Sequencing and Analysis of the Mitochondrial Genome of Aedes aegypti (Diptera: Culicidae) from the Brazilian Amazon Region
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection of the Biological Samples and the Extraction of the Total DNA
2.2. Genomic Sequencing
2.3. Data Processing and Description of the Genome
2.4. Phylogenetic Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harbach, R. The Culicidae (Diptera): A Review of Taxonomy, Classification and Phylogeny. Zootaxa 2007, 1668, 591–638. [Google Scholar] [CrossRef]
- Escobar, D.; Ortiz, B.; Urrutia, O.; Fontecha, G. Genetic Diversity among Four Populations of Aedes aegypti (Diptera: Culicidae) from Honduras as Revealed by Mitochondrial DNA Cytochrome Oxidase I. Pathogens 2022, 11, 620. [Google Scholar] [CrossRef] [PubMed]
- Espinal, M.A.; Andrus, J.K.; Jauregui, B.; Waterman, S.H.; Morens, D.M.; Santos, J.I.; Horstick, O.; Francis, L.A.; Olson, D. Emerging and Reemerging Aedes-Transmitted Arbovirus Infections in the Region of the Americas: Implications for Health Policy. Am. J. Public Health 2019, 109, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Joyce, A.L.; Torres, M.M.; Torres, R.; Moreno, M. Genetic Variability of the Aedes aegypti (Diptera: Culicidae) Mosquito in El Salvador, Vector of Dengue, Yellow Fever, Chikungunya and Zika. Parasites Vectors 2018, 11, 637. [Google Scholar] [CrossRef] [PubMed]
- Paupy, C.; Le Goff, G.; Brengues, C.; Guerra, M.; Revollo, J.; Barja Simon, Z.; Hervé, J.P.; Fontenille, D. Genetic Structure and Phylogeography of Aedes aegypti, the Dengue and Yellow-Fever Mosquito Vector in Bolivia. Infect. Genet. Evol. 2012, 12, 1260–1269. [Google Scholar] [CrossRef] [PubMed]
- Pless, E.; Powell, J.R.; Seger, K.R.; Ellis, B.; Gloria-Soria, A. Evidence for Serial Founder Events during the Colonization of North America by the Yellow Fever Mosquito, Aedes aegypti. Ecol. Evol. 2022, 12, e8896. [Google Scholar] [CrossRef]
- Maitra, A.; Cunha-Machado, A.S.; de Souza Leandro, A.; da Costa, F.M.; Scarpassa, V.M. Exploring Deeper Genetic Structures: Aedes aegypti in Brazil. Acta Trop. 2019, 195, 68–77. [Google Scholar] [CrossRef]
- Rodrigues, L.F.; de Sousa, A.A.; Mendes Júnior, W.P.; Cardoso e Silva, A.C.; do Nascimento, M.H.S.; Barros, M.C.; Sampaio, I.; Fraga, E. da C. Genetic Differentiation of Aedes aegypti (Diptera: Culicidae) in Areas with High Rates of Infestation in Mid-North Region of Brazil. Insects 2023, 14, 530. [Google Scholar] [CrossRef]
- Abuelmaali, S.A.; Jamaluddin, J.A.F.; Noaman, K.; Allam, M.; Abushama, H.M.; Elnaiem, D.E.; Ishak, I.H.; Wajidi, M.F.F.; Jaal, Z.; Kassim, N.F.A. Distribution and Genetic Diversity of Aedes aegypti Subspecies across the Sahelian Belt in Sudan. Pathogens 2021, 10, 78. [Google Scholar] [CrossRef]
- Eskildsen, G.A.; Rovira, J.R.; Smith, O.; Miller, M.J.; Bennett, K.L.; McMillan, W.O.; Loaiza, J. Maternal Invasion History of Aedes aegypti and Aedes albopictus into the Isthmus of Panama: Implications for the Control of Emergent Viral Disease Agents. PLoS ONE 2018, 13, e0194874. [Google Scholar] [CrossRef]
