Effects of the Host Plants of the Maize-Based Intercropping Systems on the Growth, Development and Preference of Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Plants
2.3. The Development and Survival of FAW Fed on Different Host Plants
2.4. Feeding Preference of FAW Larvae for Different Host Plants
2.5. Olfactory Responses of FAW Adults to Different Host Plants
2.6. Oviposition Preference of Adult FAW for Different Host Plants
2.7. Statistical Data Analysis
3. Results
3.1. Effect of Different Host Plants on the Growth and Development of FAW
3.2. Feeding Preference of FAW Larvae for Maize and Other Three Plants
3.3. Olfactory Selection of FAW Adults for Maize and Other Three Plants
3.4. Oviposition Preference of FAW Adults for Maize and Other Three Plants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zacarias, D.A. Global Bioclimatic Suitability for the Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), and Potential Cooccurrence with Major Host Crops Under Climate Change Scenarios. Clim. Chang. 2020, 161, 555–566. [Google Scholar] [CrossRef]
- Sun, X.X.; Hu, C.X.; Jia, H.R.; Wu, Q.L.; Shen, X.J.; Zhao, S.Y.; Jiang, Y.Y.; Wu, K.M. Case Study on the First Immigration of Fall Armyworm, Spodoptera frugiperda Invading into China. J. Integr. Agric. 2021, 20, 664–672. [Google Scholar] [CrossRef]
- Xie, D.J.; Tang, J.H.; Zhang, L.; Cheng, Y.X.; Jiang, X.F. Annual Generation Numbers Prediction and Division of Fall Armyworm, Spodoptera frugiperda in China. Plant Prot. 2021, 47, 61–67. [Google Scholar] [CrossRef]
- Montezano, D.G.; Specht, A.; Sosa-Gómez, D.R.; Roque-Specht, V.F.; Sousa-Silva, J.C.; Paula-Moraes, S.V.; Peterson, J.A.; Hunt, T.E. Host Plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr. Entomol. 2018, 26, 286–300. [Google Scholar] [CrossRef]
- Hussain, A.G.; Wennmann, J.T.; Goergen, G.; Bryon, A.; Ros, V.I.D. Viruses of the Fall Armyworm Spodoptera frugiperda: A Review with Prospects for Biological Control. Viruses 2021, 13, 2220. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Wu, F.; Fan, J.; Zhang, R. Potential Economic Impact of Invasive Fall Armyworm on Mainly Affected Crops in China. J. Pest. Sci. 2021, 94, 1065–1073. [Google Scholar] [CrossRef]
- Senay, S.D.; Pardey, P.G.; Chai, Y.; Doughty, L.; Day, R.K. Fall Armyworm from a Maize Multi-Peril Pest Risk Perspective. Front. Insect Sci. 2022, 2. [Google Scholar] [CrossRef]
- Guo, J.F.; Zhao, J.Z.; He, K.L.; Zhang, F.; Wang, Z.Y. Potential Invasion of the Crop-Devastating Insect Pest Fall Armyworm Spodoptera frugiperda to China. Plant Prot. 2018, 44, 1–10. [Google Scholar] [CrossRef]
- Cheng, H.; Yang, X.L.; Chen, A.D.; Li, Y.C.; Wang, D.H.; Liu, J.; Hu, G. Immigration Timing and Origin of the First Fall Armyworms (Spodoptera frugiperda) Detected in China. Chin. J. Appl. Entomol. 2020, 57, 1270–1278. [Google Scholar]
- Guo, J.F.; Zhang, Y.G.; Wang, Z.Y. Research Progress in Managing the Invasive Fall Armyworm, Spodoptera frugiperda, in China. Plant Prot. 2022, 48, 79–87. [Google Scholar] [CrossRef]
- Xiao, Y.; Shan, S.; Shen, X.J.; Yin, F.; Yang, X.M.; Huang, X.; Zhang, Y.J.; Li, Z.Y. The Feeding Stress and Oviposition Preference of Fall Armyworm Spodoptera frugiperda to Four Species of Vegetables. J. Plant Prot. 2022, 49, 1724–1730. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, Q.L.; Zhang, H.W.; Wu, K.M. Spread of Invasive Migratory Pest Spodoptera frugiperda and Management Practices Throughout China. J. Integr. Agric. 2021, 20, 637–645. [Google Scholar] [CrossRef]
- Wu, K.M. Management Strategies of fall Armyworm (Spodoptera frugiperda) in China. Plant Prot. 2020, 46, 1–5. [Google Scholar] [CrossRef]
- Announcement No. 333 of the Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Available online: https://www.gov.cn/zhengce/zhengceku/2020-09/17/content_5544165.htm (accessed on 28 September 2023).
