Pentastiridius leporinus (Linnaeus, 1761) as a Vector of Phloem-Restricted Pathogens on Potatoes: ‘Candidatus Arsenophonus Phytopathogenicus’ and ‘Candidatus Phytoplasma Solani’
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Collection of P. leporinus
2.2. Transmission Experiments
2.3. Choice/Development Trial
2.4. DNA Isolation
2.5. Real-Time PCR Assays and Assessment of Sensitivity
2.6. Sequencing and Generation of a gBlock
3. Results
3.1. Transmission Experiments
3.1.1. Pathogens in Planthoppers
3.1.2. Pathogens in Plant Material
3.2. Choice Experiment
3.3. Development Speed
3.4. Detection Limit of CPs Assay
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pfitzer, R.; Schrameyer, K.; Voegele, R.T.; Maier, J.; Lang, C.; Varrelmann, M. Causes and effects of the occurrence of “Syndrome des basses richesses” in German sugar beet growing areas. Sugar Ind. 2020, 145, 234–244. [Google Scholar] [CrossRef]
- Behrmann, S.; Schwind, M.; Schieler, M.; Vilcinskas, A.; Martinez, O.; Lee, K.-Z.; Lang, C. Spread of Bacterial and Virus Yellowing Diseases of Sugar Beet in South and Central Germany from 2017–2020. Sugar Ind. 2021, 149, 476–485. [Google Scholar] [CrossRef]
- Bressan, A.; Moral García, F.J.; Boudon-Padieu, E. The Prevalence of ‘Candidatus Arsenophonus Phytopathogenicus’ Infecting the Planthopper Pentastiridius leporinus (Hemiptera: Cixiidae) Increase Nonlinearly with the Population Abundance in Sugar Beet Fields. Environ. Entomol. 2011, 40, 1345–1352. [Google Scholar] [CrossRef]
- Mahillon, M.; Groux, R.; Bussereau, F.; Brodard, J.; Debonneville, C.; Demal, S.; Kellenberger, I.; Peter, M.; Steinger, T.; Schumpp, O. Virus Yellows and Syndrome “Basses Richesses” in Western Switzerland: A Dramatic 2020 Season Calls for Urgent Control Measures. Pathogens 2022, 11, 885. [Google Scholar] [CrossRef] [PubMed]
- Sémétey, O.; Bressan, A.; Richard-Molard, M.; Boudon-Padieu, E. Monitoring of Proteobacteria and Phytoplasma in Sugar Beets Naturally or Experimentally Affected by the Disease Syndrome ‘Basses Richesses’. Eur. J. Plant Pathol. 2007, 117, 187–196. [Google Scholar] [CrossRef]
- Quaglino, F.; Zhao, Y.; Casati, P.; Bulgari, D.; Bianco, P.A.; Wei, W.; Davis, R.E. ‘Candidatus Phytoplasma Solani’, a Novel Taxon Associated with Stolbur- and Bois Noir-Related Diseases of Plants. Int. J. Syst. Evol. Microbiol. 2013, 63, 2879–2894. [Google Scholar] [CrossRef] [PubMed]
- Bressan, A.; Terlizzi, F.; Credi, R. Independent Origins of Vectored Plant Pathogenic Bacteria from Arthropod-Associated Arsenophonus Endosymbionts. Microb. Ecol. 2012, 63, 628–638. [Google Scholar] [CrossRef]
- Gonella, E.; Tedeschi, R.; Crotti, E.; Alma, A. Multiple Guests in a Single Host: Interactions across Symbiotic and Phytopathogenic Bacteria in Phloem-Feeding Vectors—A Review. Entomol. Exp. Appl. 2019, 167, 171–185. [Google Scholar] [CrossRef]
- Schröder, M.; Rissler, D.; Schrameyer, K. “Syndrome Des Basses Richesses” (SBR)—Erstmaliges Auftreten an Zuckerrübe in Deutschland. J. Für Kult. 2012, 64, 396. [Google Scholar]
- Gummirüben: Diese Neue Krankheit Befällt Gerade Ganze Rübenfelder. Available online: https://www.agrarheute.com/pflanze/zuckerrueben/gummirueben-diese-neue-krankheit-befaellt-gerade-ganze-ruebenfelder-611667 (accessed on 13 February 2024).
- Gummirübe: Zuckerrüben Bayerischer Bauern Immer Öfter Betroffen. Available online: https://www.wochenblatt-dlv.de/feld-stall/pflanzenbau/gummiruebe-zuckerrueben-bayerischer-bauern-immer-oefter-betroffen-575715 (accessed on 19 February 2024).