- Fraga, E.C.; Oliveira, D.R.S.; Aragão, D.G.; Sampaio, H.S.; Barros, M.C. Genetic Variability and Evidence of Two Distinct Lineages of Aedes aegypti (Diptera, Culicidae) on São Luís Island in Maranhão, Brazil. Open Trop. Med. J. 2013, 6, 11–18. [Google Scholar] [CrossRef]
- Sousa, A.A.; Fraga, E.; Sampaio, I.; Schneider, H.; Barros, M.C. Genetic Differentiation in Populations of Aedes aegypti (Diptera, Culicidae) Dengue Vector from the Brazilian State of Maranhão. Rev. Bras. Entomol. 2017, 61, 51–59. [Google Scholar] [CrossRef]
- Avise, J.C. Phylogeography: Retrospect and Prospect. J. Biogeogr. 2009, 36, 3–15. [Google Scholar] [CrossRef]
- Boore, J.L. Animal Mitochondrial Genomes. Nucleic Acids Res. 1999, 27, 1767–1780. [Google Scholar] [CrossRef]
- Brown, W.M.; George, M.; Wilson, A.C. Rapid Evolution of Animal Mitochondrial DNA. Proc. Natl. Acad. Sci. USA 1979, 76, 1967–1971. [Google Scholar] [CrossRef]
- Moritz, C.; Dowling, T.; Brown, W. Evolution of Animal Mitochondrial DNA: Relevance for Population Biology and Systematics. Annu. Rev. Ecol. Syst. 1987, 18, 269–292. [Google Scholar] [CrossRef]
- de Oliveira Aragão, A.; da Silva, F.S.; Cruz, A.C.; da Silva, S.P.; de Almeida Medeiros, D.B.; Dias, D.D.; do Nascimento, B.L.; Júnior, J.W.; de Oliveira Monteiro, H.A.; Neto, J.P. Description of Mitochon Genome and Phylogenetic Considerations of Sabethes bipartipes, Sabethes cyaneus, Sabethes quasicyaneus, and Sabethes tarsopus (Diptera: Culicidae). Acta Trop. 2022, 232, 106493. [Google Scholar] [CrossRef] [PubMed]
- Demari-Silva, B.; Foster, P.G.; de Oliveira, T.M.P.; Bergo, E.S.; Sanabani, S.S.; Pessôa, R.; Sallum, M.A.M. Mitochondrial Genomes and Comparative Analyses of Culex camposi, Culex coronator, Culex usquatus and Culex usquatissimus (Diptera:CUlicidae), Members of the Coronator Group. BMC Genom. 2015, 16, 1. [Google Scholar] [CrossRef]
- Hao, Y.J.; Zou, Y.L.; Ding, Y.R.; Xu, W.Y.; Yan, Z.T.; Li, X.D.; Fu, W.B.; Li, T.J.; Chen, B. Complete Mitochondrial Genomes of Anopheles stephensi and An. dirus and Comparative Evolutionary Mitochondriomics of 50 Mosquitoes. Sci. Rep. 2017, 7, 7666. [Google Scholar] [CrossRef]
- Lemos, P.D.; Monteiro, H.A.; Castro, F.C.; Lima, C.P.; Silva, D.E.; Vasconcelos, J.M.; Oliveira, L.F.; Silva, S.P.; Cardoso, J.F.; Vianez Júnior, J.L.; et al. Characterization of Mitochondrial Genome of Haemagogus Janthinomys (Diptera: Culicidae). Mitochondrial DNA Part A 2017, 28, 50–51. [Google Scholar] [CrossRef]
- Lorenz, C.; Alves, J.M.P.; Foster, P.G.; Sallum, M.A.M.; Suesdek, L. First Record of Translocation in Culicidae (Diptera) Mitogenomes: Evidence from the Tribe Sabethini. BMC Genom. 2019, 20, 721. [Google Scholar] [CrossRef] [PubMed]