- Feder, J.L. The Apple Maggot Fly, Rhagoletis pomonella: Flies in the Face of Conventional Wisdom about Speciation? In Endless Forms Species & Speciation; Oxford University Press: New York, NY, USA, 1998; pp. 130–143. [Google Scholar]
- Howard, D.J.; Berlocher, S.H. Endless Forms: Species and Speciation; Oxford University Press: New York, NY, USA, 1998; p. 482. ISBN 978-01-9510-901-6. [Google Scholar]
- Qin, Y.J.; Yang, D.C.; Kang, D.L.; Zhao, Z.H.; Zhao, Z.H.; Yang, P.Y.; Li, Z.H. Evaluation of Potential Economic Loss of Chinese Maize Industry by. Spodoptera frugiperda. Plant Prot. 2020, 46, 69–73. [Google Scholar] [CrossRef]
- Saldamando, C.I.; Velez-Arango, A. Host Plant Association and Genetic Differentiation of Corn and Rice Strains of Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) in Colombia. Neotrop. Entomol. 2010, 39, 921–929. [Google Scholar] [CrossRef] [PubMed]
- Juarez, M.L.; Schofl, G.; Vera, M.T.; Vilardi, J.C.; Murua, M.G.; Willink, E.; Hanniger, S.; Heckel, D.G.; Groot, A.T. Population Structure of Spodoptera frugiperda Maize and Rice Host Forms in South America: Are They Host Strains? Entomol. Exp. Appl. 2014, 152, 182–199. [Google Scholar] [CrossRef]
- Tang, Y.L.; Gu, R.C.; Wu, Y.Y.; Zou, X.M.; Zhang, Z.; Niu, X.H.; Wang, Z.L.; Chen, J.; Li, T.; Li, C.F.; et al. Biotype Identification of Spodoptera frugiperda Population Invading Chongqing. J. Southwest Univ. 2019, 41, 1–7. [Google Scholar] [CrossRef]
- Xu, D.; Li, W.J.; Wang, L.; Yin, H.C.; Cong, S.B.; Yang, N.; Xie, Y.L.; Wan, P. Feeding and Oviposition Preference and Adaptability of the Fall Armyworm, Spodoptera frugiperda (Lepidoptera Noctuidae) on Two Leguminous Vegetables. J. Environ. Entomol. 2022, 44, 800–807. [Google Scholar]
- Acharya, R.; Malekera, M.J.; Dhungana, S.K.; Sharma, S.R.; Lee, K.-Y. Impact of Rice and Potato Host Plants Is Higher on the Reproduction than Growth of Corn Strain Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 2022, 13, 256. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, B.; Zhuang, M.; Ren, M.; Li, D.; Yan, H.; Long, J.; Jiang, X. Preference and Performance of the Fall Armyworm, Spodoptera frugiperda, on Six Cereal Crop Species. Entomol. Exp. Appl. 2023, 171, 492–501. [Google Scholar] [CrossRef]
- Huang, Q.; Ling, Y.; Jiang, T.; Pang, G.Q.; Jing, X.B.; Fu, C.Q.; Wu, B.Q.; Huang, S.S.; Li, C.; Huang, F.K.; et al. Feeding Preference and Adaptability of Spodoptera frugiperda on Three Host Plant. J. Environ. Entomol. 2019, 41, 1141–1146. [Google Scholar]
