Rethinking Amino Acid Nutrition of Black Soldier Fly Larvae (Hermetia illucens) Based on Insights from an Amino Acid Reduction Trial
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Rearing
2.2. Experimental Diets
2.3. Feeding Trial and Data Collection
2.4. Data Processing and Statistics
3. Results and Discussion
3.1. Nutrient Balance Model
3.2. Amino Acid Retention Efficiency
3.3. Amino Acid Losses
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nayak, A.; Rühl, M.; Klüber, P. Hermetia illucens (Diptera: Stratiomyidae): Need, Potentiality, and Performance Measures. Agriculture 2023, 14, 8. [Google Scholar] [CrossRef]
- Broeckx, L.; Frooninckx, L.; Slegers, L.; Berrens, S.; Noyens, I.; Goossens, S.; Verheyen, G.; Wuyts, A.; van Miert, S. Growth of Black Soldier Fly Larvae Reared on Organic Side-Streams. Sustainability 2021, 13, 12953. [Google Scholar] [CrossRef]
- Kieβling, M.; Franke, K.; Heinz, V.; Aganovic, K. Relationship between substrate composition and larval weight: A simple growth model for black soldier fly larvae. J. Insects Food Feed 2023, 9, 1027–1036. [Google Scholar] [CrossRef]
- Miranda, C.D.; Cammack, J.A.; Tomberlin, J.K. Mass Production of the Black Soldier Fly, Hermetia illucens (L.), (Diptera: Stratiomyidae) Reared on Three Manure Types. Animals 2020, 10, 1243. [Google Scholar] [CrossRef]
- Scala, A.; Cammack, J.A.; Salvia, R.; Scieuzo, C.; Franco, A.; Bufo, S.A.; Tomberlin, J.K.; Falabella, P. Rearing substrate impacts growth and macronutrient composition of Hermetia illucens (L.) (Diptera: Stratiomyidae) larvae produced at an industrial scale. Sci. Rep. 2020, 10, 19448. [Google Scholar] [CrossRef]
- Tomberlin, J.K.; Miranda, C.; Flint, C.; Harris, E.; Wu, G. Nutrients limit production of insects for food and feed: An emphasis on nutritionally essential amino acids. Anim. Front. 2023, 13, 64–71. [Google Scholar] [CrossRef]
- Koethe, M.; Taubert, J.; Vervuert, I. Impact of lysine supplementation on growth and development ofHermetia illucens larvae. J. Insects Food Feed 2022, 8, 35–44. [Google Scholar] [CrossRef]
- Koštál, V.; Korbelová, J.; Poupardin, R.; Moos, M.; Šimek, P. Arginine and proline applied as food additives stimulate high freeze tolerance in larvae of Drosophila melanogaster. J. Exp. Biol. 2016, 219, 2358–2367. [Google Scholar] [CrossRef]
- Davis, G.R. Essential dietary amino acids for growth of larvae of the yellow mealworm, Tenebrio molitor L. J. Nutr. 1975, 105, 1071–1075. [Google Scholar] [CrossRef]
- Weeks, E.N.; Baniszewski, J.; Gezan, S.A.; Allan, S.A.; Cuda, J.P.; Stevens, B.R. Methionine as a safe and effective novel biorational mosquito larvicide. Pest Manag. Sci. 2019, 75, 346–355. [Google Scholar] [CrossRef]
- Harris, E.; Stout, K.; Tomberlin, J. Essential amino acid composition and supplementation in Gainesvill diets impact larval development of Hermetia illucens. In Proceedings of the Insects to Feed the World, Singapore, 19–22 June 2024. [Google Scholar]
- Jais, C.; Roth, F.X.; Kirchgeßner, M. Determination of the optimum ratio between the essential amino acids in laying hen diets. Arch. Für Geflügelkunde 1995, 59, 292–302. [Google Scholar]
