Thermal Ecology and Forensic Implications of Blow Fly (Family: Calliphoridae) Maggot Mass Dynamics: A Review
Abstract
Simple Summary
Abstract
1. Introduction
2. Mechanisms of Insect Aggregation
3. Formation and Composition of Maggot Masses
4. Thermoregulation in a Maggot Mass
5. Ecological Role of Maggot Masses
6. Forensic Application of Maggot Masses
7. Competition vs. Cooperation in Maggot Masses
8. Adaptive Plasticity and Heat Shock Protein Expression in Blowflies Facing Thermal Stress
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Amendt, J.; Richards, C.S.; Campobasso, C.P.; Zehner, R.; Hall, M.J.R.; European Association for Forensic Entomology. Best practice in forensic entomology—Standards and guidelines. Int. J. Leg. Med. 2011, 125, 557–563. [Google Scholar] [CrossRef]
- Tomberlin, J.K.; Crippen, T.L.; Tarone, A.M.; Chaudhury, M.F.B.; Singh, B.; Cammack, J.A.; Meisel, R.P. A review of bacterial interactions with blow flies (Diptera: Calliphoridae) of medical, veterinary, and forensic importance. Ann. Entomol. Soc. Am. 2017, 110, 19–36. [Google Scholar] [CrossRef]
- McIntyre, D.B.; Dawson, B.M.; Long, B.M.; Barton, P.S. A review of multi-disciplinary decomposition research and key drivers of variation in decay. Int. J. Leg. Med. 2024, 138, 2181–2192. [Google Scholar] [CrossRef] [PubMed]
- Tomberlin, J.K.; Mohr, R.; Benbow, M.E.; Tarone, A.M.; VanLaerhoven, S. A roadmap for bridging basic and applied research in forensic entomology. Annu. Rev. Entomol. 2011, 56, 401–421. [Google Scholar] [CrossRef] [PubMed]
- Martín-Vega, D.; Martín Nieto, C.; Cifrián, B.; Baz, A.; Díaz-Aranda, L.M. Early colonization of urban indoor carcasses by blow flies (Diptera: Calliphoridae): An experimental study from central Spain. Forensic Sci. Int. 2017, 278, 87–94. [Google Scholar] [CrossRef]
- Ikpa, J.; Umana, U.E.; Timbuak, J.A.; Obun, C.O.; Ema, E.J.; Omuh, M.E. The concept of forensic taphonomy: Understanding the postmortem processes of dead remains. J. Exp. Clin. Anat. 2024, 21, 409–417. [Google Scholar] [CrossRef]
- Byrd, J.H.; Castner, J.L. Forensic Entomology: The Utility of Arthropods in Legal Investigations, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar] [CrossRef]
- Okpara, P.; VanLaerhoven, S. Density, temperature, and co-mingled species affect fitness within carrion communities: Coexistence in Phormia regina and Lucilia sericata (Diptera:Calliphoridae). Insects 2023, 14, 139. [Google Scholar] [CrossRef]
- Charabidzé, D.; Aubernon, C. Aggregation in an heterospecific population of blow fly larvae: Social behaviour is impacted by species-specific thermal requirements and settlement order. Philos. Trans. R. Soc. B 2023, 378, 20220098. [Google Scholar] [CrossRef]
- Rivers, D.B.; Thompson, C.; Brogan, R. Physiological trade-offs of forming maggot masses by necrophagous flies on vertebrate carrion. Bull. Entomol. Res. 2011, 101, 599–611. [Google Scholar] [CrossRef]
- Aubernon, C.; Hedouin, V.; Charabidze, D. The maggot, the ethologist and the forensic entomologist: Sociality and thermoregulation in necrophagous larvae. J. Adv. Res. 2018, 16, 67–73. [Google Scholar] [CrossRef]
- Slone, D.H.; Gruner, S.V. Thermoregulation in larval aggregations of carrion-feeding blow flies (Diptera: Calliphoridae). J. Med. Entomol. 2017, 44, 516–523. [Google Scholar] [CrossRef]
- Heaton, V.; Moffatt, C.; Simmons, T. Quantifying the temperature of maggot masses and its relationship to decomposition. J. Forensic Sci. 2014, 59, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Kotzé, Z.; Villet, M.H.; Weldon, C.W. Heat accumulation and development rate of massed maggots of the sheep blow fly, Lucilia cuprina (Diptera: Calliphoridae). J. Insect Physiol. 2016, 95, 98–104. [Google Scholar] [CrossRef]
