Effects of Managed and Unmanaged Floral Margins on Pollination Services and Production in Melon Crops
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Design and Setting of the Experiment
2.3. Sampling of Bees
2.4. Harvest and Yield
2.5. Analysis of Data
2.5.1. Relative Pollinators Abundance and Richness in Melon Fields Depending on the Type of Margin
2.5.2. Analyses of Crop Production
3. Results
3.1. Some Considerations on the Floral Resources Provided by the Margins
3.2. Abundance of Pollinators in Melon Crops Depending on the Floral Margin Type in Visual Samplings
3.3. Abundance of Pollinating Insects in Melon Fields Depending on the Floral Margin Type in Pan Traps
3.4. Bee Genera Richness in Melon Crops Depending on the Margin Type
3.5. Effect of Floral Margin Type on Crop Production
4. Discussion
4.1. Effect of Floral Margins Types Associated with Melon Crops on the Abundance and Richness of Insects
4.2. Effect of Floral Margin Type on Crop Production
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biesmeijer, J.C.; Roberts, S.P.M.; Reemer, M.; Ohlemuller, R.; Edwards, M.; Peeters, T.; Schaffers, A.P.; Potts, S.G.; Kleukers, R.; Thomas, C.D.; et al. Parallel Declines in Pollinators and Insect-Pollinated Plants in Britain and the Netherlands. Science 2006, 313, 351–354. [Google Scholar] [CrossRef]
- Dicks, L.; Abrahams, A.; Atkinson, J.; Biesmeijer, J.; Bourn, N.; Brown, C.; Brown, M.J.F.; Carvell, C.; Connolly, C.; Cresswell, J.E.; et al. Identifying Key Knowledge Needs for Evidence-Based Conservation of Wild Insect Pollinators: A Collaborative Cross-Sectoral Exercise. Insect Conserv. Divers. 2013, 6, 435–446. [Google Scholar] [CrossRef]
- Potts, S.G.; Imperatriz-Fonseca, V.; Ngo, H.T. The Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on Pollinators, Pollination and Food Production; Potts, S.G., Imperatriz-Fonseca, V., Ngo, H.T., Eds.; Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services IPBES: Bonn, Germany, 2017. [Google Scholar]
- Porto, R.G.; de Almeida, R.F.; Cruz-Neto, O.; Tabarelli, M.; Viana, B.F.; Peres, C.A.; Lopes, A.V. Pollination Ecosystem Services: A Comprehensive Review of Economic Values, Research Funding and Policy Actions. Food Secur. 2020, 12, 1425–1442. [Google Scholar] [CrossRef]
- Klein, A.-M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of Pollinators in Changing Landscapes for World Crops. Proc. R. Soc. B 2007, 274, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global Pollinator Declines: Trends, Impacts and Drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef]
- Nieto, A.; Roberts, S.P.M.; Kemp, J.; Rasmont, P.; Kuhlmann, M.; García Criado, M.; Biesmeijer, J.C.; Bogusch, P.; Dathe, H.H.; De la Rúa, P.; et al. European Red List of Bees; Publication Office of the European Union: Luxembourg, 2014; ISBN 978-92-79-44512-5. [Google Scholar]
