Oviposition-Deterrent Effect of a High-Quality Natural Zeolite on the Olive Fruit Fly Bactrocera oleae, under Different Conditions of Temperature and Relative Humidity
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Stock Colony and Experimental Flies
2.2. Natural Zeolite Characterization
2.3. Oviposition-Deterrent Test Effect
2.4. Effect of Temperature
2.5. Effect of Relative Humidity (RH)
2.6. Residual Oviposition-Deterrent Effect of ZeotP on Olives after Water Spraying
2.7. Statistical Analysis
3. Results
3.1. Natural Zeolite Characterization
3.2. ZeotP Oviposition-Deterrent Effect
3.3. Effect of Temperature
3.4. Effect of Relative Humidity (RH)
3.5. Residual Oviposition-Deterrent Effect of ZeotP on Olives after Water Spraying
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture development, pesticide application and its impact on the environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef] [PubMed]
- Rasool, S.; Rasool, T.; Gani, K.M. A review of interactions of pesticides within various interfaces of intrinsic and organic residue amended soil environment. Chem. Eng. J. Adv. 2022, 11, 100301. [Google Scholar] [CrossRef]
- Swapan, C.; Banerjee, M.; Deewa, B.; Tanmoy, M. Natural pesticides for pest control in agricultural crops: An alternative and eco-friendly method. Plant Sci. Today 2023, 11, 433–450. [Google Scholar] [CrossRef]
- Eroglu, N.; Emekci, M.; Athanassiou, C.G. Applications of natural zeolites on agriculture and food production. J. Sci. Food Agric. 2017, 97, 3487–3499. [Google Scholar] [CrossRef] [PubMed]
- Baliota, G.V.; Athanassiou, C.G. Evaluation of inert dusts on surface applications and factors that maximize their insecticidal efficacy. Appl. Sci. 2023, 13, 2767. [Google Scholar] [CrossRef]
- Jha, B.; Singh, D.N. A review on synthesis, characterization and industrial applications of fly ash zeolites. J. Matter. Educ. 2011, 33, 65–132. [Google Scholar] [CrossRef]
- Gottardi, G.; Galli, E. Natural Zeolites; Mineral and Rocks Series; Springer: Berlin/Heidelberg, Germany; New York, NY, USA; Tokyo, Japan, 1985; Volume 18, p. 412. Available online: https://scholar.google.com/scholar_lookup?title=Natural+Zeolites.+Minerals+and+Rocks+Series&author=Gottardi,+G.&author=Galli,+E.&publication_year=1985 (accessed on 14 January 2024).
- Baerlocher, C.; McCusker, L.B.; Olson, D.H. Atlas of Zeolite Framework Types; Elsevier: Amsterdam, The Netherlands, 2007; p. 404. Available online: https://scholar.google.com/scholar_lookup?hl=en&publication_year=2007&author=C+Baerlocher&author=LB+McCusker&author=DH+Olson&title=Atlas+of+zeolite+framework+types (accessed on 4 February 2024).