- Moore, K.; Bagsby, K.; Hans, K.R. The influence of substrates on blow fly (Diptera: Calliphoridae) Development. Forensic Sci. 2024, 4, 409–416. [Google Scholar] [CrossRef]
- Matuszewski, S.; Mądra-Bielewicz, A. Heat production in a feeding matrix formed on carrion by communally breeding beetles. Front. Zool. 2021, 18, 5. [Google Scholar] [CrossRef]
- Richards, C.S.; Williams, K.A.; Villet, M.H. Predicting geographic distribution of seven forensically significant blow fly species (Diptera: Calliphoridae) in South Africa. Afr. Entomol. 2009, 17, 170–182. [Google Scholar] [CrossRef]
- McKinney, R.M.; Vernier, C.; Ben-Shahar, Y. The neural basis for insect pheromonal communication. Curr. Opin. Insect Sci. 2015, 12, 86–92. [Google Scholar] [CrossRef]
- Lindgren, B.S.; Raffa, K.F. Evolution of tree killing in bark beetles (Coleoptera: Curculionidae): Trade-offs between the maddening crowds and a sticky situation. Can. Entomol. 2013, 145, 471–495. [Google Scholar] [CrossRef]
- Anstey, M.L.; Rogers, S.M.; Ott, S.R.; Burrows, M.; Simpson, S.J. Serotonin mediates behavioral gregarization underlying swarm formation in desert locusts. Science 2009, 323, 627–630. [Google Scholar] [CrossRef]
- Becher, P.G.; Bengtsson, M.; Hansson, B.S.; Witzgall, P. Flying the fly: Long-range flight behavior of Drosophila melanogaster to attractive odors. J. Chem. Ecol. 2012, 38, 49–55. [Google Scholar] [CrossRef]
- Frederickx, C.; Dekeirsschieter, J.; Verheggen, F.J.; Haubruge, E. Responses of Lucilia sericata Meigen (Diptera: Calliphoridae) to cadaveric volatile organic compounds. J. Forensic Sci. 2012, 57, 386–390. [Google Scholar] [CrossRef] [PubMed]
- Stabentheiner, A.; Kovac, H.; Brodschneider, R. Honeybee colony thermoregulation–regulatory mechanisms and contribution of individuals in dependence on age, location and thermal stress. PLoS ONE 2010, 5, e8967. [Google Scholar] [CrossRef]
- Fitzgerald, T.D. The Tent Caterpillars; Cornell University Press: New York, NY, USA, 1995. [Google Scholar]
- Lewis, S.M.; Cratsley, C.K. Flash signal evolution, mate choice, and predation in fireflies. Annu. Rev. Entomol. 2008, 53, 293–321. [Google Scholar] [CrossRef] [PubMed]
- Hodek, I.; Honěk, A. Ecology of Coccinellidae; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Hanski, I.; Cambefort, Y. Dung Beetle Ecology; Princeton University Press: Princeton, NJ, USA, 1991. [Google Scholar]
- Fitzgerald, T.D.; Peterson, S.C. Cooperative foraging and communication in caterpillars. BioScience 1988, 38, 20–25. [Google Scholar] [CrossRef]
- Hodgkin, L.K.; Symonds, M.R.E.; Elgar, M.A. Leaders benefit followers in the collective movement of a social sawfly. Proc. R. Soc. B Biol. Sci. 2014, 281, 20141700. [Google Scholar] [CrossRef]
- Brower, L.P.; Taylor, O.R.; Williams, E.H.; Slayback, D.A.; Zubieta, R.R.; Ramírez, M.I. Decline of monarch butterflies overwintering in Mexico: Is the migratory phenomenon at risk? Insect Conserv. Divers. 2012, 5, 95–100. [Google Scholar] [CrossRef]
- Srygley, R.B.; Dudley, R. Optimal strategies for insects migrating in the flight boundary layer: Mechanisms and consequences. Integr. Comp. Biol. 2008, 48, 119–133. [Google Scholar] [CrossRef]
- Traniello, J.F.; Leuthold, R.H. Behavior and Ecology of Foraging in Termites; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Charabidze, D.; Bourel, B.; Gosset, D. Larval-mass effect: Characterisation of heat emission by necrophageous blowflies (Diptera: Calliphoridae) larval aggregates. Forensic Sci. Int. 2011, 211, 61–66. [Google Scholar] [CrossRef]