- Hendrickx, F.; Maelfait, J.P.; van Wingerden, W.; Schweiger, O.; Speelmans, M.; Aviron, S.; Augenstein, I.; Billeter, R.; Bailey, D.; Bukacek, R.; et al. How Landscape Structure, Land-Use Intensity and Habitat Diversity Affect Components of Total Arthropod Diversity in Agricultural Landscapes. J. Appl. Ecol. 2007, 44, 340–351. [Google Scholar] [CrossRef]
- Vanbergen, A.J.; Heard, M.S.; Breeze, T.; Potts, S.G.; Hanley, N. Status and Value of Pollinators and Pollination Services; CEH Project No. C050172014; Department for Environment, Food and Rural Affairs: London, UK, 2014; p. 53. [Google Scholar]
- Kleijn, D.; Kohler, F.; Báldi, A.; Batáry, P.; Concepción, E.D.; Clough, Y.; Díaz, M.; Gabriel, D.; Holzschuh, A.; Knop, E.; et al. On the Relationship between Farmland Biodiversity and Land-Use Intensity in Europe. Proc. R. Soc. B Biol. Sci. 2009, 276, 903–909. [Google Scholar] [CrossRef]
- Ekroos, J.; Kleijn, D.; Batáry, P.; Albrecht, M.; Báldi, A.; Blüthgen, N.; Knop, E.; Kovács-Hostyánszki, A.; Smith, H.G. High Land-Use Intensity in Grasslands Constrains Wild Bee Species Richness in Europe. Biol. Conserv. 2020, 241, 108255. [Google Scholar] [CrossRef]
- Wagner, D.L. Insect Declines in the Anthropocene. Annu. Rev. Entomol. 2019, 65, 457–480. [Google Scholar] [CrossRef] [Green Version]
- Garibaldi, L.A.; Carvalheiro, L.G.; Vaissiere, B.E.; Gemmill-Herren, B.; Hipolito, J.; Freitas, B.M.; Ngo, H.T.; Azzu, N.; Saez, A.; Astrom, J.; et al. Mutually Beneficial Pollinator Diversity and Crop Yield Outcomes in Small and Large Farms. Science 2016, 351, 388–391. [Google Scholar] [CrossRef] [Green Version]
- Tscharntke, T.; Tylianakis, J.M.; Rand, T.A.; Didham, R.K.; Fahrig, L.; Bengtsson, J.; Clough, Y.; Crist, T.O.; Dormann, C.F.; Ewers, R.M.; et al. Landscape Moderation of Biodiversity Patterns and Processes—Eight Hypotheses. Biol. Rev. 2012, 87, 661–685. [Google Scholar] [CrossRef]
- Kennedy, C.M.; Lonsdorf, E.; Neel, M.C.; Williams, N.M.; Ricketts, T.H.; Winfree, R.; Bommarco, R.; Brittain, C.; Burley, A.L.; Cariveau, D.; et al. A Global Quantitative Synthesis of Local and Landscape Effects on Wild Bee Pollinators in Agroecosystems. Ecol. Lett. 2013, 16, 584–599. [Google Scholar] [CrossRef]
- Hannon, L.E.; Sisk, T.D. Hedgerows in an Agri-Natural Landscape: Potential Habitat Value for Native Bees. Biol. Conserv. 2009, 142, 2140–2154. [Google Scholar] [CrossRef]
- Wratten, S.D.; Gillespie, M.; Decourtye, A.; Mader, E.; Desneux, N. Pollinator Habitat Enhancement: Benefits to Other Ecosystem Services. Agric. Ecosyst. Environ. 2012, 159, 112–122. [Google Scholar] [CrossRef]
- Williams, N.M.; Ward, K.L.; Pope, N.; Isaacs, R.; Wilson, J.; May, E.A.; Ellis, J.; Daniels, J.; Pence, A.; Ullmann, K.; et al. Native Wildflower Plantings Support Wild Bee Abundance and Diversity in Agricultural Landscapes across the United States. Ecol. Appl. 2015, 25, 2119–2131. [Google Scholar] [CrossRef] [Green Version]
