Comparative Transcriptome Analysis of Cold Tolerance Mechanism in Honeybees (Apis mellifera sinisxinyuan)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Temperature Treatment of Honeybees
2.2. RNA Extraction, Library Preparation, and Sequencing
2.3. Processing of Raw Data and Statistical Analysis
2.4. DEGs’ Functional and Pathway Analysis
2.5. RT-qPCR Validation of DEGs
2.6. Statistical Analysis
3. Results
3.1. Supercooling Point in Different Groups of A. m. sinisxinyuan
3.2. RNA Sequencing Data Quality Assessment
3.3. Differential Gene Expression Analysis
3.4. Functional Pathway Enrichment Analysis
3.5. Validation of RNA-seq via qRT-PCR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, R.E., Jr. Insect cold-hardiness: To freeze or not to freeze. Bioscience 1989, 39, 308–313. [Google Scholar] [CrossRef]
- Jing, X.; Kang, L. Geographical variation in egg cold hardiness: A study on the adaptation strategies of the migratory locust Locusta migratoria L. Ecol. Entomol. 2003, 28, 151–158. [Google Scholar] [CrossRef]
- Khani, A.; Moharramipour, S. Cold hardiness and supercooling capacity in the overwintering larvae of the codling moth, Cydia pomonella. J. Insect Sci. 2010, 10, 83. [Google Scholar] [PubMed]
- Somme, L. The history of cold hardiness research in terrestrial arthropods. Cryo-Letters 2000, 21, 289–296. [Google Scholar]
- Sinclair, B.; Coello Alvarado, L.; Ferguson, L. An invitation to measure insect cold tolerance: Methods, approaches, and workflow. J. Therm. Biol. 2015, 53, 180–197. [Google Scholar] [CrossRef]
- Morgan-Richards, M.; Marshall, C.J.; Biggs, P.J.; Trewick, S.A. Insect Freeze-Tolerance Downunder: The Microbial Connection. Insects 2023, 14, 89. [Google Scholar] [CrossRef]
- Khabir, M.; Izadi, H.; Mahdian, K. The supercooling point depression is the leading cold tolerance strategy for the variegated ladybug, Hippodamia variegata (Goezel). Front. Physiol. 2023, 14, 1323701. [Google Scholar] [CrossRef]
- Ma, C.; Huang, Z.; Feng, X.; Memon, U.; Cui, Y.; Duan, X.; Zhu, J.; Tettamanti, G.; Hu, W.; Tian, L. Selective breeding of cold-tolerant black soldier fly (Hermetia illucens) larvae: Gut microbial shifts and transcriptional patterns. Waste Manag. 2024, 177, 252–265. [Google Scholar] [CrossRef]
- Ji, J.; Liu, Y.; Zhang, L.; Cheng, Y.; Stanley, D.; Jiang, X. The clock gene, period, influences migratory flight and reproduction of the oriental armyworm, Mythimna separata (Walker). Insect Sci. 2022, 30, 650–660. [Google Scholar] [CrossRef]
- Denlinger, D.; Lee, R. Low Temperature Biology of Insects; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Zhao, D.; Zheng, C.; Shi, F.; Xu, Y.; Zong, S.; Tao, J. Expression analysis of genes related to cold tolerance in Dendroctonus valens. PeerJ 2021, 9, e10864. [Google Scholar] [CrossRef]
- Wen, X.; Wang, S.; Duman, J.G.; Arifin, J.F.; Juwita, V.; Goddard, W.A., 3rd; Rios, A.; Liu, F.; Kim, S.K.; Abrol, R.; et al. Antifreeze proteins govern the precipitation of trehalose in a freezing-avoiding insect at low temperature. Proc. Natl. Acad. Sci. USA 2016, 113, 6683–6688. [Google Scholar] [CrossRef] [PubMed]
