450 6a13 | Dendroctonus ponderosae | 1.019 | Up | Unigene0026373 | |
| GST | GST1-like isoform X2 | Dendroctonus ponderosae | 1.593 | Up | Unigene0009075 |
| GST, partial | Rhynchophorus ferrugineus | 3.973 | Up | Unigene0022356 | |
| ABC | MRP lethal(2)03659 isoform X1 | Dendroctonus ponderosae | 1.025 | Up | Unigene0012676 |
| MRP lethal(2)03659 | Dendroctonus ponderosae | 2.966 | Up | Unigene0029437 | |
| MRP lethal(2)03659 | Dendroctonus ponderosae | 2.493 | Up | Unigene0021880 | |
| MRP lethal(2)03659 | Dendroctonus ponderosae | 4.293 | Up | Unigene0029438 | |
| MRP lethal(2)03659 | Dendroctonus ponderosae | 1.168 | Up | Unigene0027106 | |
| MRP 4-like | Dendroctonus ponderosae | 1.017 | Up | Unigene0004482 | |
| MRP 4-like | Dendroctonus ponderosae | 1.263 | Up | Unigene0004481 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Pu, Y.-C.; You, W.-Q.; Ji, Y.-N.; Ding, C.-H.; Zheng, Z.-W.; Wang, Y.-F.; Hou, Y.-M. Comparative Transcriptome Analysis of Rhynchophorus ferrugineus (Coleoptera: Curculionidae) Reveals Potential Mechanisms Involved in the Toxication and Detoxification of the External Immune Compound p-Benzoquinone Present in Oral Secretions. Insects 2025, 16, 1044. https://doi.org/10.3390/insects16101044
Chen J, Pu Y-C, You W-Q, Ji Y-N, Ding C-H, Zheng Z-W, Wang Y-F, Hou Y-M. Comparative Transcriptome Analysis of Rhynchophorus ferrugineus (Coleoptera: Curculionidae) Reveals Potential Mechanisms Involved in the Toxication and Detoxification of the External Immune Compound p-Benzoquinone Present in Oral Secretions. Insects. 2025; 16(10):1044. https://doi.org/10.3390/insects16101044
Chicago/Turabian StyleChen, Juan, Yu-Chen Pu, Wen-Qing You, Ya-Nan Ji, Can-Hui Ding, Zong-Wei Zheng, Yi-Fan Wang, and You-Ming Hou. 2025. "Comparative Transcriptome Analysis of Rhynchophorus ferrugineus (Coleoptera: Curculionidae) Reveals Potential Mechanisms Involved in the Toxication and Detoxification of the External Immune Compound p-Benzoquinone Present in Oral Secretions" Insects 16, no. 10: 1044. https://doi.org/10.3390/insects16101044
APA StyleChen, J., Pu, Y.-C., You, W.-Q., Ji, Y.-N., Ding, C.-H., Zheng, Z.-W., Wang, Y.-F., & Hou, Y.-M. (2025). Comparative Transcriptome Analysis of Rhynchophorus ferrugineus (Coleoptera: Curculionidae) Reveals Potential Mechanisms Involved in the Toxication and Detoxification of the External Immune Compound p-Benzoquinone Present in Oral Secretions. Insects, 16(10), 1044. https://doi.org/10.3390/insects16101044