- Matuszewski, S.; MĄdra-Bielewicz, A. Competition of insect decomposers over large vertebrate carrion: Necrodes beetles (Silphidae) vs. blow flies (Calliphoridae). Curr. Zool. 2022, 68, 645–656. [Google Scholar] [CrossRef]
- Grassberger, M.; Reiter, C. Effect of temperature on development of the forensically important holarctic blow fly Protophormia terraenovae (Robineau-Desvoidy) (Diptera: Calliphoridae). Forensic Sci. Int. 2002, 128, 177–182. [Google Scholar] [CrossRef]
- Gomes, L.; Gomes, G.; Von Zuben, C.J. The influence of temperature on the behavior of burrowing in larvae of the blow flies, Chrysomya albiceps and Lucilia cuprina, under controlled conditions. J. Insect Sci. 2009, 9, 14. [Google Scholar] [CrossRef]
- Bauer, A.; Bauer, A.M.; Tomberlin, J.K. Impact of diet moisture on the development of the forensically important blow flies Cochliomyia macellaria (Fabricius) (Diptera: Calliphoridae). Forensic Sci. Int. 2020, 312, 110333. [Google Scholar] [CrossRef]
- Liu, W.; Longnecker, M.; Tarone, A.M.; Tomberlin, J.K. Responses of Lucilia sericata (Diptera: Calliphoridae) to compounds from microbial decomposition of larval resources. Anim. Behav. 2016, 115, 217–225. [Google Scholar] [CrossRef]
- VanLaerhoven, S.L.; Anderson, G.S. Insect succession on buried carrion in two biogeoclimatic zones of British Columbia. J. Forensic Sci. 1999, 44, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Roe, A.L.; Higley, L.G. Stage transitions in Lucilia sericata and Phormia regina (Diptera: Calliphoridae) and implications for forensic science. Insects 2023, 14, 315. [Google Scholar] [CrossRef]
- Gbenonsi, A.F.; Higley, L. Maggot mass effect on the development and survival of forensically important blow flies. Insects 2025, 16, 660. [Google Scholar] [CrossRef]
- Huang, Q.; Ma, Q.; Liu, X.; Zhu-Salzman, K.; Cheng, W. Characterization and Functional Analysis of Small Heat Shock Protein Genes (Hsp22.2 and Hsp26.7) in Sitodiplosis mosellana Diapause. Insects 2025, 16, 649. [Google Scholar] [CrossRef]
- Johnson, A.P.; Mikac, K.M.; Wallman, J.F. Thermogenesis in decomposing carcasses. Forensic Sci. Int. 2013, 231, 271–277. [Google Scholar] [CrossRef]
- Johnson, A.P.; Wallman, J.F. Effect of massing on larval growth rate. Forensic Sci. Int. 2014, 241, 141–149. [Google Scholar] [CrossRef]
- Pechal, J.L.; Benbow, M.E.; Crippen, T.L.; Tarone, A.M.; Tomberlin, J.K. Delayed insect access alters carrion decomposition and necrophagous insect community assembly. Ecosphere 2014, 5, 1–21. [Google Scholar] [CrossRef]
- Hobson, R.P. Studies on the nutrition of blow-fly larvae: III. The liquefaction of muscle. J. Exp. Biol. 1932, 9, 359–365. [Google Scholar] [CrossRef]
- Čičková, H.; Newton, G.L.; Lacy, R.C.; Kozánek, M. The use of fly larvae for organic waste treatment. Waste Manag. 2015, 35, 68–80. [Google Scholar] [CrossRef]
- Barton, P.S.; Bump, J.K. Carrion decomposition. In Carrion Ecology and Management; Springer: Berlin/Heidelberg, Germany, 2019; pp. 101–124. [Google Scholar]
- Carter, D.O. The importance of microbial communities in the estimation of the time since death. In Estimation of the Time Since Death: Current Research and Future Trends; Academic Press: London, UK, 2020; pp. 109–139. [Google Scholar]
- Parmenter, R.R.; MacMahon, J.A. Carrion decomposition and nutrient cycling in a semiarid shrub–steppe ecosystem. Ecol. Monogr. 2009, 79, 637–661. [Google Scholar] [CrossRef]
- Barton, P.S.; Strong, C.; Evans, M.J.; Higgins, A.; Quaggiotto, M.M. Nutrient and moisture transfer to insect consumers and soil during vertebrate decomposition. Food Webs 2019, 18, e00110. [Google Scholar] [CrossRef]
- López-Riquelme, G.O.; Fanjul-Moles, M.L. The funeral ways of social insects. Social strategies for corpse disposal. Trends Entomol. 2013, 9, 71–129. [Google Scholar]