- Poikela, N.; Tyukmaeva, V.; Hoikkala, A.; Kankar, M. Multiple paths to cold tolerance: The role of environmental cues, morphological traits and the circadian clock gene vrille. BMC Ecol. Evol. 2021, 21, 117. [Google Scholar] [CrossRef] [PubMed]
- Gray, A.; Adjlane, N.; Arab, A.; Ballis, A.; Brusbardis, V.; Charrière, J.-D.; Chlebo, R.; Coffey, M.; Cornelissen, B.; Amaro da Costa, C. Honey bee colony winter loss rates for 35 countries participating in the COLOSS survey for winter 2018–2019, and the effects of a new queen on the risk of colony winter loss. J. Apic. Res. 2020, 59, 744–751. [Google Scholar] [CrossRef]
- Gray, A.; Adjlane, N.; Arab, A.; Ballis, A.; Brusbardis, V.; Bugeja Douglas, A.; Cadahía, L.; Charrière, J.-D.; Chlebo, R.; Coffey, M. Honey bee colony loss rates in 37 countries using the COLOSS survey for winter 2019–2020: The combined effects of operation size, migration and queen replacement. J. Apic. Res. 2022, 62, 204–210. [Google Scholar] [CrossRef]
- Tang, J.; Ji, C.; Shi, W.; Su, S.; Xue, Y.; Xu, J.; Chen, X.; Zhao, Y.; Chen, C. Survey results of honey bee colony losses in winter in China (2009–2021). Insects 2023, 14, 554. [Google Scholar] [CrossRef] [PubMed]
- Qin, M.; Wang, H.; Liu, Z.; Wang, Y.; Zhang, W.; Xu, B. Changes in cold tolerance during the overwintering period in Apis mellifera ligustica. J. Apic. Res. 2019, 58, 702–709. [Google Scholar] [CrossRef]
- Xu, K.; Niu, Q.; Zhao, H.; Du, Y.; Jiang, Y. Transcriptomic analysis to uncover genes affecting cold resistance in the Chinese honey bee (Apis cerana cerana). PLoS ONE 2017, 12, e0179922. [Google Scholar]
- Mucci, C.A.; Ramirez, L.; Giffoni, R.S.; Lamattina, L. Cold stress induces specific antioxidant responses in honey bee brood. Apidologie 2021, 52, 596–607. [Google Scholar] [CrossRef]
- Chen, C.; Liu, Z.; Pan, Q.; Chen, X.; Wang, H.; Guo, H.; Liu, S.; Lu, H.; Tian, S.; Li, R.; et al. Genomic analyses reveal demographic history and temperate adaptation of the newly discovered honey bee subspecies Apis mellifera sinisxinyuan n. ssp. Mol. Biol. Evol. 2016, 33, 1337–1348. [Google Scholar] [CrossRef]
- Liu, N.; Ren, Z.; Ren, Q.; Chang, Z.; Li, J.; Li, X.; Sun, Z.; He, J.; Niu, Q.; Xing, X. Full length transcriptomes analysis of cold-resistance of Apis cerana in Changbai Mountain during overwintering period. Gene 2022, 830, 146503. [Google Scholar] [CrossRef]
- Zhu, C.; Xu, X.; Zhou, S.; Zhou, B.; Liu, Y.; Xu, H.; Tian, Y.; Zhu, X. WGCNA based identification of hub genes associated with cold response and development in Apis mellifera metamorphic pupae. Front. Physiol. 2023, 14, 1169301. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Niu, Q.; Zhao, H.; Du, Y.; Guo, L.; Jiang, Y. Sequencing and expression characterization of antifreeze protein maxi-like in Apis cerana cerana. J. Insect Sci. 2018, 18, 11. [Google Scholar] [CrossRef]
- Qin, W.; Neal, R.M.; Robertson, R.M.; Westwood, J.T.; Walker, V.K. Cold hardening and transcriptional change in Drosophila melanogaster. Insect Mol. Biol. 2005, 14, 607–613. [Google Scholar] [CrossRef]
