Does Insect Aversion Lead to Increased Household Pesticide Use?
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Participants
2.3. Procedure
2.4. Computerized Test
2.5. Questionnaire
2.5.1. Questionnaire Section A: Exposure
2.5.2. Questionnaire Section B: Pesticide Use
2.5.3. Questionnaire Section C: Tendency
2.6. Data Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horton, M.K.; Jacobson, J.B.; McKelvey, W.; Holmes, D.; Fincher, B.; Quantano, A.; Diaz, B.P.; Shabbazz, F.; Shepard, P.; Rundle, A.; et al. Characterization of Residential Pest Control Products Used in Inner City Communities in New York City. J. Expo. Sci. Environ. Epidemiol. 2011, 21, 291–301. [Google Scholar] [CrossRef] [PubMed]
- EPA-Pyrethrins and Pyrethroids. Available online: https://www.epa.gov/ingredients-used-pesticide-products/pyrethrins-and-pyrethroids (accessed on 8 May 2022).
- Power, L.E.; Sudakin, D.L. Pyrethrin and Pyrethroid Exposures in the United States: A Longitudinal Analysis of Incidents Reported to Poison Centers. J. Med. Toxicol. 2007, 3, 94–99. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Carlton, E.J.; Moats, H.L.; Feinberg, M.; Shepard, P.; Garfinkel, R.; Whyatt, R.; Evans, D. Pesticide Sales in Low-Income, Minority Neighborhoods. J. Community Health 2004, 29, 231–244. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.K.; Rundle, A.; Holmes, D.; Reyes, M.; Hoepner, L.A.; Barr, D.B.; Camann, D.E.; Perera, F.P.; Whyatt, R.M. Changes in Pest Infestation Levels, Self-Reported Pesticide Use, and Permethrin Exposure during Pregnancy after the 2000–2001 U.S. Environmental Protection Agency Restriction of Organophosphates. Environ. Health Perspect. 2008, 116, 1681–1688. [Google Scholar] [CrossRef] [PubMed]
- Rosas, L.G.; Eskenazi, B. Pesticides and Child Neurodevelopment. Curr. Opin. Pediatr. 2008, 20, 191–197. [Google Scholar] [CrossRef]
- Mortuza, T.; Chen, C.; White, C.A.; Cummings, B.S.; Muralidhara, S.; Gullick, D.; Bruckner, J. V Toxicokinetics of Deltamethrin: Dosage Dependency, Vehicle Effects, and Low-Dose Age-Equivalent Dosimetry in Rats. Toxicol. Sci. 2018, 162, 327–336. [Google Scholar] [CrossRef]
- Eljarrat, E. Conclusions and Future Trends. In Pyrethroid Insecticides. The Handbook of Environmental Chemistry; Eljarrat, E., Ed.; Springer: Cham, Switzerland, 2020; Volume 92, pp. 305–313. [Google Scholar]
- EPA. USEPA Office of Pesticide Programs’ Re-Evaluation of the FQPA Safety Factor for Pyrethroids: Updated Literature and CAPHRA Program Data Review; 2019. Available online: https://www.regulations.gov/document/EPA-HQ-OPP-2008-0331-0084 (accessed on 14 June 2022).