- Dyer, A.; Tangkawanit, S.; Rangsriwatananon, K. Exchange diffusion of Cu2+, Ni2+, Pb2+ and Zn2+ into analcime synthesized from perlite. Microporous Mesoporous Mater. 2004, 75, 273–279. [Google Scholar] [CrossRef]
- Król, M. Natural vs. synthetic zeolites. Crystals 2020, 10, 622. [Google Scholar] [CrossRef]
- Tsitsishvili, G.V.; Andronikashvili, T.G.; Kirov, G.N. Natural Zeolites; Ellis Horwood Limited: Chichester, UK, 1992; p. 295. [Google Scholar]
- Filippidis, A.; Tziritis, E.; Kantiranis, N.; Tzamos, E.; Gamaletsos, P.; Papastergios, G.; Filippidis, S. Application of Hellenic natural zeolite in Thessaloniki industrial area wastewater treatment. Desalination Water Treat. 2016, 57, 19702–19712. [Google Scholar] [CrossRef]
- Papastergios, G.; Kantiranis, N.; Filippidis, A.; Sikalidis, C.; Vogiatzis, D.; Tzamos, E. HEU-type zeolitic tuff in fixed bed columns as decontaminating agent for liquid phases. Desalination Water Treat. 2017, 59, 94–98. [Google Scholar] [CrossRef]
- Cerri, G.; Farina, M.; Brundu, A.; Dakovi’c, A.; Giunchedi, P.; Gavini, E.; Rassu, G. Natural zeolites for pharmaceutical formulations: Preparation and evaluation of a clinoptilolite-based material. Microporous Mesoporous Mater. 2016, 223, 58–67. [Google Scholar] [CrossRef]
- Cataldo, E.; Salvi, L.; Paoli, F.; Fucile, M.; Masciandaro, G.; Manzi, D.; Masini, C.M.; Mattii, G.B. Application of zeolites in agriculture and other potential uses: A review. Agronomy 2021, 11, 1547. [Google Scholar] [CrossRef]
- Tzanakakis, M.E. Insects and Mites Feeding on Olive: Distribution, Importance, Habits, Seasonal Development and Dormancy; Brill Academic Publishers: Leiden, The Netherlands, 2006; p. 182. [Google Scholar]
- Daane, K.M.; Johnson, M. Olive fruit fly: Managing an ancient pest in modern times. Annu. Rev. Entomol. 2010, 55, 151–169. [Google Scholar] [CrossRef] [PubMed]
- Neuenschwander, P.; Michelakis, G. The infestation of Dacus oleae (Gmel.) (Diptera: Tephritidae) at harvest time and its influence on yield and quality of olive oil in Crete. J. Appl. Entomol. 1978, 86, 420–433. [Google Scholar] [CrossRef]
- Malheiro, R.; Casal, S.; Baptista, P.; Pereira, J.A. A review of Bactrocera oleae (Rossi) impact in olive products: From the tree to the table. Trends Food Sci. Technol. 2015, 44, 226–242. [Google Scholar] [CrossRef]
- Gucci, R.; Caruso, G.; Canale, A.; Loni, A.; Raspi, A.; Urbani, S.; Taticchi, A.; Esposto, S.; Servili, M. Qualitative changes of olive oils obtained from fruits damaged by Bactrocera oleae (Rossi). HortScience 2012, 47, 301–307. [Google Scholar] [CrossRef]
- Caleca, V.; Antista, G.; Campisi, G.; Caruso, T.; Lo Verde, G.; Maltese, M.; Rizzo, R.; Planeta, D. High quality extra virgin olive oil from olives attacked by the olive fruit fly, Bactrocera Oleae (Rossi) (Diptera Tephritidae): Which is the tolerable limit? Data from experimental ‘Nocellara Del Belice’ and ‘Cerasuola’ olive groves in Sicily. Chem. Eng. Trans. 2017, 58, 451–456. [Google Scholar] [CrossRef]
- Tzanakakis, M.E.; Koveos, D.S. Inhibition of ovarian maturation in the olive fruit fly, Dacus oleae (Diptera: Tephritidae), under long photophase and an increase of temperature. Ann. Entomol. Soc. Am. 1986, 79, 15–18. [Google Scholar] [CrossRef]