- Wang, W.W.; He, P.Y.; Liu, T.X.; Jing, X.F.; Zhang, S.Z. Comparative Studies of Ovipositional Preference, Larval Feeding Selectivity, and Nutritional Indices of Spodoptera frugiperda (Lepidoptera: Noctuidae) on 6 Crops. J. Econ. Entomol. 2023, 116, 790–797. [Google Scholar] [CrossRef] [PubMed]
- Su, X.N.; Li, C.Y.; Xu, Y.J.; Huang, S.H.; Liu, W.L.; Liao, Z.X.; Zhang, Y.P. Feeding Preference and Adaptability of Fall Armyworm Spodoptera frugiperda on Five Species of Host Plants and Six Weeds. J. Environ. Entomol. 2002, 44, 263–272. [Google Scholar]
- Wu, Y.; He, D.; Wang, E.; Liu, X.; Huth, N.I.; Zhao, Z.; Gong, W.; Yang, F.; Wang, X.; Yong, T.; et al. Modelling Soybean and Maize Growth and Grain Yield in Strip Intercropping Systems with Different Row Configurations. Field Crop. Res. 2021, 265, 108122. [Google Scholar] [CrossRef]
- Martin-Guay, M.O.; Paquette, A.; Dupras, J.; Rivest, D. The New Green Revolution: Sustainable Intensification of Agriculture by Intercropping. Sci. Total Environ. 2018, 615, 767–772. [Google Scholar] [CrossRef]
- Weih, M.; Mínguez, M.I.; Tavoletti, S. Intercropping Systems for Sustainable Agriculture. Agriculture 2022, 12, 291. [Google Scholar] [CrossRef]
- Brooker, R.W.; Bennett, A.E.; Cong, W.; Daniell, T.J.; George, T.S.; Hallett, P.D.; Hawes, C.; Iannetta, P.P.M.; Jones, H.G.; Karley, A.J.; et al. Improving Intercropping: A Synthesis of Research in Agronomy, Plant Physiology and Ecology. New Phytol. 2015, 206, 107–117. [Google Scholar] [CrossRef]
- Letourneau, D.K.; Armbrecht, I.; Rivera, B.S.; Lerma, J.M.; Carmona, E.J.; Daza, M.C.; Escobar, S.; Galindo, V.; Gutiérrez, C.S.; López, D.; et al. Does Plant Diversity Benefit Agroecosystems? A Synthetic Review. Ecol. Appl. 2011, 21, 9–21. [Google Scholar] [CrossRef]
- Nayanya, G.; More, C.B.; Schal, C. Integration of Repellents, Attractants, and Insecticides in a “Push-Pull Strategy For Managing German Cockroach (Dictyopera: Blattellidae) Populations. J. Med. Entomol. 2000, 37, 427–434. [Google Scholar] [CrossRef]
- Khan, Z.R.; Midega, C.A.O.; Bruce, T.J.A.; Hopper, A.M.; Pickett, J.A. Exploiting Phytochemicals for Developing a ‘Push-Pull’ Crop Protection Strategy for Cereal Farmers in Africa. J. Exp. Bot. 2010, 61, 4185–4196. [Google Scholar] [CrossRef]
- Hailu, G.; Niassy, S.; Zeyaur, K.R.; Ochatum, N.; Subramanian, S. Maize–Legume Intercropping and Push–Pull for Management of Fall Armyworm, Stemborers, and Striga in Uganda. Agron. J. 2018, 110, 2513–2522. [Google Scholar] [CrossRef]