- Morrison, J.; Izquierdo, J.; Plaza, E.H.; González-Andújar, J.L. The Role of Field Margins in Supporting Wild Bees in Mediterranean Cereal Agroecosystems: Which Biotic and Abiotic Factors Are Important? Agric. Ecosyst. Environ. 2017, 247, 216–224. [Google Scholar] [CrossRef]
- Russo, L.; Debarros, N.; Yang, S.; Shea, K.; Mortensen, D. Supporting Crop Pollinators with Floral Resources: Network-Based Phenological Matching. Ecol. Evol. 2013, 3, 3125–3140. [Google Scholar] [CrossRef]
- Garibaldi, L.A.; Carvalheiro, L.G.; Leonhardt, S.D.; Aizen, M.A.; Blaauw, B.R.; Isaacs, R.; Kuhlmann, M.; Kleijn, D.; Klein, A.M.; Kremen, C.; et al. From Research to Action: Enhancing Crop Yield through Wild Pollinators. Front. Ecol. Environ. 2014, 12, 439–447. [Google Scholar] [CrossRef] [Green Version]
- Pisanty, G.; Mandelik, Y. Profiling Crop Pollinators: Life History Traits Predict Habitat Use and Crop Visitation by Mediterranean Wild Bees. Ecol. Appl. 2015, 25, 742–752. [Google Scholar] [CrossRef]
- Campbell, A.J.; Wilby, A.; Sutton, P.; Wäckers, F. Getting More Power from Your Flowers: Multi-Functional Flower Strips Enhance Pollinators and Pest Control Agents in Apple Orchards. Insects 2017, 8, 101. [Google Scholar] [CrossRef] [Green Version]
- Castle, D.; Grass, I.; Westphal, C. Fruit Quantity and Quality of Strawberries Benefit from Enhanced Pollinator Abundance at Hedgerows in Agricultural Landscapes. Agric. Ecosyst. Environ. 2019, 275, 14–22. [Google Scholar] [CrossRef]
- Lagerlöf, J.; Stark, J.; Svensson, B. Margins of Agricultural Fields as Habitats for Pollinating Insects. Agric. Ecosyst. Environ. 1992, 40, 117–124. [Google Scholar] [CrossRef]
- Potts, S.G.; Vulliamy, B.; Dafni, A.; Ne’eman, G.; Willmer, P. Linking Bees and Flowers: How Do Floral Communities Structure Pollinator Communities? Ecology 2003, 84, 2628–2642. [Google Scholar] [CrossRef] [Green Version]
- Carvell, C.; Meek, W.R.; Pywell, R.F.; Nowakowski, M. The Response of Foraging Bumblebees to Successional Change in Newly Created Arable Field Margins. Biol. Conserv. 2004, 118, 327–339. [Google Scholar] [CrossRef]
- Pywell, R.F.; Warman, E.A.; Carvell, C.; Sparks, T.H.; Dicks, L.v.; Bennett, D.; Wright, A.; Critchley, C.N.R.; Sherwood, A. Providing Foraging Resources for Bumblebees in Intensively Farmed Landscapes. Biol. Conserv. 2005, 121, 479–494. [Google Scholar] [CrossRef]
- Jönsson, A.M.; Ekroos, J.; Dänhardt, J.; Andersson, G.K.S.; Olsson, O.; Smith, H.G. Sown Flower Strips in Southern Sweden Increase Abundances of Wild Bees and Hoverflies in the Wider Landscape. Biol. Conserv. 2015, 184, 51–58. [Google Scholar] [CrossRef]
- M’Gonigle, L.K.; Ponisio, L.C.; Cutler, K.; Kremen, C. Habitat Restoration Promotes Pollinator Persistence and Colonization in Intensively Managed Agriculture. Ecol. Appl. 2015, 25, 1557–1565. [Google Scholar] [CrossRef] [Green Version]