- Koveos, D.S.; Tzanakakis, M.E. Effect of the presence of olive fruit on ovarian maturation in the olive fruit fly, Dacus oleae, under laboratory conditions. Entomol. Exp. Appl. 1990, 55, 161–168. [Google Scholar] [CrossRef]
- Koveos, D.S.; Tzanakakis, M.E. Diapause aversion in the adult olive fruit fly through effects of the host fruit, bacteria, and adult diet. Ann. Entomol. Soc. Am. 1993, 86, 668–673. [Google Scholar] [CrossRef]
- Sacchetti, P.; Granchietti, A.; Landini, S.; Viti, C.; Giovannetti, L.; Belcari, A. Relationships between the olive fly and bacteria. J. Appl. Entomol. 2008, 132, 682–689. [Google Scholar] [CrossRef]
- Jose, P.A.; Ben-Yosef, M.; Jurkevitch, E.; Yuval, B. Symbiotic bacteria affect oviposition behavior in the olive fruit fly Bactrocera oleae. J. Insect Physiol. 2019, 117, 103917. [Google Scholar] [CrossRef] [PubMed]
- Kokkari, A.I.; Pliakou, O.D.; Floros, G.D.; Kouloussis, N.A.; Koveos, D.S. Effect of fruit volatiles and light intensity on the reproduction of Bactrocera (Dacus) oleae. J. Appl. Entomol. 2017, 141, 841–847. [Google Scholar] [CrossRef]
- Kokkari, A.I.; Milonas, P.G.; Anastasaki, E.; Floros, G.D.; Kouloussis, N.A.; Koveos, D.S. Determination of volatile substances in olives and their effect on reproduction of the olive fruit fly. J. Appl. Entomol. 2021, 145, 841–855. [Google Scholar] [CrossRef]
- Katsoyannos, B.I.; Kouloussis, N.A. Captures of the olive fruit fly Bactrocera oleae on spheres of different colours. Entomol. Exp. Appl. 2001, 100, 165–172. [Google Scholar] [CrossRef]
- Rotundo, G.; Germinara, G.S.; De Cristofaro, A.; Rama, F. Identificazione di composti volatili in estratti da diverse cultivar di Olea europaea L. biologicamente attivi su Bactrocera oleae (Gmelin) (Diptera: Tephritidae). Boil. Lab. Ent. Agr. Filippo Silvestri 2001, 57, 25–34. [Google Scholar]
- Solinas, M.; Rebora, M.; De Cristofaro, A.; Rotundo, G.; Girolami, V.; Mori, N.; Di Bernardo, A. Functional morphology of Bactrocera oleae (Gmel.) (Diptera: Tephritidae) tarsal chemosensilla involved in interactions with the host-plant. Entomologica 2001, 35, 103–123. [Google Scholar] [CrossRef]
- Fletcher, B.S.; Pappas, S.; Kapatos, E. Changes in the ovaries of olive flies (Dacus oleae (Gmelin)) during the summer, and their relationship to temperature, humidity and fruit availability. Ecol. Entomol. 1978, 3, 99–107. [Google Scholar] [CrossRef]
- Fletcher, B.S.; Kapatos, E. The influence of temperature, diet and olive fruits on the maturation rates of female olive flies at different times of the year. Entomol. Exp. Appl. 1983, 33, 244–252. [Google Scholar] [CrossRef]
- Kampouraki, A.; Stavrakaki, M.; Karataraki, A.; Katsikogiannis, G.; Pitika, E.; Varikou, K.; Vlachaki, A.; Chrysargyris, A.; Malandraki, E.; Sidiropoulos, N.; et al. Recent evolution and operational impact of insecticide resistance in olive fruit fly Bactrocera oleae populations from Greece. J. Pest Sci. 2018, 91, 1429–1439. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Vayias, B.J.; Dimizas, C.B.; Kavallieratos, N.G.; Papagregoriou, A.S.; Buchelos, C.T. Insecticidal efficacy of diatomaceous earth against Sitophilus oryzae (L.) (Coleoptera: Curculionidae) and Tribolium confusum du Val (Coleoptera: Tenebrionidae) on stored wheat: Influence of dose rate, temperature and exposure interval. J. Stored Prod. Res. 2005, 41, 47–55. [Google Scholar] [CrossRef]