- Roth, F.X.; Gruber, K.; Kirchgeßner, M. The ideal dietary amino acid pattern for broiler-chicks of age 7 to 28 days. Arch. Für Geflügelkunde 2001, 65, 199–206. [Google Scholar]
- Gruber, K.; Roth, F.X.; Kirchgeßner, M. Effect of partial dietary amino acid deductions on growth rate and nitrogen balance in growing chicks. Arch. Für Geflügelkunde 2000, 64, 244–250. [Google Scholar]
- Chang, C.L. Effects of amino acids on larvae and adults of Ceratitis capitata (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 2004, 97, 529–535. [Google Scholar] [CrossRef]
- Chang, C.L.; Albrecht, C.; El-Shall, S.; Kurashima, R. Adult reproductive capacity of Ceratitis capitata (Diptera: Tephritidae) on a chemically defined diet. Ann. Entomol. Soc. Am. 2001, 94, 702–706. [Google Scholar] [CrossRef]
- Miner, L.P.; Fernandez-Bayo, J.; Putri, F.; Niemeier, D.; Bischel, H.; VanderGheynst, J.S. Predicting black soldier fly larvae biomass and methionine accumulation using a kinetic model for batch cultivation and improving system performance using semi-batch cultivation. Bioprocess Biosyst. Eng. 2022, 45, 333–344. [Google Scholar] [CrossRef]
- Lemme, A.; Klueber, P. Black soldier fly larvae (Hermetia illucens) productivity can be optimized by amino acid supplementation. In Proceedings of the Insects to Feed the World, Singapore, 19–22 June 2024. [Google Scholar]
- Lemme, A.; Klueber, P. Nutrient uilization by black soldier fly larvae (Hermetia illucens). In Proceedings of the INSECTA 2024, Potsdam, Germany, 14–16 May 2024; p. 57. [Google Scholar]
- AOAC International. AOAC International. AOAC Official Method. In Official Methods of Analysis of AOAC INTERNATIONAL, 22nd ed.; Latimer, W.L., Jr., Ed.; AOAC Publications: New York, NY, USA, 2023; pp. C4-25–C4-26. [Google Scholar]
- Fontaine, J. Amino acid analysis in feeds. In Amino Acids in Animal Nutrition, 2nd ed.; D’Mello, J., Ed.; CABI Publishing: Wallingford, UK, 2003; pp. 15–40. ISBN 0-85199-654-X. [Google Scholar]
- European Commission. Commission Implementing Regulation (EU) 2024/771 of 29 February 2024 amending Regulation (EC) No 152/2009 laying down the methods of sampling and analysis for the official control of feed: Publications Office of the European Union, L-2985 Luxembourg. Off. J. Eur. Union 2024, 1–129. [Google Scholar]
- Fontaine, J.; Eudaimon, M. Liquid chromatographic determination of lysine, methionine, and threonine in pure amino acids (feed grade) and premixes: Collaborative study. J. AOAC Int. 2000, 83, 771–783. [Google Scholar] [CrossRef]
- Klüber, P.; Gurusinga, F.F.; Hurka, S.; Vilcinskas, A.; Tegtmeier, D. Turning trash into treasure: Hermetia illucens microbiome and biodegradation of industrial side streams. Appl. Environ. Microbiol. 2024, e0099124. [Google Scholar] [CrossRef]
- Schneider, L.; Kisinga, B.; Stoehr, N.; Jha, R.; Dusel, G. Effect of dietary protein in isoenergetic diets on energy and nitrogen digestibility and retention of black soldier fly (Hermetia illucens). In Proceedings of the Insects to Feed the World, Singapore, 19–22 June 2024. [Google Scholar]