- M’Gonigle, L.K.; Williams, N.M.; Lonsdorf, E.; Kremen, C. A Tool for Selecting Plants When Restoring Habitat for Pollinators. Conserv. Lett. 2016, 10, 105–111. [Google Scholar] [CrossRef]
- Scheper, J.; Bommarco, R.; Holzschuh, A.; Potts, S.G.; Riedinger, V.; Roberts, S.P.M.; Rundlöf, M.; Smith, H.G.; Steffan-Dewenter, I.; Wickens, J.B.; et al. Local and Landscape-Level Floral Resources Explain Effects of Wildflower Strips on Wild Bees across Four European Countries. J. Appl. Ecol. 2015, 52, 1165–1175. [Google Scholar] [CrossRef]
- Main, A.R.; Webb, E.B.; Goyne, K.W.; Mengel, D. Field-Level Characteristics Influence Wild Bee Functional Guilds on Public Lands Managed for Conservation. Glob. Ecol. Conserv. 2019, 17, e00598. [Google Scholar] [CrossRef]
- Sanchez, J.A.; Carrasco, A.; Spina, M.L.; Pérez-Marcos, M.; Ortiz-Sánchez, F.J. How Bees Respond Differently to Field Margins of Shrubby and Herbaceous Plants in Intensive Agricultural Crops of the Mediterranean Area. Insects 2020, 11, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haaland, C.; Naisbit, R.E.; Bersier, L.F. Sown Wildflower Strips for Insect Conservation: A Review. Insect Conserv. Divers. 2011, 4, 60–80. [Google Scholar] [CrossRef]
- Kohler, F.; Verhulst, J.; van Klink, R.; Kleijn, D. At What Spatial Scale Do High-Quality Habitats Enhance the Diversity of Forbs and Pollinators in Intensively Farmed Landscapes? J. Appl. Ecol. 2008, 45, 753–762. [Google Scholar] [CrossRef]
- Carvalheiro, L.G.; Seymour, C.L.; Nicolson, S.W.; Veldtman, R. Creating Patches of Native Flowers Facilitates Crop Pollination in Large Agricultural Fields: Mango as a Case Study. J. Appl. Ecol. 2012, 49, 1373–1383. [Google Scholar] [CrossRef] [Green Version]
- Morandin, L.A.; Kremen, C. Hedgerow Restoration Promotes Pollinator Populations and Exports Native Bees to Adjacent Fields. Ecol. Appl. 2013, 23, 829–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigo Gómez, S.; Ornosa, C.; Selfa, J.; Guara, M.; Polidori, C. Small Sweat Bees (Hymenoptera: Halictidae) as Potential Major Pollinators of Melon (Cucumis melo) in the Mediterranean. Entomol. Sci. 2016, 19, 55–66. [Google Scholar] [CrossRef]
- Venturini, E.M.; Drummond, F.A.; Hoshide, A.K.; Dibble, A.C.; Stack, L.B. Pollination Reservoirs in Lowbush Blueberry (Ericales: Ericaceae). J. Econ. Entomol. 2017, 110, 333–346. [Google Scholar] [CrossRef] [Green Version]
- Azpiazu, C.; Medina, P.; Ad, Á.; Ismael, S. The Role of Annual Flowering Plant Strips on a Melon Crop in Central Spain. Influence on Pollinators and Crop. Insects 2020, 11, 66. [Google Scholar] [CrossRef] [Green Version]
- Zamorano, J.; Bartomeus, I.; Grez, A.A.; Garibaldi, L.A. Field Margin Floral Enhancements Increase Pollinator Diversity at the Field Edge but Show No Consistent Spillover into the Crop Field: A Meta-Analysis. Insect Conserv. Divers. 2020, 13, 519–531. [Google Scholar] [CrossRef]