- do Nascimento, B.L.; da Silva, F.S.; Nunes-Neto, J.P.; de Almeida Medeiros, D.B.; Cruz, A.C.; da Silva, S.P.; da Silva e Silva, L.H.; de Oliveira Monteiro, H.A.; Dias, D.D.; Vieira, D.B.; et al. First Description of the Mitogenome and Phylogeny of Culicinae Species from the Amazon Region. Genes 2021, 12, 1983. [Google Scholar] [CrossRef] [PubMed]
- da Silva, F.S.; Cruz, A.C.; de Almeida Medeiros, D.B.; da Silva, S.P.; Nunes, M.R.; Martins, L.C.; Chiang, J.O.; da Silva Lemos, P.; Cunha, G.M.; de Araujo, R.F.; et al. Mitochondrial Genome Sequencing and Phylogeny of Haemagogus albomaculatus, Haemagogus leucocelaenus, Haemagogus spegazzinii, and Haemagogus tropicalis (Diptera: Culicidae). Sci. Rep. 2020, 10, 16948. [Google Scholar] [CrossRef]
- Silva, L.H.S.; Silva, F.S.; de Medeiros, D.B.A.; Cruz, A.C.R.; Silva, S.P.; de Aragão, A.O.; Dias, D.D.; Nascimento, B.L.S.; Rosa, J.W., Jr.; Vieira, D.B.R.; et al. Description of the Mitogenome and Phylogeny of Aedes spp. (Diptera: Culicidae) from the Amazon Region. Acta Trop. 2022, 232, 106500. [Google Scholar] [CrossRef]
- Silva, F.S.; Nascimento, B.L.S.; Cruz, A.C.R.; Silva, S.P.; de Aragão, A.O.; Dias, D.D.; da Silva, L.H.S.; Reis, L.A.M.; Rosa, J.W.; Vieira, D.B.R.; et al. Sequencing and Description of the Complete Mitochondrial Genome of Limatus durhamii (Diptera: Culicidae). Acta Trop. 2023, 239, 106805. [Google Scholar] [CrossRef] [PubMed]
- Rebouças, A. Água Na Região Nordeste: Desperdício e Escassez. Estud. Avançados 1997, 11, 127–154. [Google Scholar] [CrossRef]
- Consoli, R.A.G.; Oliveira, R. Principais Mosquitos de Importância Sanitária No Brasil; Editora Fiocruz: Rio de Janeiro, Brazil, 1994. [Google Scholar]
- Santos, J.M.M.; Contel, E.P.B.; Kerr, W.E. Biologia de Anofelinos Amazomcos 1—Ciclo Biológico, Postura e Estádios Larvais De. Acta Amaz. 1981, 11, 789–797. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast Gapped-Read Alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map Format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Li, D.; Liu, C.M.; Luo, R.; Sadakane, K.; Lam, T.W. MEGAHIT: An Ultra-Fast Single-Node Solution for Large and Complex Metagenomics Assembly via Succinct de Bruijn Graph. Bioinformatics 2015, 31, 1674–1676. [Google Scholar] [CrossRef] [PubMed]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and Sensitive Protein Alignment Using DIAMOND. Nat. Methods 2014, 12, 59–60. [Google Scholar] [CrossRef] [PubMed]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An Integrated and Extendable Desktop Software Platform for the Organization and Analysis of Sequence Data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- Bernt, M.; Donath, A.; Jühling, F.; Externbrink, F.; Florentz, C.; Fritzsch, G.; Pütz, J.; Middendorf, M.; Stadler, P.F. MITOS: Improved de Novo Metazoan Mitochondrial Genome Annotation. Mol. Phylogenet. Evol. 2013, 69, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Stothard, P.; Wishart, D.S. Circular Genome Visualization and Exploration Using CGView. Bioinformatics 2005, 21, 537–539. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Perna, N.T.; Kocher, T.D. Patterns of Nucleotide Composition at Fourfold Degenerate Sites of Animal Mitochondrial Genomes. J. Mol. Evol. 1995, 41, 353–358. [Google Scholar] [CrossRef]