- Paech, K.; Tracey, M.V. Modern Methods of Plant Analysis/Moderne Methoden der Pflanzenanalyse; Springer: Berlin/Heidelberg, Germany, 1955; ISBN 978-3-642-64957-8. [Google Scholar]
- Janssen, R.H.; Vincken, J.-P.; van den Broek, L.A.M.; Fogliano, V.; Lakemond, C.M.M. Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem. 2017, 65, 2275–2278. [Google Scholar] [CrossRef]
- Barragan-Fonseca, K.B.; Gort, G.; Dicke, M.; van Loon, J.J.A. Effects of dietary protein and carbohydrate on life-history traits and body protein and fat contents of the black soldier fly Hermetia illucens. Physiol. Entomol. 2019, 44, 148–159. [Google Scholar] [CrossRef]
- Soetemans, L.; Uyttebroek, M.; Bastiaens, L. Characteristics of chitin extracted from black soldier fly in different life stages. Int. J. Biol. Macromol. 2020, 165, 3206–3214. [Google Scholar] [CrossRef] [PubMed]
- Yu, A.; Beck, M.; Merzendorfer, H.; Yang, Q. Advances in understanding insect chitin biosynthesis. Insect Biochem. Mol. Biol. 2024, 164, 104058. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.Y.; Merzendorfer, H.; Zhang, W.; Zhang, J.; Muthukrishnan, S. Biosynthesis, Turnover, and Functions of Chitin in Insects. Annu. Rev. Entomol. 2016, 61, 177–196. [Google Scholar] [CrossRef]
- Coudron, C.L.; Berrens, S.; Van Peer, M.; Deruytter, D.; Claeys, J.; Van Miert, S. Ammonia emissions related to black soldier fly larvae during growth on different diets. J. Insects Food Feed 2024, 10, 1469–1483. [Google Scholar] [CrossRef]
- Lalander, C.H.; Fidjeland, J.; Diener, S.; Eriksson, S.; Vinnerås, B. High waste-to-biomass conversion and efficient Salmonella spp. reduction using black soldier fly for waste recycling. Agron. Sustain. Dev. 2015, 35, 261–271. [Google Scholar] [CrossRef]
- Klammsteiner, T.; Walter, A.; Bogataj, T.; Heussler, C.D.; Stres, B.; Steiner, F.M.; Schlick-Steiner, B.C.; Arthofer, W.; Insam, H. The Core Gut Microbiome of Black Soldier Fly (Hermetia illucens) Larvae Raised on Low-Bioburden Diets. Front. Microbiol. 2020, 11, 993. [Google Scholar] [CrossRef]
- Green, T.R.; Popa, R. Enhanced ammonia content in compost leachate processed by black soldier fly larvae. Appl. Biochem. Biotechnol. 2012, 166, 1381–1387. [Google Scholar] [CrossRef]
- Peguero, D.A.; Gold, M.; Vandeweyer, D.; Zurbrügg, C.; Mathys, A. A Review of Pretreatment Methods to Improve Agri-Food Waste Bioconversion by Black Soldier Fly Larvae. Front. Sustain. Food Syst. 2022, 5, 745894. [Google Scholar] [CrossRef]
- Tegtmeier, D.; Hurka, S.; Klüber, P.; Brinkrolf, K.; Heise, P.; Vilcinskas, A. Cottonseed Press Cake as a Potential Diet for Industrially Farmed Black Soldier Fly Larvae Triggers Adaptations of Their Bacterial and Fungal Gut Microbiota. Front. Microbiol. 2021, 12, 634503. [Google Scholar] [CrossRef]
- Vasilopoulos, S.; Giannenas, I.; Athanassiou G., C.; Rumbos, C.; Papadopoulos, E.; Fortomaris, P. Black soldier fly, mealworm and superworm: Chemical composition and comparative effect on broiler growth. World’s Poult. Sci. J. 2024, 80, 681–710. [Google Scholar] [CrossRef]
- Fuso, A.; Barbi, S.; Macavei, L.I.; Luparelli, A.V.; Maistrello, L.; Montorsi, M.; Sforza, S.; Caligiani, A. Effect of the Rearing Substrate on Total Protein and Amino Acid Composition in Black Soldier Fly. Foods 2021, 10, 1773. [Google Scholar] [CrossRef] [PubMed]