- Courtney, G.W.; Pape, T.; Skevington, J.H.; Sinclair, B.J. Biodiversity of diptera. In Insect Biodiversity: Science and Society; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 229–278. [Google Scholar]
- Barton, P.S.; Cunningham, S.A.; Lindenmayer, D.B.; Manning, A.D. The role of carrion in ecosystems. Trends Ecol. Evol. 2020, 35, 695–706. [Google Scholar] [CrossRef]
- Higley, L.; Haskell, N.; Huntington, T.; Roe, A. Establishing Blow Fly Development and Sampling Procedures to Estimate Postmortem Intervals; US Department of Justice: Washington, DC, USA, 2014. [Google Scholar]
- Nabity, P.D.; Higley, L.G.; Heng-Moss, T.M. Effects of temperature on development of Phormia regina (Diptera: Calliphoridae) and use of developmental data in determining time intervals in forensic entomology. J. Med. Entomol. 2006, 43, 1276–1286. [Google Scholar] [CrossRef]
- Sharanowski, B.J.; Walker, E.G.; Anderson, G.S. Insect succession and decomposition patterns on shaded and sunlit carrion in Saskatchewan in three different seasons. Forensic Sci. Int. 2008, 179, 219–240. [Google Scholar] [CrossRef] [PubMed]
- Kranz, W.; Carroll, C.; Dixon, D.A.; Goodpaster, J.V.; Picard, C.J. Factors affecting species identifications of blow fly pupae based upon chemical profiles and multivariate statistics. Insects 2017, 8, 43. [Google Scholar] [CrossRef]
- Anderson, G.S. Minimum and maximum development rates of some forensically important Calliphoridae (Diptera). J. Forensic Sci. 2000, 45, 824–832. [Google Scholar] [CrossRef]
- Chimeno, C.; Morinière, J.; Podhorna, J.; Hardulak, L.; Hausmann, A.; Reckel, F.; Grunwald, J.E.; Penning, R.; Haszprunar, G. DNA Barcoding in Forensic Entomology - Establishing a DNA Reference Library of Potentially Forensic Relevant Arthropod Species. J. Forensic Sci. 2019, 64, 593–601. [Google Scholar] [CrossRef]
- Scieuzo, C.; Rinaldi, R.; De Stefano, F.; Di Fazio, A.; Falabella, P. The Contribution of Molecular Biology to Forensic Entomology. Insects 2025, 16, 694. [Google Scholar] [CrossRef]
- Parry, N.J.; Mansell, M.W.; Weldon, C.W. Seasonal, locality, and habitat variation in assemblages of carrion-associated Diptera in Gauteng Province, South Africa. J. Med. Entomol. 2016, 53, 1322–1329. [Google Scholar] [CrossRef]
- Matuszewski, S.; Szafałowicz, M.; Jarmusz, M. Insects colonising carcasses in open and forest habitats of Central Europe: Search for indicators of corpse relocation. Forensic Sci. Int. 2013, 231, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.A. Spatial and Temporal Occurrence of Forensically Important South African Blow Flies (Diptera: Calliphorida). Ph.D. Thesis, Rhodes University, Grahamstown, South Africa, 2003. [Google Scholar]
- Klong-Klaew, T.; Ngoen-Klan, R.; Moophayak, K.; Sukontason, K.; Irvine, K.N.; Tomberlin, J.K.; Somboon, P.; Chareonviriyaphap, T.; Kurahashi, H.; Sukontason, K.L. Predicting Geographic Distribution of Forensically Significant Blow Flies of Subfamily Chrysomyinae (Diptera: Calliphoridae) in Northern Thailand. Insects 2018, 9, 106. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Omar, B. Effect of carcass model on maggot distribution and thermal generation of two forensically important blow fly species, Chrysomya megacephala (Fabricius) and Chrysomya rufifacies (Macquart). Egypt. J. Forensic Sci. 2018, 8, 64. [Google Scholar] [CrossRef]
- Shiao, S.; Yeh, T. Larval competition of Chrysomya megacephala and Chrysomya rufifacies (Diptera: Calliphoridae): Behavior and ecological studies of two blow fly species of forensic significance. J. Med. Entomol. 2008, 45, 785–799. [Google Scholar] [CrossRef]