- Udayakumar, A.; Shivalingaswamy, T.M.; Bakthavatsalam, N. Legume-Based Intercropping for the Management of Fall Armyworm, Spodoptera frugiperda L. in Maize. J. Plant Dis. Prot. 2021, 128, 775–779. [Google Scholar] [CrossRef]
- Guo, J.F.; Han, H.L.; He, K.L.; Bai, S.X.; Zhang, T.T.; Wang, Z.Y. Dispersal of Spodoptera frugiperda in Maize Monoculture and Intercropped Maize-Soybean Fields. Plant Prot. 2022, 48, 110–115. [Google Scholar] [CrossRef]
- Liu, H.; Cheng, Y.; Wang, Q.; Liu, X.; Fu, Y.; Zhang, Y.; Chen, J. Push–Pull Plants in Wheat Intercropping System to Manage Spodoptera frugiperda. J. Pest Sci. 2023, 96, 1579–1593. [Google Scholar] [CrossRef]
- Jiang, C.X.; Zhang, X.Y.; Xie, W.Q.; Wang, R.L.; Feng, C.H.; Ma, L.; Li, Q.; Yang, Q.F.; Wang, H.J. Predicting the Potential Distribution of the Fall Armyworm Spodoptera frugiperda (J.E. Smith) Under Climate Change in China. Glob. Ecol. Conserv. 2022, 33, e01994. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Xie, W.Q.; Wang, R.L.; Feng, C.H.; Wan, X.W.; Ma, L.; Zhang, Y.; Deng, X.Y.; Dong, Y.; Li, Q.; et al. Generation Division of the Fall Armyworm Spodoptera frugiperda (J. E. Smith) in Sichuan Province. Plant Prot. 2022, 48, 33–39. [Google Scholar] [CrossRef]
- Liu, W.J.; Qu, M.J.; Jiao, K.; Han, P.; Xiu, M.G.; Qu, C.J.; Wan, S.B.; Yang, Z. Effects of Peanut/Maize Intercropping on Insect Community Diversity and Yield in Peanut Field. Chin. J. Oil Crop. Sci. 2023, 45, 600–607. [Google Scholar]
- Piyasaengthong, N.; Sato, Y.; Kinoshita, N.; Kainoh, Y. Oviposition Preference for Leaf Age in the Smaller Tea Tortrix Adoxophyes Honmai (Lepidoptera: Tortricidae) As Related to Performance of Neonates. Appl. Entomol. Zool. 2016, 51, 363–371. [Google Scholar] [CrossRef]
- Zhang, N.; Guo, J.Y.; Wan, F.H.; Wu, G. Oviposition and Feeding Preferences of Spodoptera exigua (HÜBner) (Lepidoptera: Noctuidae)to Different Host Plants. Acta Entomol. Sin. 2009, 52, 1229–1235. [Google Scholar] [CrossRef]
- You, S.J.; Zhang, J.; Li, J.Y.; Chen, Y.T.; Liu, T.S.; Niu, D.S.; You, M.S. Theory and Practice of Utilizing Biodiversity to Enhance Pest Control in Agroecosystems. Chin. J. Appl. Entomol. 2019, 56, 1125–1147. [Google Scholar]
- Fonteyne, S.; Castillo Caamal, J.B.; Lopez-Ridaura, S.; Van Loon, J.; Espidio Balbuena, J.; Osorio Alcalá, L.; Hernández, M.; Odjo, S.; Verhulst, N. Review of agronomic research on the milpa, the traditional polyculture system of Mesoamerica. Front. Agron. 2023, 5, 1115490. [Google Scholar] [CrossRef]
- McCormick, A.C.; Arrigo, L.; Eggenberger, H.; Mescher, M.C.; De Moraes, C.M. Divergent Behavioral Responses of Gypsy Moth (Lymantria Dispar) Caterpillars from Three Different Subspecies to Potential Host Trees. Sci. Rep. 2019, 9, 8953. [Google Scholar] [CrossRef] [PubMed]