- Viel, J.-F.; Rouget, F.; Warembourg, C.; Monfort, C.; Limon, G.; Cordier, S.; Chevrier, C. Behavioural Disorders in 6-Year-Old Children and Pyrethroid Insecticide Exposure: The PELAGIE Mother-Child Cohort. Occup. Environ. Med. 2017, 74, 275–281. [Google Scholar] [CrossRef]
- Van Maele-Fabry, G.; Gamet-Payrastre, L.; Lison, D. Household Exposure to Pesticides and Risk of Leukemia in Children and Adolescents: Updated Systematic Review and Meta-Analysis. Int. J. Hyg. Environ. Health 2019, 222, 49–67. [Google Scholar] [CrossRef]
- Perkins, A.; Walters, F.; Sievert, J.; Rhodes, B.; Morrissey, B.; Karr, C.J. Home Use of a Pyrethroid-Containing Pesticide and Facial Paresthesia in a Toddler: A Case Report. Int. J. Environ. Res. Public Health 2016, 13, 829. [Google Scholar] [CrossRef]
- Saillenfait, A.-M.; Ndiaye, D.; Sabaté, J.-P. Pyrethroids: Exposure and Health Effects-an Update. Int. J. Hyg. Environ. Health 2015, 218, 281–292. [Google Scholar] [CrossRef]
- Chen, S.; Gu, S.; Wang, Y.; Yao, Y.; Wang, G.; Jin, Y.; Wu, Y. Exposure to Pyrethroid Pesticides and the Risk of Childhood Brain Tumors in East China. Environ. Pollut. 2016, 218, 1128–1134. [Google Scholar] [CrossRef]
- Bae, J.-W.; Kwon, W.-S. The Deleterious Toxic Effects of Bifenthrin on Male Fertility. Reprod. Toxicol. 2021, 101, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Saillenfait, A.-M.; Malard, S. Human Risk Associated with Long-Term Exposure to Pyrethroid Insecticides. In Pyrethroid Insecticides. The Handbook of Environmental Chemistry; Eljarrat, E., Ed.; Springer: Cham, Switzerland, 2020; Volume 92, pp. 259–303. [Google Scholar]
- Bao, W.; Liu, B.; Simonsen, D.W.; Lehmler, H.-J. Association between Exposure to Pyrethroid Insecticides and Risk of All-Cause and Cause-Specific Mortality in the General US Adult Population. JAMA Intern. Med. 2020, 180, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Mesnage, R.; Antoniou, M.N. Ignoring Adjuvant Toxicity Falsifies the Safety Profile of Commercial Pesticides. Front. Public Health 2018, 5, 361. [Google Scholar] [CrossRef]
- Nakagawa, L.E.; do Nascimento, C.M.; Costa, A.R.; Polatto, R.; Papini, S. Persistence of Indoor Permethrin and Estimation of Dermal and Non-Dietary Exposure. J. Expo. Sci. Environ. Epidemiol. 2020, 30, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Oudejans, L.; Mysz, A.; Gibb Snyder, E.; Wyrzykowska-Ceradini, B.; Nardin, J.; Tabor, D.; Starr, J.; Stout, D.; Lemieux, P. Remediating Indoor Pesticide Contamination from Improper Pest Control Treatments: Persistence and Decontamination Studies. J. Hazard. Mater. 2020, 397, 122743. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, L.E.; Costa, A.R.; Polatto, R.; do Nascimento, C.M.; Papini, S. Pyrethroid Concentrations and Persistence Following Indoor Application. Environ. Toxicol. Chem. 2017, 36, 2895–2898. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.-C.; Huang, F.-J.; Yang, Y.-Q.; Hsieh, C.-J.; Tseng, C.-C.; Yiin, L.-M. Pesticides in Indoor and Outdoor Residential Dust: A Pilot Study in a Rural County of Taiwan. Environ. Sci. Pollut. Res. 2018, 25, 23349–23356. [Google Scholar] [CrossRef]
- Mahler, B.J.; Van Metre, P.C.; Wilson, J.T.; Musgrove, M.; Zaugg, S.D.; Burkhardt, M.R. Fipronil and Its Degradates in Indoor and Outdoor Dust. Environ. Sci. Technol. 2009, 43, 5665–5670. [Google Scholar] [CrossRef]
