Fatal Attraction: Argiope Spiders Lure Male Hemileuca Moth Prey with the Promise of Sex
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Species
2.2. Evaluating Argiope Lure Attraction to Male Hemileuca
2.3. Lure Attraction and Overlay on a Published Hemileuca Phylogeny
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ehrlich, P.R.; Raven, P.H. Butterflies and plants: A study in coevolution. Evolution 1964, 18, 586–608. [Google Scholar] [CrossRef]
- Pellmyr, O. Yuccas, yucca moths, and coevolution: A review. Ann. Mo. Bot. Gard. 2003, 90, 35–55. [Google Scholar] [CrossRef]
- Yoder, J.B.; Nuismer, S.L. When does coevolution promote diversification? Am. Nat. 2010, 176, 802–817. [Google Scholar] [CrossRef]
- West, K.; Cohen, A.; Baron, M. Morphology and behavior of crabs and gastropods from Lake Tanganyika, Africa: Implications for lacustrine predator-prey coevolution. Evolution 1991, 45, 589–607. [Google Scholar] [CrossRef]
- Vermeij, G.J. The evolutionary interaction among species: Selection, escalation, and coevolution. Ann. Rev. Ecol. Syst. 1994, 25, 219–236. [Google Scholar] [CrossRef]
- Abrams, P.A. The evolution of predator-prey interactions: Theory and evidence. Ann. Rev. Ecol. Syst. 2000, 31, 79–105. [Google Scholar] [CrossRef]
- Hieber, C.S.; Wilcox, S.R.; Boyle, J.; Uetz, G.W. The spider and fly revisited: Ploy–counterploy behavior in a unique predator–prey system. Behav. Ecol. Sociobiol. 2002, 53, 51–60. [Google Scholar] [CrossRef]
- Kopp, M.; Tollrian, R. Reciprocal phenotypic plasticity in a predator–prey system: Inducible offences against inducible defences? Ecol. Lett. 2003, 6, 742–748. [Google Scholar] [CrossRef]
- Hairston, N.G., Jr.; Ellner, S.P.; Geber, M.A.; Yoshida, T.; Fox, J.A. Rapid evolution and the convergence of ecological and evolutionary time. Ecol. Lett. 2005, 8, 1114–1127. [Google Scholar] [CrossRef]
- Lehtonen, J.; Whitehead, M.R. Sexual deception: Coevolution or inescapable exploitation. Curr. Zool. 2014, 60, 52–61. [Google Scholar] [CrossRef]
- Lindstedt, C.; Mokkonen, M. The evolutionary strategy of deception. Curr. Zool. 2014, 60, 1–5. [Google Scholar] [CrossRef]
- Brodie, E.D.; Ridenhour, B.J.; Brodie, E.D., III. The evolutionary response of predators to dangerous prey: Hotspots and coldspots in the geographic mosaic of coevolution between garter snakes and newts. Evolution 2002, 56, 2067–2082. [Google Scholar] [CrossRef]
- Sherratt, T.N. The evolution of warning signals. Proc. R. Soc. Lond. B 2002, 269, 741–746. [Google Scholar] [CrossRef]
- Speed, M.P.; Ruxton, G.D.; Blount, J.D.; Stephens, P.A. Diversification of honest signals in a predator–prey system. Ecol. Lett. 2010, 13, 744–753. [Google Scholar] [CrossRef]
- Downes, S.; Shine, R. Sedentary snakes and gullible geckos: Predator–prey coevolution in nocturnal rock-dwelling reptiles. Anim. Behav. 1998, 55, 1373–1385. [Google Scholar] [CrossRef]
- Heiling, A.M.; Herberstein, M.E. Predator–prey coevolution: Australian native bees avoid their spider predators. Proc. R. Soc. Lond. B 2004, 271, S196–S198. [Google Scholar] [CrossRef]
- Pekár, S.; Toft, S. Trophic specialization in a predatory group: The case of prey-specialized spiders (Araneae). Biol. Rev. 2015, 90, 744–761. [Google Scholar] [CrossRef]
- Nyffeler, M.; Sterling, W.L.; Dean, D.A. How spiders make a living. Environ. Entomol. 1994, 23, 1357–1367. [Google Scholar] [CrossRef]
- Seer, F.K.; ElBalti, N.; Schrautzer, J.; Irmler, U. How much space is needed for spider conservation? Home range and movement patterns of wolf spiders (Aranea, Lycosidae) at Baltic Sea beaches. J. Insect Conserv. 2015, 19, 791–800. [Google Scholar] [CrossRef]
- Yeargan, K.V. Ecology of a bolas spider, Mastophora hutchinsoni: Phenology, hunting tactics, and evidence for aggressive chemical mimicry. Oecologia 1988, 74, 524–530. [Google Scholar] [CrossRef]
- Yeargan, K.V. Biology of Bolas spiders. Ann. Rev. Entomol. 1994, 39, 81–99. [Google Scholar] [CrossRef]
- Gemeno, C.; Yeargan, K.V.; Haynes, K.F. Aggressive chemical mimicry by the bolas spider Mastaphora hutchinsoni: Identification and quantification of a major prey’s sex pheromone components in the spider’s volatile emissions. J. Chem. Ecol. 2000, 26, 1235–1243. [Google Scholar] [CrossRef]
- Haynes, K.F.; Gemeno, C.; Yeargan, K.V.; Millar, J.G.; Johnson, K.M. Aggressive chemical mimicry of moth pheromones by a bolas spider: How does this specialist predator attract more than one species of prey? Chemoecology 2002, 12, 99–105. [Google Scholar] [CrossRef]