- Järvinen, A.; Hyvönen, T.; Raiskio, S.; Himanen, S.J. Intercropping Shifts The Balance Between Generalist Arthropod Predators and Oilseed Pests Towards Natural Pest Control. Agric. Ecosyst. Environ. 2023, 348, 108415. [Google Scholar] [CrossRef]
- Moreau, J.; Benrey, B.; Thiéry, D. Grape Variety Affects Larval Performance and Also Female Reproductive Performance of the European Grapevine Moth Lobesia Botrana (Lepidoptera: Tortricidae). Bull. Entomol. Res. 2006, 96, 205–212. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Zhang, Z.; Liu, J.; Jiang, Y.Y.; Li, X.G.; Ba, T.S.; Chen, Z.Y.; Lin, P.J.; Huang, H.J. Oviposition and Feeding Preference of Spodoptera frugiperda to Gramineous Weeds. Plant Prot. 2021, 47, 117–122. [Google Scholar] [CrossRef]
- Qiu, L.M.; Liu, Q.Q.; Yang, X.J.; Huang, X.Y.; Guan, R.F.; Liu, B.B.; He, Y.X.; Jim, Z.X. Feeding and Oviposition Preference and Fitness of the Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), on Rice and Maize. Acta Entomol. Sin. 2020, 63, 604–612. [Google Scholar] [CrossRef]
- Xu, L.N.; Tong, Q.; Xu, T.T.; Bi, S.J.; Hu, B.J.; Yun, H.; Hu, F.; Wamg, Z.Y. Effects of Maize-Soybean Intercropping on the Growth, Development and Reproduction of Fall Armyworm Spodoptera frugiperda. J. Plant Prot. 2023, 50, 642–650. [Google Scholar] [CrossRef]
- Thompson, J.N. Evolutionary Ecology of the Relationship Between Oviposition Preference and Performance of Offspring in Phytophagous Insects. Entomol. Exp. Appl. 1988, 47, 3–14. [Google Scholar] [CrossRef]
- Boiça Júnior, A.L.; Souza, B.H.; Costa, E.N.; Paiva, L.B. Influence of fall armyworm previous experience with soybean genotypes on larval feeding behavior. Arthropod-Plant Interact. 2017, 11, 89–97. [Google Scholar] [CrossRef]
- Li, D.Y.; Zhi, J.R.; Zhang, T.; Ye, J.Q.; Liang, Y.J. Effects of Different Hosts on Growth, Development and Reproduction of Spodoptera frugiperda. J. Environ. Entomol. 2020, 42, 311–317. [Google Scholar]
- Xu, P.J.; Zhang, D.D.; Wang, J.; Wu, K.M.; Wang, X.W.; Wang, X.F.; Ren, G.W. The Host Preference of Spodoptera frugiperda on Maize and Tobacco. Plant Prot. 2019, 45, 61–64. [Google Scholar] [CrossRef]
- Li, C.M.; Han, G.J.; Yang, Y.J.; Qi, J.H.; Liu, Q.; Xu, J.; Lu, Z.X. Oviposition and Feeding Preference of Cnaphalocrocis medinalis (Guenée) for Four Different Plants. Chin. J. Rice Sci. 2017, 31, 315–319. [Google Scholar] [CrossRef]