- Garbach, K.; Long, R.F. Determinants of Field Edge Habitat Restoration on Farms in California’s Sacramento Valley. J. Environ. Manag. 2017, 189, 134–141. [Google Scholar] [CrossRef]
- Blaauw, B.R.; Isaacs, R. Flower Plantings Increase Wild Bee Abundance and the Pollination Services Provided to a Pollination-Dependent Crop. J. Appl. Ecol. 2014, 51, 890–898. [Google Scholar] [CrossRef]
- Balzan, M.; Bocci, G.; Moonen, A.C. Utilisation of Plant Functional Diversity in Wildflower Strips for the Delivery of Multiple Agroecosystem Services. Entomol. Exp. Appl. 2016, 158, 304–319. [Google Scholar] [CrossRef]
- Quinn, N.F.; Brainard, D.C.; Szendrei, Z. Floral Strips Attract Beneficial Insects but Do Not Enhance Yield in Cucumber Fields. J. Econ. Entomol. 2017, 110, 517–524. [Google Scholar] [CrossRef]
- Tschoeke, P.H.; Oliveira, E.E.; Dalcin, M.S.; Silveira-Tschoeke, M.C.A.C.; Santos, G.R. Diversity and Flower-Visiting Rates of Bee Species as Potential Pollinators of Melon (Cucumis melo L.) in the Brazilian Cerrado. Sci. Hortic. 2015, 186, 207–216. [Google Scholar] [CrossRef]
- Sánchez-Balibrea, J.M.; Sanchez, J.A.; Barberá, G.G.; Castillo, V.; Diaz, S.; Perera, L.; Pérez-Marcos, M.; de Pedro, L.; Reguilón, M. Manejo de Setos y Otras Estructuras Vegetales Lineales para Una Agricultura Sostenible; Asociación Paisaje y Agricultura Sostenible GO Setos: Murcia, Spain, 2020; Volume 53, ISBN 9788578110796. [Google Scholar]
- Garibaldi, L.A.; Steffan-Dewenter, I.; Winfree, R.; Marcelo, A.; Bommarco, R.; Cunningham, S.A.; Kremen, C.; Carvalheiro, L.G.; Harder, L.D.; Afik, O.; et al. Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance. Science 2013, 339, 1608–1611. [Google Scholar] [CrossRef] [PubMed]
- de Pedro, L.; López-Gallego, E.; Pérez-Marcos, M.; Ramírez-Soria, M.J.; Sanchez, J.A. Native Natural Enemies in Mediterranean Melon Fields Can Provide Levels of Pest Control Similar to Conventional Pest Management with Broad-Spectrum Pesticides. Biol. Control 2021, 164, 104778. [Google Scholar] [CrossRef]
- Ortiz-Sánchez, F.J.; Aguirre-Segura, A. Efecto Del Color Sobre Las Capturas de Abejas Mediante Trampas Moericke En El Sur de España (Hymeoptera, Apoidea). Graellsia 1993, 49, 63–71. [Google Scholar]
- R-Development-Core-Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Venables, W.N.; Ripley, B.D. Statistic and Computing. Modern Applied Statistic with S; Springer: New York, NY, USA, 2002. [Google Scholar]
- Delignette-Muller, M.L.; Dutang, C. Fitdistrplus: An R Package for Fitting Distributions. J. Stat. Softw. 2015, 64, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Hothorn, T.; Bret, F.; Westfall, P. Simultaneous Inference in General Parametric Models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [Green Version]
- de Mendiburu Felipe Agricolae: Statistical Procedures for Agricultural Research. R Package Version 1.3-5. 2021. Available online: https://CRAN.R-project.org/package=agricolae (accessed on 9 February 2023).