- Yeargan, K.V.; Quate, L.W. Juvenile bolas spiders attract psychodid flies. Oecologia 1996, 106, 266–271. [Google Scholar] [CrossRef]
- Yeargan, K.V.; Quate, L.W. Adult male bolas spiders retain juvenile hunting tactics. Oecologia 1997, 112, 572–576. [Google Scholar] [CrossRef]
- Schulz, S. Spider pheromones—A structural perspective. J. Chem. Ecol. 2013, 39, 1–14. [Google Scholar] [CrossRef]
- Ferguson, D.C. The Moths of America North of Mexico: Fascicle 20.2 A Bombycoidea Saturniidae (Part); EW Classey Limited and RBD Publications: London, UK, 1971; 176p. [Google Scholar]
- Horton, C.C. Apparent attraction of moths by the webs of araneid spiders. J. Arachnol. 1979, 7, 88. [Google Scholar]
- Tuskes, P.M.; Tuttle, J.P.; Collins, M.M. The Wild Silk Moths of North America: A Natural History of the Saturniidae of the United States and Canada; Cornell University Press: Ithaca, NY, USA, 1996; 250p. [Google Scholar]
- Severns, P.M. The effects of a fall prescribed burn on Hemileuca eglanterina Boisduval (Saturniidae). J. Lepid. Soc. 2003, 57, 137–143. [Google Scholar]
- McElfresh, J.S.; Millar, J.G. Geographic variation in the sex pheromone blend of Hemileuca electra from southern California. J. Chem. Ecol. 1999, 25, 2505–2525. [Google Scholar] [CrossRef]
- McElfresh, J.S.; Millar, J.G. Geographic variation in the pheromone system of the saturniid moth Hemileuca eglanterina. Ecology 2001, 82, 3505–3518. [Google Scholar] [CrossRef]
- McElfresh, J.S.; Millar, J.G. Sex pheromone of the saturniid moth, Hemileuca burnsi, from the western Mohave Desert of southern California. J. Chem. Ecol. 2008, 34, 1115–1124. [Google Scholar] [CrossRef] [PubMed]
- McElfresh, J.S.; Millar, J.G. Possible reproductive character displacement in saturniid moths in the genus Hemileuca. In Pheromone Communication in Moths. Evolution, Behavior, and Application; Allison, J.D., Cardé, R.T., Eds.; University of California Press: Oakland, CA, USA, 2016; pp. 225–232. [Google Scholar]
- McElfresh, J.S.; Hammond, A.M.; Millar, J.G. Sex pheromone components of the buck moth Hemileuca maia. J. Chem. Ecol. 2001, 27, 1409–1422. [Google Scholar] [CrossRef] [PubMed]
- Rubinoff, D.; Sperling, F.A.H. Evolution of ecological traits and wing morphology in Hemileuca (Saturniidae) based on a two-gene phylogeny. Mol. Phylogenet. Evol. 2002, 25, 70–86. [Google Scholar] [CrossRef] [PubMed]
- Bradley, R.A. Common Spiders of North America; University of California Press: Oakland, CA, USA, 2012; 288p. [Google Scholar]
- Collins, M.M.; Tuskes, P.M. Reproduction isolation in sympatric species of day-flying moths (Hemileuca: Saturniidae). Evolution 1979, 33, 728–733. [Google Scholar] [CrossRef]
- Tuskes, P.M. The biology and distribution of California Hemileucinae (Saturniidae). J. Lepid. Soc. 1984, 38, 281–309. [Google Scholar]
- Cardé, R.T. Moth navigation along pheromone plumes. In Pheromone Communication in Moths. Evolution, Behavior, and Application; Allison, J.D., Cardé, R.T., Eds.; University of California Press: Oakland, CA, USA, 2016; pp. 173–189. [Google Scholar]
- Craig, C.L.; Bernard, G.D. Insect attraction to ultraviolet-reflecting spider webs and web decorations. Ecology 1990, 71, 616–623. [Google Scholar] [CrossRef]
- Li, D. Spiders that decorate their webs at higher frequency intercept more prey and grow faster. Proc. R. Soc. B 2005, 272, 1753–1757. [Google Scholar] [CrossRef]
- Blamires, S.J.; Hochuli, D.F.; Thompson, M.B. Why cross the web: Decoration spectral properties and prey capture in an orb spider (Argiope keyserlingi) web. Biol. J. Linnean Soc. 2008, 94, 221–229. [Google Scholar] [CrossRef]
- Chinta, S.P.; Goller, S.; Lux, J.; Funke, S.; Uhl, G.; Schulz, S. The sex pheromone of the wasp spider Argiope bruennichi. Angew. Chem. Int. Ed. 2010, 49, 2033–2036. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Warren, A.D.; Severns, P.M. Fatal Attraction: Argiope Spiders Lure Male Hemileuca Moth Prey with the Promise of Sex. Insects 2024, 15, 53. https://doi.org/10.3390/insects15010053
Warren AD, Severns PM. Fatal Attraction: Argiope Spiders Lure Male Hemileuca Moth Prey with the Promise of Sex. Insects. 2024; 15(1):53. https://doi.org/10.3390/insects15010053
Chicago/Turabian StyleWarren, Andrew D., and Paul M. Severns. 2024. "Fatal Attraction: Argiope Spiders Lure Male Hemileuca Moth Prey with the Promise of Sex" Insects 15, no. 1: 53. https://doi.org/10.3390/insects15010053
APA StyleWarren, A. D., & Severns, P. M. (2024). Fatal Attraction: Argiope Spiders Lure Male Hemileuca Moth Prey with the Promise of Sex. Insects, 15(1), 53. https://doi.org/10.3390/insects15010053