- MacInnis, A.E.; Higley, L.G. Competition Among Three Forensically Important Blow Fly Species (Diptera: Calliphoridae): Phormia regina, Lucilia sericata, and Chrysomya rufifacies. Environ. Entomol. 2020, 49, 1473–1479. [Google Scholar] [CrossRef]
- Wetherington, M.T.; Nagy, K.; Dér, L.; Ábrahám, Á.; Noorlag, J.; Galajda, P.; Keymer, J.E. Ecological succession and the competition-colonization trade-off in microbial communities. BMC Biol. 2022, 20, 262. [Google Scholar] [CrossRef]
- Kennedy, P.G.; Higgins, L.M.; Rogers, R.H.; Weber, M.G. Colonization-competition tradeoffs as a mechanism driving successional dynamics in ectomycorrhizal fungal communities. PLoS ONE 2011, 6, e25126. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Sun, J.; Hu, G.; Wang, M.; Amendt, J.; Wang, J. Temperature-dependent development of the blow fly Chrysomya pinguis and its significance in estimating postmortem interval. R. Soc. Open Sci. 2019, 6, 190003. [Google Scholar] [CrossRef] [PubMed]
- Stadler, F. A Complete Guide to Maggot Therapy: Clinical Practice, Therapeutic Principles, Production, Distribution, and Ethics; Open Book Publishers: Cambridge, UK, 2022; p. 468. [Google Scholar]
- Dadour, I.R.; Cook, D.F.; Fissioli, J.N.; Bailey, W.J. Forensic entomology: Application, education and research in Western Australia. Forensic Sci. Int. 2001, 120, 48–52. [Google Scholar] [CrossRef]
- Fouche, Q.; Hedouin, V.; Charabidze, D. Communication in necrophagous Diptera larvae: Interspecific effect of cues left behind by maggots and implications in their aggregation. Sci. Rep. 2018, 8, 2844. [Google Scholar] [CrossRef]
- Fouche, Q.; Hedouin, V.; Charabidze, D. Effect of density and species preferences on collective choices: An experimental study on maggot aggregation behaviours. J. Exp. Biol. 2021, 224 Pt 6, jeb233791. [Google Scholar] [CrossRef]
- Hu, C.; Yang, J.; Qi, Z.; Wu, H.; Wang, B.; Zou, F.; Mei, H.; Liu, J.; Wang, W.; Liu, Q. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm 2022, 3, e161. [Google Scholar] [CrossRef]
- Feder, M.E.; Hofmann, G.E. Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Annu. Rev. Physiol. 1999, 61, 243–282. [Google Scholar] [CrossRef]
- Concha, C.; Edman, R.M.; Belikoff, E.J.; Schiemann, A.H.; Carey, B.; Scott, M.J. Organization and expression of the Australian sheep blowfly (Lucilia cuprina) hsp23, hsp24, hsp70 and hsp83 genes. Insect Mol. Biol. 2012, 21, 169–180. [Google Scholar] [CrossRef]
- King, A.M.; MacRae, T.H. Insect heat shock proteins during stress and diapause. Annu. Rev. Entomol. 2015, 60, 59–75. [Google Scholar] [CrossRef]
- Rinehart, J.P.; Li, A.; Yocum, G.D.; Robich, R.M.; Hayward, S.A.L.; Denlinger, D.L. Up-regulation of heat shock proteins is essential for cold survival during insect diapause. Proc. Natl. Acad. Sci. USA 2007, 104, 11130–11137. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gbenonsi, A.F.; Higley, L. Thermal Ecology and Forensic Implications of Blow Fly (Family: Calliphoridae) Maggot Mass Dynamics: A Review. Insects 2025, 16, 1018. https://doi.org/10.3390/insects16101018
Gbenonsi AF, Higley L. Thermal Ecology and Forensic Implications of Blow Fly (Family: Calliphoridae) Maggot Mass Dynamics: A Review. Insects. 2025; 16(10):1018. https://doi.org/10.3390/insects16101018
Chicago/Turabian StyleGbenonsi, Akomavo Fabrice, and Leon Higley. 2025. "Thermal Ecology and Forensic Implications of Blow Fly (Family: Calliphoridae) Maggot Mass Dynamics: A Review" Insects 16, no. 10: 1018. https://doi.org/10.3390/insects16101018
APA StyleGbenonsi, A. F., & Higley, L. (2025). Thermal Ecology and Forensic Implications of Blow Fly (Family: Calliphoridae) Maggot Mass Dynamics: A Review. Insects, 16(10), 1018. https://doi.org/10.3390/insects16101018