- Deziel, N.C.; Colt, J.S.; Kent, E.E.; Gunier, R.B.; Reynolds, P.; Booth, B.; Metayer, C.; Ward, M.H. Associations between Self-Reported Pest Treatments and Pesticide Concentrations in Carpet Dust. Environ. Health 2015, 14, 27. [Google Scholar] [CrossRef]
- Stout II, D.M.; Bradham, K.D.; Egeghy, P.P.; Jones, P.A.; Croghan, C.W.; Ashley, P.A.; Pinzer, E.; Friedman, W.; Brinkman, M.C.; Nishioka, M.G.; et al. American Healthy Homes Survey: A National Study of Residential Pesticides Measured from Floor Wipes. Environ. Sci. Technol. 2009, 43, 4294–4300. [Google Scholar] [CrossRef] [PubMed]
- Glorennec, P.; Serrano, T.; Fravallo, M.; Warembourg, C.; Monfort, C.; Cordier, S.; Viel, J.F.; Le Gléau, F.; Le Bot, B.; Chevrier, C. Determinants of Children’s Exposure to Pyrethroid Insecticides in Western France. Environ. Int. 2017, 104, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Richards, J.; Reif, R.; Luo, Y.; Gan, J. Distribution of Pesticides in Dust Particles in Urban Environments. Environ. Pollut. 2016, 214, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Darney, K.; Bodin, L.; Bouchard, M.; Côté, J.; Volatier, J.-L.; Desvignes, V. Aggregate Exposure of the Adult French Population to Pyrethroids. Toxicol. Appl. Pharmacol. 2018, 351, 21–31. [Google Scholar] [CrossRef]
- Bekarian, N.; Payne-Sturges, D.; Edmondson, S.; Chism, B.; Woodruff, T.J. Use of Point-of-Sale Data to Track Usage Patterns of Residential Pesticides: Methodology Development. Environ. Health 2006, 5, 15. [Google Scholar] [CrossRef][Green Version]
- Barr, D.B.; Olsson, A.O.; Wong, L.-Y.; Udunka, S.; Baker, S.E.; Whitehead, R.D.; Magsumbol, M.S.; Williams, B.L.; Needham, L.L. Urinary Concentrations of Metabolites of Pyrethroid Insecticides in the General U.S. Population: National Health and Nutrition Examination Survey 1999–2002. Environ. Health Perspect. 2010, 118, 742–748. [Google Scholar] [CrossRef]
- Babina, K.; Dollard, M.; Pilotto, L.; Edwards, J.W. Environmental Exposure to Organophosphorus and Pyrethroid Pesticides in South Australian Preschool Children: A Cross Sectional Study. Environ. Int. 2012, 48, 109–120. [Google Scholar] [CrossRef]
- Quindroit, P.; Crépet, A.; Brochot, C. Estimating Human Exposure to Pyrethroids’ Mixtures from Biomonitoring Data Using Physiologically Based Pharmacokinetic Modeling. Environ. Res. 2021, 192, 110281. [Google Scholar] [CrossRef]
- Norén, E.; Lindh, C.; Rylander, L.; Glynn, A.; Axelsson, J.; Littorin, M.; Faniband, M.; Larsson, E.; Nielsen, C. Concentrations and Temporal Trends in Pesticide Biomarkers in Urine of Swedish Adolescents, 2000–2017. J. Expo. Sci. Environ. Epidemiol. 2020, 30, 756–767. [Google Scholar] [CrossRef]
- McKelvey, W.; Jacobson, J.B.; Kass, D.; Barr, D.B.; Davis, M.; Calafat, A.M.; Aldous, K.M. Population-Based Biomonitoring of Exposure to Organophosphate and Pyrethroid Pesticides in New York City. Environ. Health Perspect. 2013, 121, 1349–1356. [Google Scholar] [CrossRef]
- Fortin, M.-C.; Bouchard, M.; Carrier, G.; Dumas, P. Biological Monitoring of Exposure to Pyrethrins and Pyrethroids in a Metropolitan Population of the Province of Quebec, Canada. Environ. Res. 2008, 107, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Fourth Report on Human Exposure to Environmental Chemicals, Updated Tables; Atlanta, GA, USA, 2021. Available online: https://ecologycenter.org/wp-content/uploads/2021/04/FourthReport_UpdatedTables_Volume2_Mar2021-508.pdf (accessed on 14 June 2022).