- Lemme, A.; Channarayapatna, G.; Jayaraman, B. Protein quality of black soldier fly larvae (Hermetia illucens). In Proceedings of the Insects to Feed the World, Singapore, 19–22 June 2024. [Google Scholar]
- Waterlow, J.C. Protein Turnover; CABI Publishing: Wallingford, UK; Cambridge, MA, USA, 2006; ISBN 978-0-85199-613-4. [Google Scholar]
- Rodehutscord, M.; Pack, M. Estimates of essential amino acid requirements from dose-response studies with rainbow trout and broiler chicken: Effect of mathematical model. Arch. Tierernahr. 1999, 52, 223–244. [Google Scholar] [CrossRef] [PubMed]
- Klünemann, M.; Romero, L.F.; Acman, M.; Milfort, M.C.; Fuller, A.L.; Rekaya, R.; Aggrey, S.E.; Payling, L.M.; Lemme, A. Multitissue transcriptomics demonstrates the systemic physiology of methionine deficiency in broiler chickens. Animal 2024, 18, 101143. [Google Scholar] [CrossRef] [PubMed]
- Edwards III, H.M.; Baker, D.H. Maintenance sulfur amino acid requirements of young chicks and efficiency of their use for accretion of whole-body sulfur amino acids and protein. Poult. Sci. 1999, 78, 1418–1423. [Google Scholar] [CrossRef]
- Edwards III, H.M.; Fernandez, S.R.; Baker, D.H. Maintenance lysine requirement and efficiency of using lysine for accretion of whole-body lysine and protein in young chicks. Poult. Sci. 1999, 78, 1412–1417. [Google Scholar] [CrossRef]
- Amorim Franco, T.M.; Blanchard, J.S. Bacterial Branched-Chain Amino Acid Biosynthesis: Structures, Mechanisms, and Drugability. Biochemistry 2017, 56, 5849–5865. [Google Scholar] [CrossRef]
- González-López, J.; Rodelas, B.; Pozo, C.; Salmerón-López, V.; Martínez-Toledo, M.V.; Salmerón, V. Liberation of amino acids by heterotrophic nitrogen fixing bacteria. Amino Acids 2005, 28, 363–367. [Google Scholar] [CrossRef]
- D’Mello, J. An outline of pathways in amino acid metabolism. In Amino Acids in Animal Nutrition, 2nd ed.; D’Mello, J., Ed.; CABI Publishing: Wallingford, UK, 2003; pp. 71–86. ISBN 0-85199-654-X. [Google Scholar]
PC | -Met | -Cys | -Lys | -Arg | -Phe | -His | +Met | ||
---|---|---|---|---|---|---|---|---|---|
Depectinised apple pomace | % | 56.72 | 56.85 | 56.89 | 57.16 | 57.16 | 57.09 | 56.92 | 56.59 |
Corn starch | % | 32.30 | 32.30 | 32.30 | 32.30 | 32.30 | 32.30 | 32.30 | 32.30 |
Limestone | % | 1.22 | 1.22 | 1.22 | 1.22 | 1.22 | 1.22 | 1.22 | 1.22 |
Dicalcium-phosphate | % | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 |
Salt | % | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 |
Premix 1 | % | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
L-Lysine HCl | % | 0.49 | 0.49 | 0.49 | 0.05 | 0.49 | 0.49 | 0.49 | 0.49 |
DL-Methionine | % | 0.14 | 0.01 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.27 |
L-Cysteine | % | 0.21 | 0.21 | 0.04 | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 |
L-Threonine | % | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 |
L-Arginine | % | 0.47 | 0.47 | 0.47 | 0.47 | 0.03 | 0.47 | 0.47 | 0.47 |
L-Tryptophan | % | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
L-Valine | % | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 |