- Yang, Z. User Guide PAML: Phylogenetic Analysis by Maximum Likelihood. Mol. Biol. Evol. 2007, 4, 1–70. [Google Scholar]
- Katoh, K.; Misawa, K.; Kuma, K.I.; Miyata, T. MAFFT: A Novel Method for Rapid Multiple Sequence Alignment Based on Fast Fourier Transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef]
- Larsson, A. AliView: A Fast and Lightweight Alignment Viewer and Editor for Large Datasets. Bioinformatics 2014, 30, 3276–3278. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Le, S.; Li, Y.; Hu, F. SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File Manipulation. PLoS ONE 2016, 11, e0163962. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Soares-da-Silva, J.; Ibiapina, S.S.; Bezerra, J.M.T.; Tadei, W.P.; Pinheiro, V.C.S. Variation in Aedes aegypti (Linnaeus) (Diptera, Culicidae) Infestation in Artificial Containers in Caxias, State of Maranhão, Brazil. Rev. Soc. Bras. Med. Trop. 2012, 45, 174–179. [Google Scholar] [CrossRef]
- Kotsakiozi, P.; Gloria-Soria, A.; Caccone, A.; Evans, B.; Schama, R.; Martins, A.J.; Powell, J.R. Tracking the Return of Aedes aegypti to Brazil, the Major Vector of the Dengue, Chikungunya and Zika Viruses. PLoS Negl. Trop. Dis. 2017, 11, e0005653. [Google Scholar] [CrossRef]
- Vargas, L.D.L.; Ferreira, S.M.B.; Souza, M.D.; da Silva, C.A.L.; Shimoya-bittencourt, W. Resistência Das Populações de Aedes (Stegomyia) aegypti (Linnaeus, 1762) (Insecta, Diptera, Culicidae) Aos Inseticidas Utilizados Para o Controle. Rev. Cienc. Méd. Biol. 2022, 21, 98–116. [Google Scholar] [CrossRef]
- Lima-Camara, T.N. Emerging Arboviruses and Public Health Challenges in Brazil. Rev. Saude Publica 2016, 50, 36. [Google Scholar] [CrossRef]
- Powell, J.R. Perspective Piece Mosquito-Borne Human Viral Diseases: Why Aedes aegypti? Am. J. Trop. Med. Hyg. 2018, 98, 1563–1565. [Google Scholar] [CrossRef]
- Sinclair, J.B.; Asgari, S. Ross River Virus Provokes Differentially Expressed MicroRNA and RNA Interference Responses in Aedes aegypti Mosquitoes. Viruses 2020, 12, 695. [Google Scholar] [CrossRef]
- Severson, D.W.; Behura, S.K. Genome Investigations of Vector Competence in Aedes aegypti to Inform Novel Arbovirus Disease Control Approaches. Insects 2016, 7, 58. [Google Scholar] [CrossRef]
- dos Paduan, K.S.; Araújo, J.P.; Ribolla, P.E.M. Genetic Variability in Geographical Populations of Aedes aegypti (Diptera, Culicidae) in Brazil Elucidated by Molecular Markers. Genet. Mol. Biol. 2006, 29, 391–395. [Google Scholar] [CrossRef]
- Bracco, J.E.; Capurro, M.L.; Lourenço-de-Oliveira, R.; Sallum, M.A.M. Genetic Variability of Aedes aegypti in the Americas Using a Mitochondrial Gene: Evidence of Multiple Introductions. Mem. Inst. Oswaldo Cruz 2007, 102, 572–579. [Google Scholar] [CrossRef] [PubMed]