- Bentley, D.R.; Balasubramanian, S.; Swerdlow, H.P.; Smith, G.P.; Milton, J.; Brown, C.G.; Hall, K.P.; Evers, D.J.; Barnes, C.L.; Bignell, H.R.; et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 2008, 456, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Li, Y.; Kristiansen, K.; Wang, J. SOAP: Short oligonucleotide alignment program. Bioinformatics 2008, 24, 713–714. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef]
- Wagner, G.P.; Kin, K.; Lynch, V.J. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 2012, 131, 281–285. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Yang, X.; Cox-Foster, D.L. Impact of an ectoparasite on the immunity and pathology of an invertebrate: Evidence for host immunosuppression and viral amplification. Proc. Natl. Acad. Sci. USA 2005, 102, 7470–7475. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Wang, N. A comparison of the large-scale gene expression patterns in summer and fall migratory Pantala flavescens (Fabricius) in northern China. Ecol. Evol. 2024, 14, e70147. [Google Scholar] [CrossRef] [PubMed]
- Bayley, J.S.; Sørensen, J.G.; Moos, M.; Koštál, V.; Overgaard, J. Cold acclimation increases depolarization resistance and tolerance in muscle fibers from a chill-susceptible insect, Locusta migratoria. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2020, 319, R439–R447. [Google Scholar] [CrossRef] [PubMed]
- Arango, R.A.; Bishell, A.B.; Ohno, K.M.; Shelton, T.G.; Schoville, S.D.; Carlos-Shanley, C. Seasonal shifts in gut microbiota and cold tolerance metrics in a northern population of Reticulitermes flavipes (Blattodea: Rhinotermitidae). Environ. Entomol. 2024, 53, 447–456. [Google Scholar] [CrossRef]
- Xie, F. Study on the supercooling ability and low-temperature survival rate of Schizaphis graminum. Shaanxi Agric. Sci. 2023, 69, 78–81. [Google Scholar]
- Arai, A.; Spencer, J.A.; Olson, E.N. STARS, a striated muscle activator of rho signaling and serum response factor-dependent transcription. J. Biol. Chem. 2002, 277, 24453–24459. [Google Scholar] [CrossRef]
- Troidl, K.; Rüding, I.; Cai, W.-J.; Mücke, Y.; Grossekettler, L.; Piotrowska, I.; Apfelbeck, H.; Schierling, W.; Volger, O.L.; Horrevoets, A.J.; et al. Actin-binding rho activating protein (Abra) is essential for fluid shear stress-induced arteriogenesis. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 2093–2101. [Google Scholar] [CrossRef]
- Egley, R.L.; Breed, M.D. The fanner honey bee: Behavioral variability and environmental cues in workers performing a specialized task. J. Insect Behav. 2013, 26, 238–245. [Google Scholar] [CrossRef]
- Fahrenholz, L.; Lamprecht, I.; Schricker, B. Thermal investigations of a honey bee colony: Thermoregulation of the hive during summer and winter and heat production of members of different bee castes. J. Comp. Physiol. B 1989, 159, 551–560. [Google Scholar] [CrossRef]
- Stabentheiner, A.; Kovac, H.; Brodschneider, R. Honeybee colony thermoregulation–regulatory mechanisms and contribution of individuals in dependence on age, location and thermal stress. PLoS ONE 2010, 5, e8967. [Google Scholar] [CrossRef] [PubMed]