L-Isoleucine | % | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 |
L-Leucine | % | 0.57 | 0.57 | 0.57 | 0.57 | 0.57 | 0.57 | 0.57 | 0.57 |
L-Histidine | % | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.04 | 0.24 |
L-Phenylalanine | % | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 | 0.00 | 0.37 | 0.37 |
L-Tyrosine | % | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 |
Glycine | % | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 |
L-Serine | % | 0.39 | 0.39 | 0.39 | 0.39 | 0.39 | 0.39 | 0.39 | 0.39 |
L-Proline | % | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 |
L-Alanine | % | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 |
L-Asparagine | % | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 |
L-Glutamine | % | 1.70 | 1.70 | 1.70 | 1.70 | 1.70 | 1.70 | 1.70 | 1.70 |
Dry matter | % | 92.3 | 92.3 | 92.3 | 92.3 | 92.3 | 92.3 | 92.3 | 92.3 |
Crude protein | % | 12.2 | 12.2 | 12.2 | 12.2 | 12.2 | 12.2 | 12.2 | 12.2 |
Crude fiber | % | 18.2 | 18.2 | 18.2 | 18.2 | 18.2 | 18.2 | 18.2 | 18.2 |
Ether extract | % | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 |
Crude ash | % | 9.6 | 9.6 | 9.6 | 9.6 | 9.6 | 9.6 | 9.6 | 9.6 |
Calcium | % | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |
Phosphorous | % | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 |
Lys | % | 0.52 | 0.52 | 0.52 | 0.18 | 0.52 | 0.52 | 0.52 | 0.52 |
Met | % | 0.20 | 0.07 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.33 |
Cys | % | 0.20 | 0.20 | 0.07 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
Thr | % | 0.42 | 0.42 | 0.42 | 0.42 | 0.42 | 0.42 | 0.42 | 0.42 |
Trp | % | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Arg | % | 0.67 | 0.67 | 0.67 | 0.67 | 0.23 | 0.67 | 0.67 | 0.67 |
Ile | % | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 |
Leu | % | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 |
Val | % | 0.51 | 0.51 | 0.51 | 0.51 | 0.51 | 0.51 | 0.51 | 0.51 |
His | % | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.11 | 0.31 |
Phe | % | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.19 | 0.55 | 0.55 |
Tyr | % | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 |
Gly | % | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
Ser | % | 0.57 | 0.57 | 0.57 | 0.57 | 0.57 | 0.57 | 0.57 | 0.57 |
Pro | % | 0.71 | 0.71 | 0.71 | 0.71 | 0.71 | 0.71 | 0.71 | 0.71 |
Ala | % | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 |
Asp | % | 1.04 | 1.04 | 1.04 | 1.04 | 1.04 | 1.04 | 1.04 | 1.04 |
Glu | % | 2.27 | 2.27 | 2.27 | 2.27 | 2.27 | 2.27 | 2.27 | 2.27 |
Trt 1 PC | SD | Trt 2 -Met | SD | Trt 3 -Cys | SD | Trt 4 -Lys | SD | Trt 5 -Arg | SD | Trt 6 -Phe | SD | Trt 7 -His | SD | Trt 8 +Met | SD | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Individual body weights (mg/larva; n = 25 per replicate) | ||||||||||||||||
Day 0 | 8.5 a | 7.4 a | 7.1 ab | 6.7 ab | 6.3 ab | 5.4 b | 5.2 b | 4.8 b | ||||||||
Day 4 | 50.0 ab | 0.56 | 56.9 a | 4.03 | 57.8 a | 3.08 | 53.3 ab | 3.56 | 59.2 a | 6.08 | 40.7 b | 2.55 | 42.2 a | 2.61 | 55.2 ab | 11.12 |
Day 8 | 116 b | 3.8 | 117 b | 8.2 | 121 b | 9.0 | 130 ab | 9.4 | 132 ab | 6.5 | 119 b | 4.0 | 115 b | 8.0 | 153 a | 13.1 |