- Jaenike, J. On Optimal Oviposition Behavior in Phytophagous Insects. Theor. Popul. Biol. 1978, 14, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Valladares, G.; Lawton, J.H. Host-Plant Selection in the Holly Leaf-Miner: Does Mother Know Best? J. Anim. Ecol. 1991, 60, 227–240. [Google Scholar] [CrossRef]
- Bernays, E.A.; Graham, M. On The Evolution of Host Specificity in Phytophagous Arthropods. Ecology 1988, 69, 886–892. [Google Scholar] [CrossRef]
- García-Robledo, C.; Horvitz, C.C. Parent–Offspring Conflicts “Optimal Bad Motherhood” and the “Mother Knows Best” Principles in Insect Herbivores Colonizing Novel Host Plants. Ecol. Evol. 2012, 2, 1446–1457. [Google Scholar] [CrossRef] [PubMed]
- Bruce, T.J.A.; Wadhams, L.J.; Woodcock, C.M. Insect Host Location: A Volatile Situation. Trends Plant Sci. 2005, 10, 269–274. [Google Scholar] [CrossRef]
- Khan, Z.R.; Pickett, J.A.; Berg, J.V.D.; Wadhams, L.J.; Woodcock, C.M. Exploiting Chemical Ecology and Species Diversity: Stem Borer and Striga Control for Maize and Sorghum in Africa. Pest Manag. Sci. 2000, 56, 957–962. [Google Scholar] [CrossRef]
- Yactayo-Chang, J.P.; Mendoza, J.; Willms, S.D.; Rering, C.C.; Beck, J.J.; Block, A.K. Zea mays Volatiles that Influence Oviposition and Feeding Behaviors of Spodoptera frugiperda. J. Chem. Ecol. 2021, 47, 799–809. [Google Scholar] [CrossRef]
- Midega, C.A.; Pittchar, J.O.; Pickett, J.A.; Hailu, G.W.; Khan, Z.R. A Climate-Adapted Push-Pull System Effectively Controls Fall Armyworm, Spodoptera frugiperda (JE Smith), in Maize in East Africa. Crop. Prot. 2018, 105, 10–15. [Google Scholar] [CrossRef]
- Scheidegger, L.; Niassy, S.; Midega, C.; Chiriboga, X.; Delabays, N.; Lefort, F.; Zürcher, R.; Hailu, G.; Khan, Z.; Subramanian, S. The Role of Desmodium intortum, Brachiaria sp. and Phaseolus vulgaris in the Management of Fall Armyworm Spodoptera frugiperda (JE Smith) in Maize Cropping Systems in Africa. Pest Manag. Sci. 2021, 77, 2350–2357. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.H.; Norris, D.M.; Marti, E. Behavioral Responses of Female Adult Trichoplusia ni to Volatiles from Soybeans Versus a preferred host, lima bean. Entomol. Exp. Appl. 1988, 49, 99–109. [Google Scholar] [CrossRef]
- Zhao, D.; Yuan, J.; Hou, Y.; Li, T.; Liao, Y. Tempo-Spatial Dynamics of AMF Under Maize Soybean Intercropping. Chin. J. Eco-Agric. 2020, 28, 631–642. [Google Scholar] [CrossRef]
- Central Committee of the Communist Party of China, State Council. 2023. Available online: http://www.lswz.gov.cn/html/xinwen/2023-02/13/content_273655.shtml (accessed on 28 September 2023).