- Schoelitsz, B.; Meerburg, B.G.; Takken, W. Influence of the Public’s Perception, Attitudes, and Knowledge on the Implementation of Integrated Pest Management for Household Insect Pests. Entomol. Exp. Appl. 2019, 167, 14–26. [Google Scholar] [CrossRef]
- Buchmüller, K.; Bearth, A.; Siegrist, M. Consumers’ Perceptions of Chemical Household Products and the Associated Risks. Food Chem. Toxicol. 2020, 143, 111511. [Google Scholar] [CrossRef] [PubMed]
- Grey, C.N.B.; Nieuwenhuijsen, M.J.; Golding, J. The Use and Disposal of Household Pesticides. Environ. Res. 2005, 97, 109–115. [Google Scholar] [CrossRef]
- Nieuwenhuijsen, M.J.; Grey, C.N.B.; Golding, J. Exposure Misclassification of Household Pesticides and Risk Perception and Behaviour. Ann. Occup. Hyg. 2005, 49, 703–709. [Google Scholar] [CrossRef]
- EPA. Pest Control and Pesticide Safety for Consumers. Available online: https://www.epa.gov/safepestcontrol (accessed on 8 May 2022).
- University of California Pests of Homes, Structures, People and Pets. Available online: http://ipm.ucanr.edu/PMG/menu.house.html (accessed on 8 May 2022).
- Cornell University New York State Integrated Pest Management; Homes and Other Buildings. Available online: https://nysipm.cornell.edu/community/homes-and-other-buildings/ (accessed on 8 May 2022).
- WHO; FAO. International Code of Conduct on Pesticide Management: Guidance on Management of Household Pesticides; World Health Organization; Food and Agriculture Organization of the United Nations: Geneva, Switzerland, 2020. [Google Scholar]
- Baldwin, R.W.; Koehler, P.G.; Pereira, R.M.; Oi, F.M. Public Perceptions of Pest Problems. Am. Entomol. 2008, 54, 73–79. [Google Scholar] [CrossRef]
- Frankie, G.W.; Levenson, H. Insect Problems and Insecticide Use: Public Opinion, Information and Behavior. In Perspectives in Urban Entomology; Frankie, G.W., Koehler, C.S., Eds.; Academic Press, Inc.: New York, NY, USA, 1978; pp. 359–399. [Google Scholar]
- Wood, F.E.; Robinson, W.H.; Kraft, S.K.; Zungoli, P.A. Survey of Attitudes and Knowledge of Public Housing Residents toward Cockroaches. Bull. Entomol. Soc. Am. 1981, 27, 9–13. [Google Scholar] [CrossRef]
- Levenson, H.; Frankie, G.W. A Study of Homeowner Attitudes and Practices toward Arthropod Pests and Pesticides in Three U.S. Metropolitan Areas. In Urban Entomology: Interdisciplinary Perspectives; Frankie, G.W., Koehler, C.S., Eds.; Praeger: New York, NY, USA, 1983; pp. 67–106. [Google Scholar]
- Zungoli, P.A.; Robinson, W.H. Feasibility of Establishing an Aesthetic Injury Level for German Cockroach Pest Management Programs. Environ. Entomol. 1984, 13, 1453–1458. [Google Scholar] [CrossRef]
- Hinkle, N.C. Ekbom Syndrome: The Challenge of “Invisible Bug” Infestations. Annu. Rev. Entomol. 2010, 55, 77–94. [Google Scholar] [CrossRef]
- Olkowski, H.; Olkowski, W. Entomophobia in the Urban Ecosystem, Some Observations and Suggestions. Bull. Entomol. Soc. Am. 1976, 22, 313–318. [Google Scholar] [CrossRef]
- Saleh, R.; Bearth, A.; Siegrist, M. “Chemophobia” Today: Consumers’ Knowledge and Perceptions of Chemicals. Risk Anal. 2019, 39, 2668–2682. [Google Scholar] [CrossRef] [PubMed]
- Siegrist, M.; Bearth, A. Chemophobia in Europe and Reasons for Biased Risk Perceptions. Nat. Chem. 2019, 11, 1071–1072. [Google Scholar] [CrossRef] [PubMed]