Day 12 | 131 b | 4.6 | 131 b | 10.5 | 141 a | 5.7 | 134 b | 5.4 | 143 ab | 4.5 | 148 ab | 5.3 | 146 ab | 11.1 | 162 a | 14.1 |
Day 16 | 89 b | 4.8 | 93 ab | 8.1 | 102 ab | 2.6 | 101 ab | 2.8 | 104 ab | 4.5 | 112 a | 13.9 | 110 ab | 12.5 | 108 ab | 3.0 |
Biomass gain 1 /rep, fresh | 7.94 c | 0.480 | 8.23 bc | 0.435 | 9.12 abc | 0.463 | 9.06 abc | 0.469 | 9.33 ab | 0.274 | 8.21 bc | 0.441 | 9.08 abc | 0.598 | 9.60 a | 0.131 |
Biomass gain 1 g/rep, DM | 2.56 ab | 0.147 | 2.43 ab | 0.196 | 2.67 ab | 0.113 | 2.55 ab | 0.232 | 2.67 ab | 0.059 | 2.34 b | 0.150 | 2.87 a | 0.233 | 2.60 ab | 0.214 |
Fat gain, g/rep | 0.63 a | 0.066 | 0.54 ab | 0.026 | 0.67 a | 0.096 | 0.34 c | 0.064 | 0.43 bc | 0.21 | 0.42 bc | 0.045 | 0.40 bc | 0.040 | 0.32 c | 0.005 |
CP gain, g/rep | 1.14 ab | 0.065 | 1.13 ab | 0.092 | 1.20 ab | 0.051 | 1.12 ab | 0.102 | 1.16 ab | 0.026 | 1.00 b | 0.064 | 1.27 a | 0.103 | 1.15 ab | 0.095 |
AA gain, g/rep | 0.77 ab | 0.044 | 0.75 ab | 0.061 | 0.82 ab | 0.035 | 0.77 ab | 0.069 | 0.75 ab | 0.017 | 0.68 b | 0.044 | 0.84 a | 0.069 | 0.79 ab | 0.065 |
Conversion efficiency 1 g/g | 0.21 a | 0.011 | 0.18 b | 0.006 | 0.19 ab | 0.006 | 0.21 ab | 0.016 | 0.20 ab | 0.011 | 0.18 ab | 0.010 | 0.21 ab | 0.009 | 0.20 ab | 0.008 |
Substrate per gain, g/g | 9.77 ab | 0.578 | 10.33 ab | 0.835 | 9.39 ab | 0.396 | 9.85 ab | 0.851 | 9.36 ab | 0.209 | 10.70 a | 0.662 | 8.74 b | 0.723 | 9.66 ab | 0.828 |
Trt 1 PC | SD | Trt 2 -Met | SD | Trt 3 -Cys | SD | Trt 4 -Lys | SD | Trt 5 -Arg | SD | Trt 6 -Phe | SD | Trt 7 -His | SD | Trt 8 +Met | SD | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N balance, % of substrate | ||||||||||||||||
Biomass | 36.5 ab | 2.09 | 36.8 ab | 2.97 | 39.4 ab | 1.67 | 38.0 ab | 3.46 | 39.9 ab | 0.88 | 33.1 b | 2.11 | 42.0 a | 3.41 | 36.2 ab | 2.98 |
Frass | 54.1 abc | 3.72 | 52.6 abc | 4.46 | 49.2 abc | 1.35 | 56.7 ab | 6.15 | 46.9 bc | 3.21 | 57.7 a | 1.00 | 45.5 c | 2.86 | 48.7 abc | 4.10 |
Loss | 9.3 ab | 2.77 | 10.6 ab | 2.94 | 11.4 ab | 1.70 | 5.3 b | 4.69 | 13.3 ab | 3.12 | 9.3 ab | 2.39 | 12.5 ab | 1.94 | 15.1 a | 2.24 |
Sum of amino acids, % of substrate | ||||||||||||||||
Biomass | 28.5 | 1.63 | 28.1 | 2.27 | 31.4 | 1.33 | 29.0 | 2.63 | 28.9 | 0.64 | 26.6 | 1.70 | 31.5 | 2.56 | 28.5 | 2.35 |
Frass | 39.4 ab | 2.71 | 38.4 ab | 3.26 | 37.2 ab | 1.02 | 40.8 ab | 4.42 | 34.0 ab | 2.33 | 42.3 a | 0.73 | 34.1 b | 2.14 | 33.8 b | 2.85 |
Loss | 32.0 abc | 2.00 | 33.5 abc | 2.13 | 31.4 bc | 1.33 | 30.2 c | 3.36 | 37.2 ab | 2.26 | 31.1 c | 1.89 | 34.4 abc | 1.45 | 37.7 a | 1.52 |
CP, % in DM | Lys, % in DM | Met | Cys | Thr | Arg | Ile | Leu | Val | His | Phe | Gly | Ser | Pro | Ala | Asp | Glu | Sum of AA: CP 2 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Trt 1 PC | 44.3 | 2.244 | 30 | 12 | 61 | 84 | 68 | 112 | 96 | 53 | 64 | 87 | 65 | 101 | 91 | 152 | 164 | 68 |
Trt 2 -Met | 46.7 | 2.318 | 30 | 12 | 61 | 84 | 68 | 112 | 95 | 52 | 63 | 87 | 65 | 100 | 91 | 151 | 162 | 66 |
Trt 3 -Cys | 45.2 | 2.290 | 29 | 12 | 62 | 84 | 68 | 111 | 96 | 53 | 63 | 88 | 66 | 101 | 95 | 151 | 166 | 68 |