- Petanidou, T.; Ellis, W.N. Interdependence of Native Bee Faunas and Floras in Changing Mediterranean Communities. In The Conservation of Bees; Matheson, A., Buchmann, S.L., O’Toole, C.P.W., Williams, I.H., Eds.; Academic Press: London, UK, 1996; pp. 201–226. [Google Scholar]
- Azpiazu, C.; Bosch, J.; Viñuela, E.; Medrycki, P.; Teper, D.; Sgolastra, F. Chronic Oral Exposure to Field-Realistic Pesticide Combinations via Pollen and Nectar: Effects on Feeding and Thermal Performance in a Solitary Bee. Sci. Rep. 2019, 9, 13770. [Google Scholar] [CrossRef] [Green Version]
- Rodrigo Gómez, S.; Ornosa, C.; García Gila, J.; Blasco-Aróstegui, J.; Selfa, J.; Guara, M.; Polidori, C. Bees and Crops in Spain: An Update for Melon, Watermelon and Almond. Ann. Soc. Entomol. Fr. 2021, 57, 12–28. [Google Scholar] [CrossRef]
- Garantonakis, N.; Varikou, K.; Birouraki, A.; Edwards, M.; Kalliakaki, V.; Andrinopoulos, F. Comparing the Pollination Services of Honey Bees and Wild Bees in a Watermelon Field. Sci. Hortic. 2016, 204, 138–144. [Google Scholar] [CrossRef]
- Njoroge, G.N.; Gemmill, B.; Bussmann, R.; Newton, L.E.; Ngumi, V.M. Diversity and Efficiency of Wild Pollinators of Watermelon (Citrullus lanatus (Thunb.) Mansf.) at Yatta (Kenya). J. Appl. Hortic. 2010, 12, 35–41. [Google Scholar] [CrossRef]
- Blüthgen, N.; Klein, A.M. Functional Complementarity and Specialisation: The Role of Biodiversity in Plant-Pollinator Interactions. Basic Appl. Ecol. 2011, 12, 282–291. [Google Scholar] [CrossRef]
- Pisanty, G.; Afik, O.; Wajnberg, E.; Mandelik, Y. Watermelon Pollinators Exhibit Complementarity in both Visitation Rate and Single-Visit Pollination Efficiency. J. Appl. Ecol. 2016, 53, 360–370. [Google Scholar] [CrossRef] [Green Version]
- Polidori, C.; Rubichi, A.; Barbieri, V.; Trombino, L.; Donegana, M. Floral Resources and Nesting Requirements of the Ground-Nesting Social Bee, Lasioglossum malachurum (Hymenoptera: Halictidae), in a Mediterranean Semiagricultural Landscape. Psyche 2010, 2010, 851947. [Google Scholar] [CrossRef] [Green Version]
- Kleijn, D.; Winfree, R.; Bartomeus, I.; Carvalheiro, L.G.; Henry, M.; Isaacs, R.; Klein, A.M.; Kremen, C.; M’Gonigle, L.K.; Rader, R.; et al. Delivery of Crop Pollination Services Is an Insufficient Argument for Wild Pollinator Conservation. Nat. Commun. 2015, 6, 7414. [Google Scholar] [CrossRef] [Green Version]
- Campbell, A.J.; Wilby, A.; Sutton, P.; Wackers, F.L. Do Sown Flower Strips Boost Wild Pollinator Abundance and Pollination Services in a Spring-Flowering Crop? A Case Study from UK Cider Apple Orchards. Agric. Ecosyst. Environ. 2017, 239, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, M.; Kleijn, D.; Williams, N.M.; Tschumi, M.; Blaauw, B.R.; Bommarco, R.; Campbell, A.J.; Dainese, M.; Drummond, F.A.; Entling, M.H.; et al. The Effectiveness of Flower Strips and Hedgerows on Pest Control, Pollination Services and Crop Yield: A Quantitative Synthesis. Ecol. Lett. 2020, 23, 1488–1498. [Google Scholar] [CrossRef]