- Hausmann, J. Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Field Crops and Grassland; Personal Communication: Braunschweig, Germany, 2024. [Google Scholar]
- Kosovac, A.; Ćurčić, Ž.; Stepanović, J.; Rekanović, E.; Duduk, B. Epidemiological Role of Novel and Already Known ‘Ca. P. Solani’ Cixiid Vectors in Rubbery Taproot Disease of Sugar Beet in Serbia|Scientific Reports. Sci. Rep. 2023, 13, 1433. [Google Scholar] [CrossRef]
- Achtung Zikaden: Darum Schädigen Sie Außer Rüben auch Kartoffeln. Available online: https://www.agrarheute.com/pflanze/kartoffeln/achtung-zikaden-schaedigen-ausser-rueben-kartoffeln-603858 (accessed on 22 January 2024).
- Schilf-Glasflügelzikade Schädigt auch Kartoffeln. Available online: https://www.topagrar.com/acker/news/schilf-glasfluegelzikade-schaedigt-auch-kartoffeln-13287306.html (accessed on 22 January 2024).
- Çağlar, B.K.; Şimşek, E. Detection and Multigene Typing of ‘Candidatus Phytoplasma Solani’-Related Strains Infecting Tomato and Potato Plants in Different Regions of Turkey. Pathogens 2022, 11, 1031. [Google Scholar] [CrossRef] [PubMed]
- Behrmann, S.C.; Rinklef, A.; Lang, C.; Vilcinskas, A.; Lee, K.-Z. Potato (Solanum tuberosum) as a New Host for Pentastiridius leporinus (Hemiptera: Cixiidae) and Candidatus arsenophonus Phytopathogenicus. Insects 2023, 14, 281. [Google Scholar] [CrossRef]
- Zübert, C.; Kube, M. Application of TaqMan Real-Time PCR for Detecting ‘Candidatus Arsenophonus Phytopathogenicus’ Infection in Sugar Beet. Pathogens 2021, 10, 1466. [Google Scholar] [CrossRef] [PubMed]
- Biedermann, R.T.; Niedringhaus, R. The Plant—And Leafhoppers of Germany—Identification Key to All Species; WABV: Scheeßel, Germany, 2009. [Google Scholar]
- Jarausch, B.; Markheiser, A.; Jarausch, W.; Biancu, S.; Kugler, S.; Runne, M.; Maixner, M. Risk Assessment for the Spread of Flavescence Dorée-Related Phytoplasmas from Alder to Grapevine by Alternative Insect Vectors in Germany. Microorganisms 2023, 11, 2766. [Google Scholar] [CrossRef]
- Behrmann, S.C.; Witczak, N.; Lang, C.; Schieler, M.; Dettweiler, A.; Kleinhenz, B.; Schwind, M.; Vilcinskas, A.; Lee, K.-Z. Biology and Rearing of an Emerging Sugar Beet Pest: The Planthopper Pentastiridius leporinus. Insects 2022, 13, 656. [Google Scholar] [CrossRef]
- Pfitzer, R.; Varrelmann, M.; Schrameyer, K.; Rostás, M. Life History Traits and a Method for Continuous Mass Rearing of the Planthopper Pentastiridius leporinus, a Vector of the Causal Agent of Syndrome ‘Basses Richesses’ in Sugar Beet. Pest Manag. Sci. 2022, 78, 4700–4708. [Google Scholar] [CrossRef] [PubMed]
- Görg, L.M.; Gallinger, J.; Gross, J. The Phytopathogen ‘Candidatus Phytoplasma Mali’ Alters Apple Tree Phloem Composition and Affects Oviposition Behavior of Its Vector Cacopsylla Picta. Chemoecology 2021, 31, 31–45. [Google Scholar] [CrossRef]
- Christensen, N.M.; Nicolaisen, M.; Hansen, M.; Schulz, A. Distribution of Phytoplasmas in Infected Plants as Revealed by Real-Time PCR and Bioimaging. Mol. Plant-Microbe Interact. 2004, 17, 1175–1184. [Google Scholar] [CrossRef]
- Maixner, M. Biology of Hyalesthes Obsoletus and Approaches to Control This Soilborne Vector of Bois Noir Disease. In Proceedings of the 5th Meeting of the IOBC/WPRS Working Group “Insect Pathogens and Insect Parasitic Nematodes”, Auer, Italy, 16–18 October 2006; Volume 30, pp. 3–9. [Google Scholar]