- Stock, M.J. Gluttony and thermogenesis revisited. Int. J. Obes. 1999, 23, 1105–1117. [Google Scholar] [CrossRef]
- Nishizawa, M.; Kataoka, K.; Goto, N.; Fujiwara, K.T.; Kawai, S. V-maf, a viral oncogene that encodes a “leucine zipper” motif. Proc. Natl. Acad. Sci. USA 1989, 86, 7711–7715. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, T.-a.; Zhao, L.; Artner, I.; Jarrett, H.W.; Friedman, D.; Means, A.; Stein, R. Members of the large Maf transcription family regulate insulin gene transcription in islet β Cells. Mol. Cell. Biol. 2003, 23, 6049–6062. [Google Scholar] [CrossRef] [PubMed]
- Mariko, T.; Ryoichi, M.; Kosaku, N.; Ken, T. Transcriptional factors, Mafs and their biological roles. World J. Diabetes 2015, 6, 175–183. [Google Scholar]
- Rozsypal, J.; Koštál, V.; Zahradníčková, H.; Šimek, P. Overwintering strategy and mechanisms of cold tolerance in the Codling Moth (Cydia pomonella). PLoS ONE 2013, 8, e61745. [Google Scholar] [CrossRef]
- Asahina, E.; Tanno, K. A large amount of trehalose in a frost-resistant insect. Nature 1964, 204, 1222. [Google Scholar] [CrossRef]
- Zhou, H.; Lei, G.; Chen, Y.; You, M.; You, S. PxTret1-like affects the Temperature adaptability of a cosmopolitan pest by altering trehalose tissue distribution. Int. J. Mol. Sci. 2022, 23, 9019. [Google Scholar] [CrossRef]
- Storey, K.B.; Storey, J.M. Freeze tolerance in animals. Physiol. Rev. 1988, 68, 27–84. [Google Scholar] [CrossRef]
- Li, Y.-F.; Li, R.-S.; Samuel, S.B.; Cueto, R.; Li, X.-Y.; Wang, H.; Yang, X.-F. Lysophospholipids and their G protein-coupled receptors in atherosclerosis. Front. Biosci. 2016, 21, 70–88. [Google Scholar] [CrossRef]
- Ng, W.; Morokoff, A. Lysophospholipid signalling and the tumour microenvironment. Adv. Exp. Med. Biol. 2021, 1270, 123–144. [Google Scholar] [PubMed]
- Aoki, J.; Inoue, A.; Okudaira, S. Two pathways for lysophosphatidic acid production. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2008, 1781, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Takahashi, M.; Nishida, W.; Yoshida, K.; Ohkawa, Y.; Kitabatake, A.; Aoki, J.; Arai, H.; Sobue, K. Phenotypic modulation of vascular smooth muscle cells induced by unsaturated lysophosphatidic acids. Circ. Res. 2001, 89, 251–258. [Google Scholar] [CrossRef]
- Habek, N.; Dobrivojević Radmilović, M.; Kordić, M.; Ilić, K.; Grgić, S.; Farkaš, V.; Bagarić, R.; Škokić, S.; Švarc, A.; Dugandžić, A. Activation of brown adipose tissue in diet-induced thermogenesis is GC-C dependent. Pflügers Arch.-Eur. J. Physiol. 2020, 472, 405–417. [Google Scholar] [CrossRef]
- Jurado-Fasoli, L.; Sanchez-Delgado, G.; Di, X.; Yang, W.; Kohler, I.; Villarroya, F.; Aguilera, C.M.; Hankemeier, T.; Ruiz, J.R.; Martinez-Tellez, B. Cold-induced changes in plasma signaling lipids are associated with a healthier cardiometabolic profile independently of brown adipose tissue. Cell Rep. Med. 2024, 5, 101387. [Google Scholar] [CrossRef] [PubMed]
- Leiria, L.O.; Wang, C.-H.; Lynes, M.D.; Yang, K.; Shamsi, F.; Sato, M.; Sugimoto, S.; Chen, E.Y.; Bussberg, V.; Narain, N.R.; et al. 12-Lipoxygenase regulates cold adaptation and glucose metabolism by producing the omega-3 lipid 12-HEPE from brown fat. Cell Metab. 2019, 30, 768–783.e7. [Google Scholar] [CrossRef] [PubMed]