- Lowe, E.B.; Groves, R.; Gratton, C. Impacts of Field-Edge Flower Plantings on Pollinator Conservation and Ecosystem Service Delivery—A Meta-Analysis. Agric. Ecosyst. Environ. 2021, 310, 107290. [Google Scholar] [CrossRef]
- Fountain, M.T. Impacts of Wildflower Interventions on Beneficial Insects in Fruit Crops: A Review. Insects 2022, 13, 304. [Google Scholar] [CrossRef] [PubMed]
- Fijen, T.P.M.; Scheper, J.A.; Boekelo, B.; Raemakers, I.; Kleijn, D. Effects of Landscape Complexity on Pollinators Are Moderated by Pollinators’ Association with Mass-Flowering Crops. Proc. R. Soc. B Biol. Sci. 2019, 286, 20190387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gezon, Z.J.; Wyman, E.S.; Ascher, J.S.; Inouye, D.W.; Irwin, R.E. The Effect of Repeated, Lethal Sampling on Wild Bee Abundance and Diversity. Methods Ecol. Evol. 2015, 6, 1044–1054. [Google Scholar] [CrossRef]
- Nielsen, A.; Steffan-Dewenter, I.; Westphal, C.; Messinger, O.; Potts, S.G.; Roberts, S.P.M.; Settele, J.; Szentgyörgyi, H.; Vaissière, B.E.; Vaitis, M.; et al. Assessing Bee Species Richness in Two Mediterranean Communities: Importance of Habitat Type and Sampling Techniques. Ecol. Res. 2011, 26, 969–983. [Google Scholar] [CrossRef]
Locality | Nearby Town | Province | Latitude | Longitude |
---|---|---|---|---|
CIFEA | Torre Pacheco | Murcia | 37°44′25.1″ N | 0°58′00.1″ W |
IMIDA | La Alberca | Murcia | 37°56′26.2″ N | 1°08′00.1″ W |
Torreblanca | Dolores de Pacheco | Murcia | 37°46′25.6″ N | 0°53′59.7″ W |
Order | Family | Genera | Treatment | Total | % | ||
---|---|---|---|---|---|---|---|
MS | UH | MH | |||||
Coleoptera | 1 | 0 | 0 | 1 | 0.63 | ||
Diptera | Syrphidae | 2 | 1 | 2 | 5 | 3.14 | |
Hymenoptera (Apoidea) | Andrenidae | Andrena spp. | 0 | 0 | 2 | 2 | 1.26 |
Apidae | Apis mellifera | 27 | 25 | 28 | 80 | 50.31 | |
Colletidae | Colletes spp. | 0 | 0 | 1 | 1 | 0.63 | |
Halictidae | Halictus spp. | 1 | 0 | 1 | 2 | 1.26 | |
Lasioglossum spp. | 2 | 9 | 10 | 21 | 13.21 | ||
Nomioides spp. | 0 | 1 | 0 | 1 | 0.63 | ||
Megachilidae | Anthidium spp. | 0 | 2 | 2 | 4 | 2.52 | |
Hoplitis spp. | 0 | 1 | 0 | 1 | 0.63 | ||
Megachile spp. | 2 | 5 | 2 | 9 | 5.66 | ||
Megach. Un. | 1 | 0 | 0 | 1 | 0.63 | ||
Rhodanthidium spp. | 1 | 0 | 0 | 1 | 0.63 | ||
Stelis spp. | 0 | 0 | 1 | 1 | 0.63 | ||
wild Apidae | Ceratina spp. | 3 | 1 | 5 | 9 | 5.66 | |
Nomada spp. | 1 | 0 | 0 | 1 | 0.63 | ||
Wildbee Un. | 1 | 0 | 2 | 3 | 1.89 | ||
Other Hymenoptera | Hymenoptera | 1 | 0 | 3 | 4 | 2.52 | |
Vespoidea | 1 | 1 | 0 | 2 | 1.26 | ||
Lepidoptera | Lepidoptera | 0 | 1 | 3 | 4 | 2.52 | |
Pieris spp. | 1 | 1 | 3 | 5 | 3.14 | ||