- Madden, A.A.; Barberán, A.; Bertone, M.A.; Menninger, H.L.; Dunn, R.R.; Fierer, N. The Diversity of Arthropods in Homes across the United States as Determined by Environmental DNA Analyses. Mol. Ecol. 2016, 25, 6214–6224. [Google Scholar] [CrossRef] [PubMed]
- Leong, M.; Bertone, M.A.; Savage, A.M.; Bayless, K.M.; Dunn, R.R.; Trautwein, M.D. The Habitats Humans Provide: Factors Affecting the Diversity and Composition of Arthropods in Houses. Sci. Rep. 2017, 7, 15347. [Google Scholar] [CrossRef] [PubMed]
- Skolnick, A.J.; Bascom, K.L.; Wilson, D.T. Gender Role Expectations of Disgust: Men Are Low and Women Are High. Sex Roles 2013, 69, 72–88. [Google Scholar] [CrossRef]
- Hardy, T.N. Entomophobia: The Case for Miss Muffet. Bull. Entomol. Soc. Am. 1988, 34, 64–69. [Google Scholar] [CrossRef]
- Mathôt, S.; Schreij, D.; Theeuwes, J. OpenSesame: An Open-Source, Graphical Experiment Builder for the Social Sciences. Behav. Res. Methods 2012, 44, 314–324. [Google Scholar] [CrossRef]
- Sweet, F.S.T.; Noack, P.; Hauck, T.E.; Weisser, W.W. The relationship between knowing and liking for 91 urban animal species among students. SocArXiv Pap. 2020. [Google Scholar] [CrossRef]
- Polák, J.; Rádlová, S.; Janovcová, M.; Flegr, J.; Landová, E.; Frynta, D. Scary and Nasty Beasts: Self-Reported Fear and Disgust of Common Phobic Animals. Br. J. Psychol. 2020, 111, 297–321. [Google Scholar] [CrossRef]
- de Jong, P.J.; Muris, P. Spider Phobia: Interaction of Disgust and Perceived Likelihood of Involuntary Physical Contact. J. Anxiety Disord. 2002, 16, 51–65. [Google Scholar] [CrossRef]
- Wang, C.; Bischoff, E.; Eiden, A.L.; Zha, C.; Cooper, R.; Graber, J.M. Residents Attitudes and Home Sanitation Predict Presence of German Cockroaches (Blattodea: Ectobiidae) in Apartments for Low-Income Senior Residents. J. Econ. Entomol. 2019, 112, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Dienes, Z. Understanding Psychology as a Science: An Introduction to Scientific and Statistical Inference; Palgrave Macmillan: New York, NY, USA, 2008; ISBN 1137096055. [Google Scholar]
- JASP Team JASP. JASP Team, 2021; Version 0.15; 2021. [Google Scholar]
- Davey, G.C.L. The “Disgusting” Spider: The Role of Disease and Illness in the Perpetuation of Fear of Spiders. Soc. Anim. 1994, 2, 17–25. [Google Scholar] [CrossRef]
- Kellert, S.R. Values and Perceptions of Invertebrates. Conserv. Biol. 1993, 7, 845–855. [Google Scholar] [CrossRef]
- Looy, H.; Wood, J.R. Attitudes toward Invertebrates: Are Educational “Bug Banquets” Effective? J. Environ. Educ. 2006, 37, 37–48. [Google Scholar] [CrossRef]
- Looy, H.; Dunkel, F.V.; Wood, J.R. How Then Shall We Eat? Insect-Eating Attitudes and Sustainable Foodways. Agric. Hum. Values 2014, 31, 131–141. [Google Scholar] [CrossRef]
- Boileau, E.Y.S.; Russell, C. Insect and Human Flourishing in Early Childhood Education: Learning and Crawling Together. In Research Handbook on Childhoodnature; Cutter-Mackenzie-Knowles, A., Malone, K., Barratt Hacking, E., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1323–1338. ISBN 978-3-319-67286-1. [Google Scholar]
- Ruby, M.B. Vegetarianism. A Blossoming Field of Study. Appetite 2012, 58, 141–150. [Google Scholar] [CrossRef]
- Rothgerber, H. A Comparison of Attitudes toward Meat and Animals among Strict and Semi-Vegetarians. Appetite 2014, 72, 98–105. [Google Scholar] [CrossRef]