- Sommerlandt, F.M.J.; Brockmann, A.; Rössler, W.; Spaethe, J. Immediate early genes in social insects: A tool to identify brain regions involved in complex behaviors and molecular processes underlying neuroplasticity. Cell. Mol. Life Sci. 2019, 76, 637–651. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Shirai, K.; Paul, R.K.; Fujiyuki, T.; Wakamoto, A.; Takeuchi, H.; Kubo, T. Differential expression of HR38 in the mushroom bodies of the honeybee brain depends on the caste and division of labor. FEBS Lett. 2006, 580, 2667–2670. [Google Scholar] [CrossRef]
- Zhu, C.; Li, H.; Xu, X.; Zhou, S.; Zhou, B.; Li, X.; Xu, H.; Tian, Y.; Wang, Y.; Chu, Y.; et al. The mushroom body development and learning ability of adult honeybees are influenced by cold exposure during their early pupal stage. Front. Physiol. 2023, 14, 1173808. [Google Scholar] [CrossRef]
- Heisenberg, M. What do the mushroom bodies do for the insect brain? An introduction. Learn. Mem. 1998, 5, 1–10. [Google Scholar] [CrossRef]
- Fahrbach, S.E. Structure of the mushroom bodies of the insect brain. Annu. Rev. Entomol. 2006, 51, 209–232. [Google Scholar] [CrossRef] [PubMed]
- Iino, S.; Shiota, Y.; Nishimura, M.; Asada, S.; Ono, M.; Kubo, T. Neural activity mapping of bumble bee (Bombus ignitus) brains during foraging flight using immediate early genes. Sci. Rep. 2020, 10, 7887. [Google Scholar] [CrossRef] [PubMed]
Gene Name | X4_NT | X10_NT | X25_NT | |||
---|---|---|---|---|---|---|
Log2Fold change | Q-Value | Log2Fold change | Q-Value | Log2Fold change | Q-Value | |
Abra1 | 1.12 | 2.38 × 10−3 | 1.58 | 1.47 × 10−20 | 1.45 | 4.41 × 10−9 |
Pla1 | 1.34 | 4.31 × 10−3 | 1.27 | 2.16 × 10−04 | 1.32 | 6.25 × 10−6 |
UC | 1.37 | 2.77 × 10−16 | 1.15 | 8.19 × 10−33 | 1.34 | 4.20 × 10−8 |
rGC | 1.34 | 7.48 × 10−9 | 1.65 | 6.15 × 10−25 | 1.99 | 1.05 × 10−26 |
Hr38 | 2.40 | 3.85 × 10−47 | 1.99 | 1.53 × 10−26 | 2.40 | 3.65 × 10−29 |
Maf | −1.43 | 1.68 × 10−6 | −1.44 | 2.51 × 10−16 | −1.54 | 1.07 × 10−11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, J.; Cheng, R.; Magaoya, T.; Duan, Y.; Chen, C. Comparative Transcriptome Analysis of Cold Tolerance Mechanism in Honeybees (Apis mellifera sinisxinyuan). Insects 2024, 15, 790. https://doi.org/10.3390/insects15100790
Shan J, Cheng R, Magaoya T, Duan Y, Chen C. Comparative Transcriptome Analysis of Cold Tolerance Mechanism in Honeybees (Apis mellifera sinisxinyuan). Insects. 2024; 15(10):790. https://doi.org/10.3390/insects15100790
Chicago/Turabian StyleShan, Jinqiong, Ruiyi Cheng, Tuohudasheng Magaoya, Yujie Duan, and Chao Chen. 2024. "Comparative Transcriptome Analysis of Cold Tolerance Mechanism in Honeybees (Apis mellifera sinisxinyuan)" Insects 15, no. 10: 790. https://doi.org/10.3390/insects15100790
APA StyleShan, J., Cheng, R., Magaoya, T., Duan, Y., & Chen, C. (2024). Comparative Transcriptome Analysis of Cold Tolerance Mechanism in Honeybees (Apis mellifera sinisxinyuan). Insects, 15(10), 790. https://doi.org/10.3390/insects15100790