- Baldassari, N.; Prioli, C.; Martini, A.; Trotta, V.; Barionio, P. Insecticidal efficacy of a diatomaceous earth formulation against a mixed age population of adults of Rhyzopertha dominica and Tribolium castaneum as function of different temperature and exposure time. Bul. Insectology 2008, 61, 355–360. [Google Scholar]
- Arthur, F.H. Immediate and delayed mortality of Oryzaephilus surinamensis (L.) exposed on wheat treated with diatomaceous earth: Effects of temperature, relative humidity, and exposure interval. J. Stor. Prod. Res. 2001, 37, 13–21. [Google Scholar] [CrossRef]
- Mewis, I.; Ulrichs, C. Action of amorphous diatomaceous earth against different stages of the stored product pests Tribolium confusum (Coleoptera: Tenebrionidae), Tenebrio molitor (Coleoptera: Tenebrionidae), Sitophilus granarius (Coleoptera: Curculionidae) and Plodia interpunctella (Lepidoptera: Pyralidae). J. Stored Prod. Res. 2001, 37, 153–164. [Google Scholar] [CrossRef]
- Andrić, G.G.; Marković, M.M.; Adamović, M.; Daković, A.; Golić, M.P.; Kljajić, P.J. Insecticidal potential of natural zeolite and diatomaceous earth formulations against rice weevil (Coleoptera: Curculionidae) and red flour beetle (Coleoptera: Tenebrionidae). J. Econ. Entomol. 2012, 105, 670–678. [Google Scholar] [CrossRef]
- Floros, G.D.; Kokkari, A.I.; Kouloussis, N.A.; Kantiranis, N.; Damos, P.; Filippidis, A.; Koveos, D.S. Evaluation of the natural zeolite lethal effects on adults of the bean weevil under different temperatures and relative humidity regimes. J. Econ. Entomol. 2018, 111, 482–490. [Google Scholar] [CrossRef]
- De Smedt, C.; Someus, E.; Spanoghe, P. Potential and actual uses of zeolites in crop protection. Pest Manag. Sci. 2015, 71, 1355–1367. [Google Scholar] [CrossRef]
- Puterka, G.J.; Glenn, D.M.; Sekutowski, D.G.; Unruh, T.R.; Jones, S.K. Progress toward liquid formulations of particle films for insect and disease control in pear. Environ. Entomol. 2000, 29, 329–339. [Google Scholar] [CrossRef]
- Campolo, O.; Romeo, F.V.; Malacrinò, A.; Laudani, F.; Carpinteri, G.; Fabroni, S.; Rapisarda, P.; Palmeri, V. Effects of inert dusts applied alone and in combination with sweet orange essential oil against Rhyzopertha dominica (Coleoptera: Bostrichidae) and wheat microbial population. Industr. Crop. Prod. 2014, 61, 361–369. [Google Scholar] [CrossRef]
- Zeni, V.; Baliota, G.V.; Benelli, G.; Canale, A.; Athanassiou, C.G. Diatomaceous Earth for Arthropod Pest Control: Back to the Future. Molecules 2021, 26, 7487. [Google Scholar] [CrossRef]
- Rumbos, C.I.; Sakka, M.; Berillis, P.; Athanassiou, C.G. Insecticidal potential of zeolite formulations against three stored-grain insects, particle size effect, adherence to kernels and influence on test weight of grains. J. Stored Prod. Res 2016, 68, 93–101. [Google Scholar] [CrossRef]
- Eroglu, N.; Sakka, M.K.; Emekci, M.; Athanassiou, C.G. Effects of zeolite formulations on the mortality and progeny production of Sitophilus oryzae and Oryzaephilus surinamensis at different temperature and relative humidity levels. J. Stored Prod. Res. 2019, 81, 40–45. [Google Scholar] [CrossRef]