Trt 4 -Lys | 43.9 | 2.222 | 30 | 13 | 62 | 84 | 69 | 112 | 97 | 52 | 63 | 88 | 66 | 103 | 94 | 151 | 167 | 68 |
Trt 5 -Arg | 43.3 | 2.018 3 | 30 | 13 | 64 | 86 | 72 | 118 | 101 | 55 | 64 | 91 | 70 | 105 | 100 | 154 | 174 | 65 |
Trt 6 -Phe | 42.8 | 2.117 | 30 | 13 | 63 | 86 | 70 | 115 | 97 | 53 | 64 | 88 | 67 | 101 | 95 | 152 | 171 | 67 |
Trt 7 -His | 44.3 | 2.207 | 29 | 12 | 61 | 83 | 69 | 113 | 94 | 45 | 63 | 86 | 66 | 99 | 96 | 145 | 166 | 66 |
Trt 8 +Met | 44.3 | 2.194 | 29 | 13 | 63 | 85 | 70 | 117 | 99 | 53 | 62 | 90 | 69 | 103 | 99 | 150 | 175 | 68 |
Trt 1 PC | SD | Trt 2 -Met | SD | Trt 3 -Cys | SD | Trt 4 -Lys | SD | Trt 5 -Arg | SD | Trt 6 -Phe | SD | Trt 7 -His | SD | Trt 8 +Met | SD | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lysine | 40.0 b | 2.29 | 36.9 b | 2.98 | 41.8 b | 1.77 | 94.4 a | 8.58 | 35.8 b | 0.79 | 34.2 b | 2.18 | 42.2 b | 3.43 | 38.7 b | 3.20 |
Methionine | 33.9 b | 1.94 | 80.7 a | 6.52 | 35.8 b | 1.51 | 32.1 b | 2.91 | 28.7 b | 0.63 | 29.5 b | 1.89 | 34.4 b | 2.80 | 19.5 c | 1.61 |
Cysteine | 15.1 b | 0.86 | 14.7 b | 1.18 | 39.0 a | 1.65 | 16.3 b | 1.48 | 15.7 b | 0.35 | 14.1 b | 0.91 | 16.9 b | 1.37 | 16.7 b | 1.37 |
Threonine | 31.3 | 1.79 | 29.8 | 2.41 | 33.9 | 1.43 | 30.9 | 2.81 | 31.6 | 0.70 | 28.8 | 1.84 | 34.4 | 2.80 | 32.0 | 2.64 |
Arginine | 28.4 b | 1.63 | 26.7 b | 2.16 | 29.5 b | 1.25 | 27.7 b | 2.52 | 76.8 a | 1.69 | 25.5 b | 1.63 | 30.2 b | 2.45 | 27.3 b | 2.25 |
Valine | 40.0 ab | 2.29 | 38.2 ab | 3.09 | 42.6 a | 1.80 | 38.8 ab | 3.53 | 37.8 ab | 0.84 | 34.5 b | 2.21 | 42.1 ab | 3.42 | 39.8 ab | 3.27 |
Isoleucine | 34.5 ab | 1.97 | 33.8 ab | 2.73 | 37.8 a | 1.60 | 34.0 ab | 3.09 | 33.4 ab | 0.74 | 30.8 b | 1.97 | 37.7 a | 3.06 | 35.2 ab | 2.90 |
Leucine | 27.8 | 1.59 | 27.0 | 2.18 | 30.1 | 1.27 | 27.0 | 2.46 | 26.4 | 0.59 | 25.0 | 1.60 | 30.4 | 2.47 | 28.9 | 2.38 |
Phenylalanine | 25.8 b | 1.48 | 25.1 b | 2.03 | 27.7 b | 1.17 | 24.9 b | 2.26 | 24.6 b | 0.54 | 58.5 a | 3.74 | 28.4 b | 2.30 | 24.9 b | 2.06 |
Histidine | 35.8 b | 2.05 | 34.6 b | 2.80 | 40.6 b | 1.71 | 36.8 b | 3.35 | 36.4 b | 0.81 | 32.4 b | 2.07 | 86.3 a | 7.00 | 36.8 b | 3.04 |
Glycine | 36.5 ab | 2.09 | 36.9 ab | 2.98 | 40.4 a | 1.71 | 35.3 ab | 3.21 | 34.0 ab | 0.75 | 32.7 b | 2.09 | 40.6 a | 3.29 | 38.5 ab | 3.18 |
Serine | 27.6 | 1.57 | 27.9 | 2.25 | 30.6 | 1.29 | 27.6 | 2.51 | 30.1 | 0.66 | 28.0 | 1.78 | 32.5 | 2.64 | 30.0 | 2.48 |
Proline | 31.4 ab | 1.79 | 30.8 ab | 2.49 | 35.0 a | 1.48 | 31.2 ab | 2.84 | 29.9 ab | 0.66 | 27.9 b | 1.78 | 34.2 ab | 2.78 | 31.1 ab | 2.56 |
Alanine | 37.4 ab | 2.14 | 36.5 ab | 2.95 | 42.7 a | 1.80 | 37.6 ab | 3.41 | 37.4 ab | 0.82 | 34.6 b | 2.21 | 42.2 a | 3.42 | 39.1 ab | 3.23 |
Aspartate | 33.7 | 1.93 | 32.2 | 2.60 | 35.8 | 1.52 | 32.9 | 2.99 | 31.6 | 0.70 | 29.5 | 1.88 | 35.5 | 2.87 | 32.5 | 2.67 |
Glutamate | 15.4 | 0.88 | 15.2 | 1.23 | 17.2 | 0.73 | 15.4 | 1.39 | 15.6 | 0.34 | 14.4 | 0.92 | 17.1 | 1.39 | 16.1 | 1.33 |
Trt 1 PC | SD | Trt 2 -Met | SD | Trt 3 -Cys | SD | Trt 4 -Lys | SD | Trt 5 -Arg | SD | Trt 6 -Phe | SD | Trt 7 -His | SD | Trt 8 +Met | SD | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lysine 1 | 19.8 b | 2.08 | 27.8 ab | 2.08 | 23.3 ab | 1.66 | −87.0 c | 7.86 | 34.3 a | 2.01 | 24.8 ab | 2.34 | 25.5 ab | 2.11 | 28.1 ab | 1.71 |