- Gross, J.; Gallinger, J.; Görg, L. Interactions between Phloem-Restricted Bacterial Plant Pathogens, Their Vector Insects, Host Plants, and Natural Enemies, Mediated by Primary and Secondary Plant Metabolites. Entomol. Gen. 2021, 42, 185–215. [Google Scholar] [CrossRef]
- Quaglino, F.; Sanna, F.; Moussa, A.; Faccincani, M.; Passera, A.; Casati, P.; Bianco, P.A.; Mori, N. Identification and Ecology of Alternative Insect Vectors of ‘Candidatus Phytoplasma Solani’ to Grapevine. Sci. Rep. 2019, 9, 19522. [Google Scholar] [CrossRef]
- Maixner, M. Transmission of German Grapevine Yellows (Vergilbungskrankheit) by the Planthopper Hyalesthes obsoletus (Auchenorrhyncha: Cixiidae). VITIS—J. Grapevine Res. 1994, 33, 103–104. [Google Scholar] [CrossRef]
- Sforza, R.; Clair, D.; Daire, X.; Larrue, J.; Boudon-Padieu, E. The Role of Hyalesthes obsoletus (Hemiptera: Cixiidae) in the Occurrence of Bois Noir of Grapevines in France. J. Phytopathol. 1998, 146, 549–556. [Google Scholar] [CrossRef]
- Séméty, O.; Gaudin, J.; Danet, J.-L.; Salar, P.; Theil, S.; Fontaine, M.; Krausz, M.; Chaisse, E.; Eveillard, S.; Verdin, E.; et al. Lavender Decline in France Is Associated with Chronic Infection by Lavender-Specific Strains of “Candidatus Phytoplasma Solani”. Appl. Environ. Microbiol. 2018, 84, e01507-18. [Google Scholar] [CrossRef]
- Fos, A.; Danet, J.L.; Zreik, L.; Garnier, M.; Bové, J.M. Use of a Monoclonal Antibody to Detect the Stolbur Mycoplasmalike Organism in Plants and Insects and to Identify a Vector in France. Plant Dis. 1992, 76, 1092–1096. [Google Scholar] [CrossRef]
- Jović, J.; Cvrković, T.; Mitrović, M.; Krnjajić, S.; Petrović, A.; Redinbaugh, M.G.; Pratt, R.C.; Hogenhout, S.A.; Toševski, I. Stolbur Phytoplasma Transmission to Maize by Reptalus Panzeri and the Disease Cycle of Maize Redness in Serbia. Phytopathology 2009, 99, 1053–1061. [Google Scholar] [CrossRef]
- Ćurčić, Ž.; Kosovac, A.; Stepanović, J.; Rekanović, E.; Kube, M.; Duduk, B. Multilocus Genotyping of ‘Candidatus Phytoplasma Solani’ Associated with Rubbery Taproot Disease of Sugar Beet in the Pannonian Plain. Microorganisms 2021, 9, 1950. [Google Scholar] [CrossRef]
- Fialová, R.; Válová, P.; Balakishiyeva, G.; Danet, J.-L.; Šafárová, D.; Foissac, X.; Navrátil, M. Genetic Variability of Stolbur Phytoplasma in Annual Crop and Wild Plant Species in South Moravia. J. Plant Pathol. 2009, 91, 411–416. [Google Scholar]
- Ulrich, R.; Preiss, U.; Fabich, S. Potato Stolbur phytoplasma in Hesse and Rhineland-Palatinate. In Proceedings of the 57. Deutsche Pflanzenschutztagung, Berlin, Germany, 6–9 September 2010. [Google Scholar]
- Preiss, U.; Fabich, S.; Mather-Kaub, H.; Albert, G.; Keuck, A. Potato Stolbur of potatoes. In Proceedings of the 57. Deutsche Pflanzenschutztagung, Berlin, Germany, 6–9 September 2010. [Google Scholar]
- Holeva, M.C.; Glynos, P.E.; Karafla, C.D.; Koutsioumari, E.M.; Simoglou, K.B.; Eleftheriadis, E. First Report of Candidatus Phytoplasma Solani Associated with Potato Plants in Greece. Plant Dis. 2014, 98, 1739. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman-Gries, S. ‘Stolbur’—A New Potato Disease in Israel. Potato Res. 1970, 13, 146–150. [Google Scholar] [CrossRef]