- Kljajić, P.; Andrić, G.; Adamović, M.; Bodroža-Solarov, M.; Marković, M.; Perić, I. Laboratory assessment of insecticidal effectiveness of natural zeolite and diatomaceous earth formulations against three stored-product beetle pests. J. Stored Prod. Res 2010, 46, 1–6. [Google Scholar] [CrossRef]
- Saour, G.; Makee, H. A kaolin-based particle film for suppression of the olive fruit fly Bactrocera oleae Gmelin (Dip., Tephritidae) in olive groves. J. Appl. Entomol. 2004, 128, 28–31. [Google Scholar] [CrossRef]
- Caleca, V.; Rizzo, R. Tests on the effectiveness of kaolin and copper hydroxide in the control of Bactrocera oleae (Gmelin). IOBC WPRS 2007, 39, 111–117. [Google Scholar]
- Pascual, S.; Cobos, G.; Seris, E.; González-Núñez, M. Effects of processed kaolin on pests and non-target arthropods in a Spanish olive grove. J. Pest Sci. 2010, 83, 121–133. [Google Scholar] [CrossRef]
- Mozhdehi, M.R.A.; Kayhanian, A.A. Application of deterrent compound for control of olive fruit flies Bactrocera oleae Gmelin. (Diptera: Tephritidae). Rom. J. Plant Prot. 2014, 7, 24–30. [Google Scholar]
- Mazor, M.; Erez, A. Processed kaolin protects fruits from Mediterranean fruit fly infestations. Crop Prot. 2004, 23, 47–51. [Google Scholar] [CrossRef]
- D’Aquino, S.; Cocco, A.; Ortu, S.; Schirra, M. Effects of kaolin-based particle film to control Ceratitis capitata (Diptera: Tephritidae) infestations and postharvest decay in citrus and stone fruit. Crop Prot. 2011, 30, 1079–1086. [Google Scholar] [CrossRef]
- Mezőfi, L.; Sipos, P.; Vétek, G.; Elek, R.; Marko, V. Evaluation of kaolin and cinnamon essential oil to manage two pests and a fungal disease of sour cherry at different tree canopy levels. J. Plant Dis. Prot. 2018, 125, 483–490. [Google Scholar] [CrossRef]
- Knapp, L.; Mazzi, D.; Finger, R. Management strategies against Drosophila suzukii: Insights into Swiss grape growers’ choices. Pest Manag. Sci. 2019, 75, 2820–2829. [Google Scholar] [CrossRef]
- Soubeih, K.A.; Ali, E.A.; El-Hadidy, A.E. Effect of kaolin and diatoms on growth, productivity and pests of potato under north sinai conditions. Egypt. J. Desert Res. 2017, 67, 83–115. [Google Scholar] [CrossRef]
- Silva, C.D.; Ramalho, F.D.S. Kaolin spraying protects cotton plants against damages by boll weevil Anthonomus grandis Boheman (Coleoptera: Curculionidae). J. Pest Sci. 2013, 86, 563–569. [Google Scholar] [CrossRef]
- Markó, V.; Blommers, L.H.M.; Bogya, S.; Helsen, H. Kaolin particle films suppress many apple pests, disrupt natural enemies and promote woolly apple aphid. J. Appl. Entomol. 2008, 132, 26–35. [Google Scholar] [CrossRef]
- Alavo, T.B. Biological control agents and environmentally-friendly compounds for the integrated management of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) on cotton: Perspectives for pyrethroid resistance management in West Africa? Arch. Phytopathol. Plant Prot. 2006, 39, 105–111. [Google Scholar] [CrossRef]
- Pangihutan, J.C.; Dono, D.; Hidayat, Y. The potency of minerals to reduce oriental fruit fly infestation in chili fruits. PeerJ 2022, 10, e13198. [Google Scholar] [CrossRef]
- Kantiranis, N.; Filippidis, A.; Georgakopoulos, A. Investigation of the uptake ability of fly ashes produced after lignite combustion. J. Environ. Manag. 2005, 76, 119–123. [Google Scholar] [CrossRef]