Methionine 1 | 28.2 c | 1.93 | −66.6 d | 4.85 | 29.4 c | 1.44 | 32.8 c | 2.91 | 44.4 b | 1.80 | 33.0 c | 2.03 | 35.1 c | 1.64 | 61.5 a | 1.89 |
Cysteine 1 | 48.6 a | 2.01 | 46.6 ab | 2.51 | −11.4 c | 2.04 | 40.2 b | 3.91 | 47.7 a | 2.45 | 46.5 ab | 1.16 | 49.7 a | 1.24 | 46.0 ab | 2.11 |
Threonine | 15.6 | 2.77 | 17.8 | 3.05 | 15.1 | 1.58 | 13.0 | 4.75 | 20.3 | 3.20 | 15.4 | 2.13 | 17.7 | 1.74 | 19.9 | 2.30 |
Arginine 1 | 37.9 b | 1.71 | 43.3 ab | 1.68 | 40.8 ab | 1.21 | 39.9 ab | 2.67 | −51.3 c | 4.99 | 40.7 ab | 1.77 | 42.8 ab | 1.43 | 45.7 a | 2.26 |
Valine | 8.0 c | 2.64 | 13.1 bc | 2.70 | 9.4 c | 1.77 | 11.2 bc | 4.10 | 22.2 a | 2.67 | 14.8 bc | 2.42 | 16.6 abc | 1.96 | 17.6 ab | 1.93 |
Isoleucine | 15.4 bc | 2.56 | 19.1 bc | 2.63 | 14.6 c | 1.63 | 17.7 bc | 3.98 | 27.2 a | 2.62 | 18.4 bc | 2.20 | 22.4 ab | 1.74 | 22.2 ab | 1.93 |
Leucine | 30.1 b | 2.16 | 33.6 b | 2.21 | 31.1 b | 1.31 | 31.8 b | 3.41 | 40.3 a | 2.22 | 31.5 b | 1.81 | 34.9 ab | 1.41 | 34.2 b | 1.68 |
Phenylalanine 1 | 36.4 b | 1.93 | 39.4 ab | 1.98 | 37.4 b | 1.19 | 39.2 ab | 2.97 | 45.4 a | 2.00 | −60.0 c | 4.22 | 39.9 ab | 1.32 | 42.9 ab | 1.46 |
Histidine 1 | 34.3 a | 1.65 | 36.4 a | 1.86 | 30.6 a | 1.59 | 31.8 a | 2.81 | 37.3 a | 1.79 | 36.5 a | 2.17 | −50.5 b | 4.34 | 36.4 a | 1.65 |
Glycine | 10.0 b | 2.74 | 9.3 b | 3.01 | 8.3 b | 1.75 | 12.5 b | 4.31 | 23.8 a | 2.80 | 12.4 b | 2.35 | 12.2 b | 1.89 | 13.2 b | 2.19 |
Serine | 28.1 | 2.29 | 26.3 | 2.63 | 27.4 | 1.36 | 25.2 | 3.96 | 27.4 | 2.82 | 21.7 | 2.03 | 25.2 | 1.60 | 28.0 | 1.95 |
Proline | 37.3 ab | 1.62 | 37.1 ab | 1.82 | 34.4 b | 1.39 | 33.8 b | 2.90 | 40.2 a | 2.00 | 38.1 ab | 1.91 | 35.7 ab | 1.63 | 38.3 ab | 1.43 |
Alanine | 1.9 b | 3.15 | 4.5 ab | 3.37 | 0.4 b | 1.88 | 2.1 b | 5.02 | 1.5 b | 3.14 | 3.2 ab | 2.51 | 7.9 ab | 1.98 | 11.0 a | 2.27 |
Aspartate | 20.5 c | 2.33 | 25.5 bc | 2.34 | 22.4 c | 1.51 | 22.6 c | 3.65 | 32.3 a | 2.41 | 23.4 bc | 2.10 | 26.5 abc | 1.64 | 29.2 ab | 1.73 |
Glutamate | 59.4 ab | 1.31 | 59.5 ab | 1.45 | 58.4 b | 0.78 | 58.7 ab | 2.18 | 62.3 a | 1.47 | 59.0 ab | 2.18 | 61.1 ab | 0.82 | 61.7 ab | 1.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemme, A.; Klüber, P. Rethinking Amino Acid Nutrition of Black Soldier Fly Larvae (Hermetia illucens) Based on Insights from an Amino Acid Reduction Trial. Insects 2024, 15, 862. https://doi.org/10.3390/insects15110862
Lemme A, Klüber P. Rethinking Amino Acid Nutrition of Black Soldier Fly Larvae (Hermetia illucens) Based on Insights from an Amino Acid Reduction Trial. Insects. 2024; 15(11):862. https://doi.org/10.3390/insects15110862
Chicago/Turabian StyleLemme, Andreas, and Patrick Klüber. 2024. "Rethinking Amino Acid Nutrition of Black Soldier Fly Larvae (Hermetia illucens) Based on Insights from an Amino Acid Reduction Trial" Insects 15, no. 11: 862. https://doi.org/10.3390/insects15110862
APA StyleLemme, A., & Klüber, P. (2024). Rethinking Amino Acid Nutrition of Black Soldier Fly Larvae (Hermetia illucens) Based on Insights from an Amino Acid Reduction Trial. Insects, 15(11), 862. https://doi.org/10.3390/insects15110862