- Cook, S.M.; Khan, Z.R.; Pickett, J.A. The Use of Push-Pull Strategies in Integrated Pest Management. Annu. Rev. Entomol. 2007, 52, 375–400. [Google Scholar] [CrossRef]
- Khan, Z.; Midega, C.A.; Hooper, A.; Pickett, J. Push-Pull: Chemical Ecology-Based Integrated Pest Management Technology. J. Chem. Ecol. 2016, 42, 689–697. [Google Scholar] [CrossRef]
- Guera, O.G.M.; Castrejón-Ayala, F.; Robledo, N.; Jiménez-Pérez, A.; Sánchez-Rivera, G.; Salazar-Marcial, L.; Flores Moctezuma, H.E. Effectiveness of Push–Pull Systems to Fall Armyworm (Spodoptera frugiperda) Management in Maize Crops in Morelos, Mexico. Insects 2021, 12, 298. [Google Scholar] [CrossRef]
Stage | Developmental Duration (Days) | χ2 | p | |||
---|---|---|---|---|---|---|
Maize | Sweet Potato | Peanut | Soybean | |||
Egg | 2 (0) a | 2 (0) a | 2 (0) a | 2 (0) a | 3.72 | 0.29 |
First instar larva | 2 (1) c | 3 (1) a | 2 (0) d | 3 (0) b | 107.91 | <0.001 |
Second instar larva | 2 (1) d | 2 (0) c | 2 (1) b | 3 (1) a | 70.79 | <0.001 |
Third instar larva | 2 (0.25) b | 2 (1) a | 3 (1) a | 2 (1) a | 23.63 | <0.001 |
Fourth instar larva | 2 (1) b | 3.5 (1) a | 3 (2) a | 3 (1) a | 21.24 | <0.001 |
Fifth instar larva | 3 (1) b | 4 (1.5) a | 4 (0) a | 4 (1) a | 43.83 | <0.001 |
Sixth instar larva | 6 (1) c | 8 (1) a | 7 (1.5) b | 7.5 (1) a | 37.82 | <0.001 |
Total larval duration | 17 (2.25) c | 22.5 (2) a | 21 (2) b | 24 (1) a | 65.75 | <0.001 |
Pupa | 9 (2) a | 10 (0) a | 9 (2) a | 8 (1) a | 7.47 | 0.06 |
Pre-adult duration | 28 (2.5) b | 34 (0) a | 32 (3) a | 34 (1.25) a | 53.32 | <0.001 |
Female adult | 7 (1) b | 7 (0) ab | 9 (4) ab | 11 (1) a | 8.64 | 0.04 |
Male adult | 6 (2) b | — | 6.5 (2.5) b | 12 (0) a | 9.45 | 0.009 |
Preoviposition duration | 3 (1) a | — | 3 (1.5) a | 4 (1.5) a | 4.46 | 0.11 |
Generation | 29 (1.25) b | — | 34 (4.5) a | 37 (3) a | 19.9 | <0.001 |
Larval survival rate % (No.) | 84 (42) | 12 (6) | 74 (37) | 24 (12) | — | — |
Pupation rate % (No.) | 82 (41) | 6 (3) | 72 (36) | 20 (10) | — | — |
Emergence rate % (No.) | 82 (41) | 6 (3) | 72 (36) | 20 (10) | — | — |
Stage | Developmental Duration (Days) | χ2/Z | p | ||
---|---|---|---|---|---|
Maize | Peanut | Soybean | |||
Egg | 2 (0) b | 3 (0) a | 3 (0) a | 135.98 | <0.001 |
First instar larva | 3 (1) b | 4 (0.75) a | 3 (1) b | 67.84 | <0.001 |
Second instar larva | 2 (0) b | 3 (1) a | 2 (1) b | 67.84 | <0.001 |
Third instar larva | 2 (1) c | 5 (2) a | 3 (1) b | 36.64 | <0.001 |
Fourth instar larva | 3 (1) b | 4 (3) a | 3 (1.5) ab | 13.69 | 0.001 |
Fifth instar larva | 4 (2) b | 4 (1) b | 12.5 (9.75) a | 15.35 | <0.001 |
Sixth instar larva | 6 (1) c | 8 (1.25) b | 9 (0) a | 35.13 | <0.001 |
Total larval duration | 21 (2) c | 27.5 (3) b | 32 (5) a | 66.3 | <0.001 |
Pupa | 9 (2) a | 10 (1) a | 11.5 (3.25) a | 24.25 | >0.001 |
Pre-adult duration | 33 (2) c | 39 (2) b | 46 (2) a | 60.13 | <0.001 |