- Mitrovic, M.; Trivellone, V.; Jovic, J.; Cvrkovic, T.; Jakovljevic, M.; Kosovac, A.; Krstic, O.; Toševski, I. Potential Hemipteran Vectors of “Stolbur” Phytoplasma in Potato Fields in Serbia. Phytopathog. Mollicutes 2015, 5, S49. [Google Scholar] [CrossRef]
- Lindner, K.; Haase, N.U.; Roman, M.; Seemüller, E. Impact of Stolbur Phytoplasmas on Potato Tuber Texture and Sugar Content of Selected Potato Cultivars. Potato Res. 2011, 54, 267–282. [Google Scholar] [CrossRef]
- Jovic, J.; Marinković, S.; Jakovljevic, M.; Krstić, O.; Cvrković, T.; Mitrović, M.; Toševski, I. Symptomatology, (Co)Occurrence and Differential Diagnostic PCR Identification of ‘Ca. Phytoplasma solani’ and ‘Ca. Phytoplasma convolvuli’ in Field Bindweed. Pathogens 2021, 10, 160. [Google Scholar] [CrossRef] [PubMed]
Variety | Percentage of Plants Tested Positive for | |
---|---|---|
CAp | CPs | |
Lilly | 60% | 0% |
Merle | 0% | 60% |
Belana | 60% | 0% |
Juventa | 40% | 0% |
Gala | 80% | 0% |
Sequence (5′ to 3′) |
---|
ttgctaaagt ccccaactta atgatggcaa ttaacaacaa gggttgcgct cgttgcggga cttaacccaa catctcacga cacgagctga cgacaaccat gcaccacctg tgcttctgat aacctcc |
Copy Number | Cq Values of the Target a |
---|---|
1 × 100 | not detected (35.6 b) |
1 × 101 | 35.3 (±0.51) |
1 × 102 | 32.8 (±0.81) |
1 × 103 | 28.6 (±0.37) |
1 × 104 | 25.0 (±0.15) |
1 × 105 | 21.8 (±0.51) |
1 × 106 | 18.3 (±0.36) |
1 × 107 | 14.7 (±1.00) |
1 × 108 | 10.8 (±1.51) |
Material | Dilution/Copy Number | Cq Values potato | Cq Values sugar beet |
---|---|---|---|
plant DNA | Positive sample | 24.1 (±0.10) | 22.1 (±0.17) |
1:10 | 27.3 (±0.10) | 25.5 (±0.06) | |
1:100 | 30.8 (±0.26) | 29.0 (±0.12) | |
1:1000 | 34.1 (±0.51) | 32.5 (±0.17) | |
1:10,000 | not detected (37.7) a | 36.8 (±0.92) | |
Negative sample | not detected (37.7) a | not detected | |
gBlock with plant DNA b | 1 × 100 | 37.5 c (±0.18) | not detected |
1 × 101 | 36.6 (±1.02) | 36.7 (±1.37) | |
1 × 102 | 34.7 (±0.49) | 34.7 (±0.61) | |
1 × 103 | 29.2 (±0.04) | 29.2 (±0.02) | |
1 × 104 | 26.3 (±0.07) | 26.2 (±0.10) | |
1 × 105 | 22.4 (±0.54) | 22.4 (±0.07) | |
1 × 106 | 18.9 (±0.11) | 18.8 (±0.20) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Therhaag, E.; Schneider, B.; Zikeli, K.; Maixner, M.; Gross, J. Pentastiridius leporinus (Linnaeus, 1761) as a Vector of Phloem-Restricted Pathogens on Potatoes: ‘Candidatus Arsenophonus Phytopathogenicus’ and ‘Candidatus Phytoplasma Solani’. Insects 2024, 15, 189. https://doi.org/10.3390/insects15030189
Therhaag E, Schneider B, Zikeli K, Maixner M, Gross J. Pentastiridius leporinus (Linnaeus, 1761) as a Vector of Phloem-Restricted Pathogens on Potatoes: ‘Candidatus Arsenophonus Phytopathogenicus’ and ‘Candidatus Phytoplasma Solani’. Insects. 2024; 15(3):189. https://doi.org/10.3390/insects15030189
Chicago/Turabian StyleTherhaag, Eva, Bernd Schneider, Kerstin Zikeli, Michael Maixner, and Jürgen Gross. 2024. "Pentastiridius leporinus (Linnaeus, 1761) as a Vector of Phloem-Restricted Pathogens on Potatoes: ‘Candidatus Arsenophonus Phytopathogenicus’ and ‘Candidatus Phytoplasma Solani’" Insects 15, no. 3: 189. https://doi.org/10.3390/insects15030189