- dos Paduan, K.S.; Ribolla, P.E.M. Mitochondrial DNA Polymorphism and Heteroplasmy in Populations of Aedes aegypti in Brazil. J. Med. Entomol. 2008, 45, 59–67. [Google Scholar] [CrossRef]
- Scarpassa, V.M.; Cardoza, T.B.; Cardoso, R.P. Population Genetics and Phylogeography of Aedes aegypti (Diptera: Culicidae) from Brazil. Am. J. Trop. Med. Hyg. 2008, 78, 895–903. [Google Scholar] [CrossRef]
- Monteiro, F.A.; Shama, R.; Martins, A.J.; Gloria-Soria, A.; Brown, J.E.; Powell, J.R. Genetic Diversity of Brazilian Aedes aegypti: Patterns Following an Eradication Program. PLoS Negl. Trop. Dis. 2014, 8, e3167. [Google Scholar] [CrossRef]
- Matthews, B.J.; Dudchenko, O.; Kingan, S.B.; Koren, S.; Antoshechkin, I.; Crawford, J.E.; Glassford, W.J.; Herre, M.; Redmond, S.N.; Rose, N.H.; et al. Improved Reference Genome of Aedes aegypti Informs Arbovirus Vector Control. Nature 2018, 563, 501–507. [Google Scholar] [CrossRef]
- Wolstenholme, D.R. Animal Mitochondrial DNA: Structure and Evolution. Int. Rev. Cytol. 1992, 141, 173–216. [Google Scholar] [CrossRef]
- Zhang, D.X.; Hewitt, G.M. Insect Mitochondrial Control Region: A Review of Its Structure, Evolution and Usefulness in Evolutionary Studies. Biochem. Syst. Ecol. 1997, 25, 99–120. [Google Scholar] [CrossRef]
- Makhawi, A.M.; Liu, X.B.; Yang, S.R.; Liu, Q.Y. Genetic Variations of ND5 Gene of MtDNA in Populations of Anopheles Sinensis (Diptera: Culicidae) Malaria Vector in China. Parasites Vectors 2013, 6, 290. [Google Scholar] [CrossRef]
- Wang, G.; Li, C.; Guo, X.; Xing, D.; Dong, Y.; Wang, Z.; Zhang, Y.; Liu, M.; Zheng, Z.; Zhang, H.; et al. Identifying the Main Mosquito Species in China Based on DNA Barcoding. PLoS ONE 2012, 7, e047051. [Google Scholar] [CrossRef]
- Xu, J.; Fonseca, D.M. One-Way Sequencing of Multiple Amplicons from Tandem Repetitive Mitochondrial DNA Control Region. Mitochondrial DNA 2011, 22, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Kambhampati, S.; Smith, P.T. PCR Primers for the Amplification of Four Insect Mitochondrial Gene Fragments. Insect Mol. Biol. 1995, 4, 233–236. [Google Scholar] [CrossRef]
- Lorenz, C.; Alves, J.M.P.; Foster, P.G.; Suesdek, L.; Sallum, M.A.M. Phylogeny and Temporal Diversification of Mosquitoes (Diptera: Culicidae) with an Emphasis on the Neotropical Fauna. Syst. Entomol. 2021, 46, 798–811. [Google Scholar] [CrossRef]
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; DeWaard, J.R. Biological Identifications through DNA Barcodes. Proc. R. Soc. B Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef]
- Chan, A.; Chiang, L.P.; Hapuarachchi, H.C.; Tan, C.H.; Pang, S.C.; Lee, R.; Lee, K.S.; Ng, L.C.; Lam-Phua, S.G. DNA Barcoding: Complementing Morphological Identification of Mosquito Species in Singapore. Parasites Vectors 2014, 7, 569. [Google Scholar] [CrossRef] [PubMed]
- Reinert, J. Comparative Anatomy of the Female Genitalia of Genera and Subgenera in Tribe Aedini (Diptera: Culicidae). Part V. Genus Aedes Meigen. Contrib. Am. Entomol. Inst. 2000, 32, 1–102. [Google Scholar]