Female adult | 10.5 (2.25) a | 11 (6) a | 6.5 (1) b | 6.29 | 0.04 |
Male adult | 9 (4) * | 11.5 (4) | — | 179.5 | 0.04 |
Preoviposition duration | 3 (1.25) | 3 (1) | — | 109.5 | 0.30 |
Generation | 35 (2) * | 43.5 (1.25) | — | 180 | <0.001 |
Larval survival rate % (No.) | 82 (41) | 76 (38) | 14 (7) | — | — |
Pupation rate % (No.) | 80 (40) | 70 (35) | 8 (4) | — | — |
Emergence rate % (No.) | 80 (40) | 66 (33) | 8 (4) | — | — |
Host Plant | Egg Masses | Eggs | Oviposition Percentage (%) |
---|---|---|---|
Maize | 12 (3.5) * | 1322 (508) * | 100 (3.85) * |
Sweet potato | 0 (0.5) | 0 (53.5) | 0 (3.84) |
Z | −2.07 | −2.02 | −2.06 |
p | 0.04 | 0.04 | 0.04 |
Maize | 14.60 ± 3.53 * | 1040 (623) * | 95.27 ± 2.34 * |
Peanut | 0.80 ± 0.04 | 33 (168.5) | 4.73 ± 2.34 |
Z/t | 4.25 | −2.02 | 19.36 |
p | 0.01 | 0.04 | <0.001 |
Maize | 13 (6.5) * | 1231 (391.5) * | 100 (4.33) * |
Soybean | 0 (1) | 0 (40) | 0 (3.33) |
Z | −2.02 | −2.02 | −2.04 |
p | 0.04 | 0.04 | 0.04 |
Maize | 18.50 ± 0.96 * | 1531.67 ± 195.63 | 63.27 ± 3.45 * |
Maize + Sweet potato | 9.00 ± 1.96 | 687.33 ± 152.83 | 36.73 ± 3.45 |
t | 7.98 | 3.28 | 3.85 |
p | 0.004 | 0.08 | 0.03 |
Maize | 12.33 ± 2.40 | 1316.67 ± 107.80 | 49.67 ± 5.85 |
Maize + Peanut | 15.00 ± 1.73 | 1171.33 ± 223.43 | 50.33 ± 5.85 |
t | −1.6 | 0.55 | −0.05 |
p | 0.25 | 0.64 | 0.96 |
Maize | 21.00 ± 1.73 * | 1067.00 ± 111.50 * | 65.33 ± 4.164 * |
Maize + Soybean | 8.33 ± 1.38 | 608.00 ± 51.57 | 34.67 ± 4.164 |
t | 4.75 | 7.42 | 6.38 |
p | 0.04 | 0.02 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, W.-C.; Zhang, X.-Y.; Zhang, Y.; Deng, X.-Y.; Zhang, H.-L.; Zhang, Z.-H.; Li, Q.; Jiang, C.-X. Effects of the Host Plants of the Maize-Based Intercropping Systems on the Growth, Development and Preference of Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 2024, 15, 26. https://doi.org/10.3390/insects15010026
Tao W-C, Zhang X-Y, Zhang Y, Deng X-Y, Zhang H-L, Zhang Z-H, Li Q, Jiang C-X. Effects of the Host Plants of the Maize-Based Intercropping Systems on the Growth, Development and Preference of Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects. 2024; 15(1):26. https://doi.org/10.3390/insects15010026
Chicago/Turabian StyleTao, Wen-Cai, Xue-Yan Zhang, Yue Zhang, Xiao-Yue Deng, Hui-Lai Zhang, Zhi-Hui Zhang, Qing Li, and Chun-Xian Jiang. 2024. "Effects of the Host Plants of the Maize-Based Intercropping Systems on the Growth, Development and Preference of Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae)" Insects 15, no. 1: 26. https://doi.org/10.3390/insects15010026
APA StyleTao, W.-C., Zhang, X.-Y., Zhang, Y., Deng, X.-Y., Zhang, H.-L., Zhang, Z.-H., Li, Q., & Jiang, C.-X. (2024). Effects of the Host Plants of the Maize-Based Intercropping Systems on the Growth, Development and Preference of Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects, 15(1), 26. https://doi.org/10.3390/insects15010026