- Wexler, A.; Hasegawa, S. Relative humidity-temperature relationships of some saturated salt solutions in the temperature range 0 °C to 50 °C. J. Res. Natl. Inst. 1954, 53, 19–26. [Google Scholar] [CrossRef]
- Winston, P.W.; Bates, D.H. Saturated solutions for the control of humidity in biological research. Ecology 1960, 41, 232–237. [Google Scholar] [CrossRef]
- Diotaiuti, L.; Penido, C.M.; Araújo, H.S.D.; Schofield, C.J.; Pinto, C.T. Excito-repellency effect of deltamethrin on triatomines under laboratory conditions. Rev. Soc. Bras. Med. Trop. 2000, 33, 247–252. [Google Scholar] [CrossRef]
- Mangan, R.L.; Moreno, D.S. Photoactive dye insecticide formulations: Adjuvants increase toxicity to Mexican fruit fly (Diptera: Tephritidae). J. Econ. Entomol. 2001, 94, 150–156. [Google Scholar] [CrossRef]
- Salerno, G.; Rebora, M.; Kovalev, A.; Gorb, E.; Gorb, S. Kaolin nano-powder effect on insect attachment ability. J. Pest Sci. 2020, 93, 315–327. [Google Scholar] [CrossRef]
- Yee, W.L. Effects of several newer insecticides and kaolin on oviposition and adult mortality in western cherry fruit fly (Diptera: Tephritidae). J. Entomol. Sci. 2008, 43, 177–190. [Google Scholar] [CrossRef]
- González-Núñez, M.; Pascual, S.; Cobo, A.; Seris, E.; Cobos, G.; Fernández, C.E.; Sánchez-Ramos, I. Copper and kaolin sprays as tools for controlling the olive fruit fly. Entomol. Gen. 2021, 41, 97–110. [Google Scholar] [CrossRef]
- Benincasa, C.; Bati, C.B.; Iannotta, N.; Pellegrino, M.; Pennino, G.; Rizzuti, B.; Romano, E. Efficacy of kaolin and copper-based products on olive-fruit fly (B. aloea Gmelin) and effects on nutritional and sensory parameters of olive oils. Riv. Sci. Alim. 2008, 4, 21–31. [Google Scholar]
- Bigiotti, G.; Pastorelli, R.; Belcari, A.; Sacchetti, P. Symbiosis interruption in the olive fly: Effect of copper and propolis on Candidatus Erwinia dacicola. J. Appl. Entomol. 2019, 143, 357–364. [Google Scholar] [CrossRef]
- Sinno, M.; Bézier, A.; Vinale, F.; Giron, D.; Laudonia, S.; Garonna, A.P.; Pennacchio, F. Symbiosis disruption in the olive fruit fly, Bactrocera oleae (Rossi), as a potential tool for sustainable control. Pest Manag. Sci. 2020, 76, 3199–3207. [Google Scholar] [CrossRef] [PubMed]
Solutions | Relative Humidity (%) | Saturation Deficit (kPa) |
---|---|---|
LiCl·H2O | 23 | 2.96 |
MgCl2·6H2O | 33 | 2.25 |
Mg(NO3)2·6H2O | 55 | 1.51 |
NaCl | 75 | 0.84 |
KNO3 | 94 | 0.17 |
Sample | ZeotP |
---|---|
HEU-type zeolite (clinoptilolite) | 70 |
Quartz | 1 |
Cristobalite | 4 |
Feldspars | 7 |
Amorphous material | 18 |
Total | 100 |
Ion exchange capacity (meq/100 g) | 193 |
Sample | SiO2 | Al2O3 | Fe2O3tot | MnO | MgO | CaO | SrO | BaO | Na2O | K2O | H2O | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ZeotP | 68.43 | 11.60 | bdl * | bdl | 0.96 | 3.80 | bdl | bdl | 0.03 | 2.12 | 13.03 | 99.97 |
Product | Mean (±SE) Number of Oviposition Holes after | |
---|---|---|
3 | 6 | |
Days | ||
Control | 107.0 ± 8.4 a | 168.5 ± 12.2 a |
ZeotP without NU-FILM-P® | 16.2 ± 6.4 b | 59.0 ± 15.7 b |
ZeotP with NU-FILM-P® | 0.0 ± 0.0 c | 0.0 ± 0.0 c |
Temperature | Mean (±SE) Number of Oviposition Holes after | |||
---|---|---|---|---|