- Reinert, J. Comparative Anatomy of the Female Genitalia of Generic-Level Taxa in Tribe Aedini (Diptera: Culicidae). Part XV. Genus Georgecraigius Reinert, Harbach and Kitching. Contrib. Am. Entomol. Inst. 2008, 35, 1–10. [Google Scholar]
- Reinert, J.F.; Harbach, R.E.; Kitching, I.J. Phylogeny and Classification of Tribe Aedini (Diptera: Culicidae). Zool. J. Linn. Soc. 2009, 157, 700–794. [Google Scholar] [CrossRef]
- Wilkerson, R.C.; Linton, Y.M.; Fonseca, D.M.; Schultz, T.R.; Price, D.C.; Strickman, D.A. Making Mosquito Taxonomy Useful: A Stable Classification of Tribe Aedini That Balances Utility with Current Knowledge of Evolutionary Relationships. PLoS ONE 2015, 10, e0133602. [Google Scholar] [CrossRef]
- Ma, X.X.; Wang, F.F.; Wu, T.T.; Li, Y.; Sun, X.J.; Wang, C.R.; Chang, Q.C. First Description of the Mitogenome and Phylogeny:Aedes Vexansand Ochlerotatus Caspius of the Tribe Aedini (Diptera: Culicidae). Infect. Genet. Evol. 2022, 102, 105311. [Google Scholar] [CrossRef]
- Zadra, N.; Rizzoli, A.; Rota-Stabelli, O. Chronological Incongruences between Mitochondrial and Nuclear Phylogenies of Aedes Mosquitoes. Life 2021, 11, 181. [Google Scholar] [CrossRef] [PubMed]
- da Brasil, M.S. Maranhão Registrou Mais de 3,1 Mil Casos Prováveis de Dengue Este Ano. Available online: https://www.gov.br/saude/pt-br/assuntos/noticias-para-os-estados/maranhao/2023/maio/maranhao-registrou-mais-de-3-1-mil-casos-provaveis-de-dengue-este-ano (accessed on 26 July 2023).
- Silva, A.G.; Cunha, I.C.L.; Santos, W.S.; Luz, S.L.B.; Ribolla, P.E.M.; Abad-Franch, F. Gene Flow Networks among American Aedes aegypti Populations. Evol. Appl. 2012, 5, 664–676. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, A.A.d.; Cruz, A.C.R.; Silva, F.S.d.; Silva, S.P.d.; Neto, J.P.N.; Barros, M.C.; Fraga, E.d.C.; Sampaio, I. Sequencing and Analysis of the Mitochondrial Genome of Aedes aegypti (Diptera: Culicidae) from the Brazilian Amazon Region. Insects 2023, 14, 938. https://doi.org/10.3390/insects14120938
Sousa AAd, Cruz ACR, Silva FSd, Silva SPd, Neto JPN, Barros MC, Fraga EdC, Sampaio I. Sequencing and Analysis of the Mitochondrial Genome of Aedes aegypti (Diptera: Culicidae) from the Brazilian Amazon Region. Insects. 2023; 14(12):938. https://doi.org/10.3390/insects14120938
Chicago/Turabian StyleSousa, Andrelina Alves de, Ana Cecília Ribeiro Cruz, Fábio Silva da Silva, Sandro Patroca da Silva, Joaquim Pinto Nunes Neto, Maria Claudene Barros, Elmary da Costa Fraga, and Iracilda Sampaio. 2023. "Sequencing and Analysis of the Mitochondrial Genome of Aedes aegypti (Diptera: Culicidae) from the Brazilian Amazon Region" Insects 14, no. 12: 938. https://doi.org/10.3390/insects14120938
APA StyleSousa, A. A. d., Cruz, A. C. R., Silva, F. S. d., Silva, S. P. d., Neto, J. P. N., Barros, M. C., Fraga, E. d. C., & Sampaio, I. (2023). Sequencing and Analysis of the Mitochondrial Genome of Aedes aegypti (Diptera: Culicidae) from the Brazilian Amazon Region. Insects, 14(12), 938. https://doi.org/10.3390/insects14120938