Satyrinae | 0 | 0 | 1 | 1 | 0.63 |
Order | Suborder/Family | Genera | Treatment | Total | % | ||
---|---|---|---|---|---|---|---|
MS | UH | MH | |||||
Araneae | 6 | 1 | 1 | 8 | 0.30 | ||
Diptera | Dipt. Un. | 8 | 13 | 17 | 38 | 1.42 | |
Syrphidae | 125 | 46 | 63 | 234 | 8.73 | ||
Heteroptera | 11 | 0 | 0 | 11 | 0.41 | ||
Hymenoptera | Chrysididae | 2 | 0 | 0 | 2 | 0.07 | |
Crabronidae | Oxybellus sp. | 0 | 0 | 1 | 1 | 0.04 | |
Symphita | 1 | 1 | 0 | 2 | 0.07 | ||
Hym. Un. | 263 | 122 | 166 | 551 | 20.55 | ||
Hymenoptera (Apoidea) | Andrenidae | Andrena sp. | 43 | 24 | 32 | 99 | 3.69 |
Panurgus sp. | 5 | 4 | 7 | 16 | 0.60 | ||
Apidae | Apis mellifera | 126 | 136 | 87 | 349 | 13.02 | |
Bombus sp. | 6 | 3 | 3 | 12 | 0.45 | ||
Amegilla sp. | 0 | 1 | 0 | 1 | 0.04 | ||
Ceratina sp. | 1 | 1 | 1 | 3 | 0.11 | ||
Eucera sp. | 93 | 23 | 22 | 138 | 5.15 | ||
Nomada sp. | 1 | 1 | 1 | 3 | 0.11 | ||
Xylocopa sp. | 1 | 0 | 1 | 2 | 0.07 | ||
Colletidae | Colletes sp. | 6 | 1 | 1 | 8 | 0.30 | |
Hylaeus sp. | 20 | 19 | 15 | 54 | 2.01 | ||
Halictidae | Ceylalictus sp. | 2 | 0 | 0 | 2 | 0.07 | |
Dufourea sp. | 0 | 0 | 1 | 1 | 0.04 | ||
Halictus sp. | 36 | 24 | 24 | 84 | 3.13 | ||
Lasioglossum sp. | 270 | 296 | 374 | 940 | 35.06 | ||
Nomia sp. | 1 | 1 | 1 | 3 | 0.11 | ||
Nomioides sp. | 37 | 27 | 18 | 82 | 3.06 | ||
Megachilidae | Anthidium sp. | 2 | 1 | 1 | 4 | 0.15 | |
Heriades sp. | 2 | 1 | 3 | 6 | 0.22 | ||
Megachile sp. | 3 | 2 | 3 | 8 | 0.30 | ||
Osmia sp. | 3 | 1 | 3 | 7 | 0.26 | ||
Pseudoanthidium sp. | 1 | 0 | 1 | 2 | 0.07 | ||
Stelis sp. | 0 | 2 | 0 | 2 | 0.07 | ||
Lepidoptera | 4 | 0 | 0 | 4 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Marcos, M.; Ortiz-Sánchez, F.J.; López-Gallego, E.; Ibáñez, H.; Carrasco, A.; Sanchez, J.A. Effects of Managed and Unmanaged Floral Margins on Pollination Services and Production in Melon Crops. Insects 2023, 14, 296. https://doi.org/10.3390/insects14030296
Pérez-Marcos M, Ortiz-Sánchez FJ, López-Gallego E, Ibáñez H, Carrasco A, Sanchez JA. Effects of Managed and Unmanaged Floral Margins on Pollination Services and Production in Melon Crops. Insects. 2023; 14(3):296. https://doi.org/10.3390/insects14030296
Chicago/Turabian StylePérez-Marcos, María, Francisco Javier Ortiz-Sánchez, Elena López-Gallego, Helena Ibáñez, Aline Carrasco, and Juan Antonio Sanchez. 2023. "Effects of Managed and Unmanaged Floral Margins on Pollination Services and Production in Melon Crops" Insects 14, no. 3: 296. https://doi.org/10.3390/insects14030296
APA StylePérez-Marcos, M., Ortiz-Sánchez, F. J., López-Gallego, E., Ibáñez, H., Carrasco, A., & Sanchez, J. A. (2023). Effects of Managed and Unmanaged Floral Margins on Pollination Services and Production in Melon Crops. Insects, 14(3), 296. https://doi.org/10.3390/insects14030296