3 | 6 | |||
Days | ||||
Control | ZeotP with NU-FILM-P® | Control | ZeotP with NU-FILM-P® | |
17 °C | 13.5 ± 7.7 aA | 0.0 ± 0.0 aB | 35.0 ± 17.0 aA | 0.2 ± 0.2 aB |
20 °C | 9.7 ± 2.9 aA | 0.0 ± 0.0 aB | 37.5 ± 10.5 aA | 0.0 ± 0.0 aB |
25 °C | 81.5 ± 30.8 bA | 0.2 ± 0.2 aB | 129.0 ± 28.7 bA | 0.7 ± 0.7 aB |
30 °C | 49.2 ± 14.9 cA | 0.2 ± 0.2 aB | 100.7 ± 22.2 bA | 1.2 ± 0.2 bB |
RH % | Mean (±SE) Number of Oviposition Holes after | |||
---|---|---|---|---|
3 | 6 | |||
Days | ||||
Control | ZeotP with NU-FILM-P® | Control | ZeotP with NU-FILM-P® | |
23 | 33.2 ± 17.0 aA | 4.7 ± 2.7 aB | 47.5 ± 21.4 aA | 9.5 ± 0.6 aB |
33 | 34.5 ± 10.4 aA | 9.2 ± 1.1 aB | 69.5 ± 8.3 aA | 10.0 ± 1.1 aB |
55 | 73.2 ± 10.2 bA | 4.2 ± 1.9 aB | 84.2 ± 5.6 cA | 7.2 ± 3.1 aB |
75 | 60.7 ± 8.4 bA | 3.0 ± 2.3 aB | 90.5 ± 2.7 cA | 6.5 ± 3.1 aB |
94 | 27.0 ± 3.3 aA | 7.0 ± 1.1 aB | 43.0 ± 3.4 aA | 11.0 ± 1.1 aB |
Product | Water Volume (mL) | Mean (±SE) Number of Oviposition Holes after | |||||
---|---|---|---|---|---|---|---|
3 | 6 | 9 | |||||
Days | |||||||
With NU-FILM-P® | Without NU-FILM-P® | With NU-FILM-P® | Without NU-FILM-P® | With NU-FILM-P® | Without NU-FILM-P® | ||
ZeotP | 0 | 0.0 ± 0.0 aA | 7.5 ± 4.1 aB | 0.0 ± 0.0 aA | 39.7 ± 12.8 aB | 0.0 ± 0.0 aA | 56.5 ± 14.1 aB |
5 | 1.0 ± 0.7 aA | 10.5 ± 6.1 abB | 1.7 ± 0.5 aA | 34.2 ± 19.9 aB | 3.0 ± 1.1 aA | 42.3 ± 14.6 bB | |
15 | 0.0 ± 0.0 aA | 13.8 ± 5.5 bB | 0.0 ± 0.0 aA | 41.8 ± 8.0 aB | 1.8 ± 1.4 aA | 60.8 ± 20.5 aB | |
Decis® | 0 | 2.8 ± 0.9 aA | 4.5 ± 1.8 aA | 3.0 ± 1.1 abA | 16.5 ± 7.0 bB | 4.7 ± 2.1 aA | 32.2 ± 18.0 bcB |
5 | 1.0 ± 1.0 aA | 13.5 ± 6.2 bB | 1.5 ± 1.2 aA | 36.2 ± 11.6 aB | 6.2 ± 0.9 aA | 66.2 ± 18.7 aB | |
15 | 3.0 ± 1.3 aA | 0.8 ± 0.8 cA | 4.5 ± 0.5 bA | 4.5 ± 4.5 cA | 4.5 ± 2.4 aA | 22.5 ± 10.7 cB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovaiou, S.K.; Kokkari, A.; Floros, G.; Kantiranis, N.; Kouloussis, N.A.; Filippidis, A.A.; Koveos, D.S. Oviposition-Deterrent Effect of a High-Quality Natural Zeolite on the Olive Fruit Fly Bactrocera oleae, under Different Conditions of Temperature and Relative Humidity. Insects 2024, 15, 256. https://doi.org/10.3390/insects15040256
Kovaiou SK, Kokkari A, Floros G, Kantiranis N, Kouloussis NA, Filippidis AA, Koveos DS. Oviposition-Deterrent Effect of a High-Quality Natural Zeolite on the Olive Fruit Fly Bactrocera oleae, under Different Conditions of Temperature and Relative Humidity. Insects. 2024; 15(4):256. https://doi.org/10.3390/insects15040256
Chicago/Turabian StyleKovaiou, Soultana Kyriaki, Anastasia Kokkari, George Floros, Nikolaos Kantiranis, Nikos A. Kouloussis, Anestis A. Filippidis, and Dimitrios S. Koveos. 2024. "Oviposition-Deterrent Effect of a High-Quality Natural Zeolite on the Olive Fruit Fly Bactrocera oleae, under Different Conditions of Temperature and Relative Humidity" Insects 15, no. 4: 256. https://doi.org/10.3390/insects15040256
APA StyleKovaiou, S. K., Kokkari, A., Floros, G., Kantiranis, N., Kouloussis, N. A., Filippidis, A. A., & Koveos, D. S. (2024). Oviposition-Deterrent Effect of a High-Quality Natural Zeolite on the Olive Fruit Fly Bactrocera oleae, under Different Conditions of Temperature and Relative Humidity. Insects, 15(4), 256. https://doi.org/10.3390/insects15040256