- Rust, M.K. Recent Advancements in the Control of Cat Fleas. Insects 2020, 11, 668. [Google Scholar] [CrossRef]
- Bertero, A.; Rivolta, M.; Davanzo, F.; Caloni, F. Suspected Environmental Poisoning by Drugs, Household Products and Pesticides in Domestic Animals. Environ. Toxicol. Pharmacol. 2020, 80, 103471. [Google Scholar] [CrossRef]
- Caloni, F.; Cortinovis, C.; Rivolta, M.; Davanzo, F. Suspected Poisoning of Domestic Animals by Pesticides. Sci. Total Environ. 2016, 539, 331–336. [Google Scholar] [CrossRef]
- Prokop, P.; Tunnicliffe, S.D. Effects of Having Pets at Home on Children’s Attitudes toward Popular and Unpopular Animals. Anthrozoos 2010, 23, 21–35. [Google Scholar] [CrossRef]
- Schlegel, J.; Breuer, G.; Rupf, R. Local Insects as Flagship Species to Promote Nature Conservation? A Survey among Primary School Children on Their Attitudes toward Invertebrates. Anthrozoos 2015, 28, 229–245. [Google Scholar] [CrossRef]
- Soga, M.; Gaston, K.J. Extinction of Experience: The Loss of Human–Nature Interactions. Front. Ecol. Environ. 2016, 14, 94–101. [Google Scholar] [CrossRef]
- de Carvalho, N.M.; Madureira, A.R.; Pintado, M.E. The Potential of Insects as Food Sources–a Review. Crit. Rev. Food Sci. Nutr. 2020, 60, 3642–3652. [Google Scholar] [CrossRef]
- Hvenegaard, G. Insect Festivals in North America: Patterns and Purposes. Am. Entomol. 2016, 62, 235–240. [Google Scholar] [CrossRef]
- Fukano, Y.; Soga, M. Why Do so Many Modern People Hate Insects? The Urbanization–Disgust Hypothesis. Sci. Total Environ. 2021, 777, 146229. [Google Scholar] [CrossRef]
- Miller, J.R. Biodiversity Conservation and the Extinction of Experience. Trends Ecol. Evol. 2005, 20, 430–434. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.; White, M.P.; Hunt, A.; Richardson, M.; Pahl, S.; Burt, J. Nature Contact, Nature Connectedness and Associations with Health, Wellbeing and pro-Environmental Behaviours. J. Environ. Psychol. 2020, 68, 101389. [Google Scholar] [CrossRef]
Questionnaire Section | Question | Reasoning | Possible Responses | Score |
---|---|---|---|---|
a (Exposure—the level of indoor exposure to insects) | Type of home | Ground level rooms tend to have a higher diversity of insects than higher floors [1]. | Private house/ground floor | 3 |
An apartment on the 2nd floor or higher | 0 | |||
Are there screens on the windows? | Screens prevent insects from entering through windows. | No | 2 | |
Yes, on some windows | 1 | |||
Yes, on all windows | 0 | |||
During spring and summer, how frequently do you see insects inside your home? | The frequency of insect sightings is a major component of a person’s perception of infestation levels. | Very high frequency | 4 | |
High frequency | 3 | |||
Medium frequency | 2 | |||
Low frequency | 1 | |||
Almost never | 0 | |||
If you do not use pesticides, what is the reason? * | No need to use pesticides indicates a low infestation level. | No need | −3 | |
Irrelevant (because there is insecticide use) | 0 | |||
b (Pesticide use—the extent of pesticide use in the home) | If pesticides are used in your home, who does the extermination? | Households that add professional extermination to HPP use likely have an overall higher level of pesticide use. | Irrelevant (because there is no pesticide use) | 0 |
Family members | 1 | |||
Professional exterminator | 1 | |||
Both | 2 | |||
If family members do the extermination, what is the frequency of treatments? | Frequency of HPP use directly affects the level of pesticide use. | Irrelevant (or no more than once a year) | 0 | |
Once in several months | 1 | |||
Once a month or more frequent | 2 | |||
If extermination is done by a professional exterminator, what is the frequency of treatments? | Frequency of professional extermination directly affects the level of pesticide use. | Irrelevant (no professional extermination) | 0 | |
Once every two years | 1 | |||
Once a year or more frequently | 2 | |||
Is extermination usually prophylactic (against insects in general) or aimed at specific, existing pests? | General, prophylactic spraying “against insects” tends to be more widespread than responsive treatment of specific targets. | Irrelevant (no extermination) | 0 | |
Specific | 1 | |||
General | 3 | |||
Number of pesticide products currently at home. | A higher number of HPPs indicates more use. | Number of products | 1 point per product | |
c (Tendency—factors that may affect the family’s predisposition toward using pesticides in their home) | If you do not use pesticides, what is the reason? | Awareness of the toxicity of pesticides and preferring to avoid exposure to them should be negatively correlated with tendency (see discussion). | To avoid exposure to toxic chemicals ** | −6 |
Irrelevant (because there is pesticide use) | 0 | |||
Are any of the household members vegetarian? | Vegetarians may be less willing to kill pests (see discussion). | Yes | −1 | |
No | 1 | |||
How many pets do you keep at home, and of what kind (only mammals and birds)? | See discussion | None | 2 | |
Pet/s of only one kind | 1 | |||
Pets of more than one kind | 0 | |||
How often do you take nature walks? | See discussion | Often (more than once a month) | 0 | |
Once every month or two | 1 | |||
Once every three months or less | 2 |
Predictor I | Predictor II | Pearson’s r | p |
---|---|---|---|
tendency | exposure | −0.168 | 0.164 |
tendency | insect aversion | 0.034 | 0.779 |
exposure | Insect aversion | 0.166 | 0.17 |
Model | Unstandardized ß | Standard Error | Standardized ß | t | p | |
---|---|---|---|---|---|---|
1 | (Intercept) | −0.157 | 0.317 | −0.15 | 0.882 | |
tendency | 0.467 | 0.111 | 0.453 | 4.188 | <0.001 | |
2 | (Intercept) | −3.72 | 1.263 | −2.945 | 0.004 | |
tendency | 0.539 | 0.101 | 0.522 | 5.32 | <0.001 | |
exposure | 0.452 | 0.107 | 0.415 | 4.22 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leibovich-Raveh, T.; Gish, M. Does Insect Aversion Lead to Increased Household Pesticide Use? Insects 2022, 13, 555. https://doi.org/10.3390/insects13060555
Leibovich-Raveh T, Gish M. Does Insect Aversion Lead to Increased Household Pesticide Use? Insects. 2022; 13(6):555. https://doi.org/10.3390/insects13060555
Chicago/Turabian StyleLeibovich-Raveh, Tali, and Moshe Gish. 2022. "Does Insect Aversion Lead to Increased Household Pesticide Use?" Insects 13, no. 6: 555. https://doi.org/10.3390/insects13060555
APA StyleLeibovich-Raveh, T., & Gish, M. (2022). Does Insect Aversion Lead to Increased Household Pesticide Use? Insects, 13(6), 555. https://doi.org/10.3390/insects13060555