Comparison of Ground Release and Drone-Mediated Aerial Release of Aedes aegypti Sterile Males in Southern Mexico: Efficacy and Challenges
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Issues
2.2. Study Site, Mosquito Strain, Mass-Rearing and Sterilization
2.3. Estimation of Released Sterile Males
2.4. Experimental Release and Sampling
2.5. Laboratory Processing of Samples
2.6. Statistical Analyses
3. Results
| Number of Ae. aegypti Sterile Males Released by Each Method | Sterile Males Recaptured from Ground Releases | Sterile Males Recaptured from Aerial Releases | Wild Males of Ae. aegypti Collected in Traps | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Week | Ground | Aerial | No. Traps Sampled | Total | Mean Number/Trap ± SE (%) 1 | Total | Mean Number/Trap ± SE (%) 1 | Total | Mean/Trap ± SE |
| 1 | 79,000 | 0 | 12 | 34 | 2.83 ± 1.8 (0.04) | - | - | 8 | 0.7 ± 0.4 |
| 2 | 51,502 | 0 | 10 | 8 | 0.80 ± 0.3 (0.02) | - | - | 0 | 0.0 ± 0.0 |
| 3 | 109,238 | 0 | 12 | 21 | 1.75 ± 1.1 (0.02) | - | - | 42 | 3.5 ± 1.7 |
| 4 | 68,579 | 68,618 | 13 | 61 | 4.7 ± 1.9 (0.09) | 24 | 1.8 ± 0.7 (0.03) | 6 | 0.5 ± 0.2 |
| 5 | 88,701 | 88,932 | 16 | 251 | 15.7 ± 9.7 (0.28) | 116 | 7.3 ± 4.4 (0.13) | 8 | 0.5 ± 0.3 |
| 6 | 74,751 | 74,751 | 15 | 58 | 3.9 ± 1.6 (0.08) | 39 | 2.6 ± 2.5 (0.05) | 15 | 1.0 ± 0.6 |
| 7 | 111,354 | 113,350 | 15 | 93 | 6.2 ± 3.3 (0.08) | 50 | 3.3 ± 1.9 (0.04) | 20 | 1.3 ± 0.9 |
| 8 | 60,808 | 62,615 | 16 | 44 | 2.8 ± 1.3 (0.07) | 13 | 0.8 ± 0.5 (0.02) | 17 | 1.1 ± 0.4 |
| 9 | 109,716 | 110,616 | 16 | 34 | 2.1 ± 0.7 (0.03) | 44 | 2.8 ± 2.2 (0.04) | 9 | 0.6 ± 0.3 |
| 10 | 78,424 | 85,320 | 15 | 16 | 1.1 ± 0.3 (0.02) | 8 | 0.5 ± 0.3 (0.01) | 31 | 2.1 ± 0.9 |
| 11 | 88,600 | 89,591 | 16 | 64 | 4.0 ± 1.5 (0.07) | 22 | 1.4 ± 0.4 (0.02) | 7 | 0.4 ± 0.3 |
| 12 | 0 | 0 | 16 | 1 | 0.1 ± 0.1 (-) | 2 | 0.1 ± 0.1 (-) | 5 | 0.3 ± 0.2 |
| Total | 920,673 | 693,793 | 685 | 318 | 168 | ||||
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernández-Salas, I.; Danis-Lozano, R.; Casas-Martínez, M.; Ulloa, A.; Bond, J.G.; Marina, C.F.; Lopez-Ordonez, T.; Elizondo-Quiroga, A.; Torres-Monzón, J.A.; Díaz-González, E.E. Historical inability to control Aedes aegypti as a main contributor of fast dispersal of chikungunya outbreaks in Latin America. Antivir. Res. 2015, 124, 30–42. [Google Scholar] [CrossRef]
- Díaz-González, E.E.; Kautz, T.F.; Dorantes-Delgado, A.; Malo-García, I.R.; Laguna-Aguilar, M.; Langsjoen, R.M.; Chen, R.; Auguste, D.I.; Sánchez-Casas, R.M.; Danis-Lozano, R. First report of Aedes aegypti transmission of chikungunya virus in the Americas. Am. J. Trop. Med. Hyg. 2015, 93, 1325–1329. [Google Scholar] [CrossRef] [Green Version]
- Guerbois, M.; Fernández-Salas, I.; Azar, S.R.; Danis-Lozano, R.; Alpuche-Aranda, C.M.; Leal, G.; Garcia-Malo, I.R.; Diaz-Gonzalez, E.E.; Casas-Martinez, M.; Rossi, S.L.; et al. Outbreak of Zika virus infection, Chiapas State, Mexico, 2015, and first confirmed transmission by Aedes aegypti mosquitoes in the Americas. J. Infect. Dis. 2016, 214, 1349–1356. [Google Scholar] [CrossRef] [Green Version]
- Couto-Lima, D.; Madec, Y.; Bersot, M.I.; Campos, S.S.; Motta, M.A.; Santos, F.B.D.; Vazeille, M.; Vasconcelos, P.F.D.C.; Lourenço-de-Oliveira, R.; Failloux, A.B. Potential risk of re-emergence of urban transmission of Yellow Fever virus in Brazil facilitated by competent Aedes populations. Sci. Rep. 2017, 7, 4848. [Google Scholar] [CrossRef]
- Kraemer, M.U.G.; Sinka, M.E.; Duda, K.A.; Mylne, A.Q.; Shearer, F.M.; Barker, C.M.; Moore, C.G.; Carvalho, R.G.; Coelho, G.E.; Van Bortel, W.; et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife 2015, 4, e08347. [Google Scholar] [CrossRef]
- Pan American Health Organization (PAHO). Evaluation of Innovative Strategies for Aedes Aegypti Control: Challenges for Their Introduction and Impact Assessment; PAHO: Washington, DC, USA, 2019; p. 62. Available online: https://iris.paho.org/handle/10665.2/51375 (accessed on 11 May 2021).
- Reiter, P.; Gubler, D.J. Surveillance and control of urban dengue vectors. In Dengue and Dengue Hemorrhagic Fever; Gubler, D.A., Kuno, G., Eds.; CAB International: London, UK, 1997; pp. 425–462. [Google Scholar]
- Horstick, O.; Runge-Ranzinger, S.; Nathan, M.B.; Kroeger, A. Dengue vector control services: How do they work? A systematic literature review and country case studies. Trans. R. Soc. Trop. Med. Hyg. 2010, 104, 379–386. [Google Scholar] [CrossRef]
- Kuri-Morales, P.A.; Correa-Morales, F.; González-Acosta, C.; Moreno-Garcia, M.; Santos-Luna, R.; Román-Pérez, S.; Román-Pérez, F.; Salazar-Penagos, M.; Lombera-González, G.; Sánchez-Tejeda, G.; et al. Insecticide susceptibility status in Mexican populations of Stegomyia aegypti (=Aedes aegypti): A nationwide assessment. Med. Vet. Entomol. 2017, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Esu, E.; Lenhart, A.; Smith, L.; Horstick, O. Effectiveness of peridomestic space spraying with insecticide on dengue transmission; systematic review. Trop. Med. Int. Health 2010, 15, 619–631. [Google Scholar] [CrossRef]
- Rodriguez, M.M.; Bisset, J.A.; Fernandez, D. Levels of insecticide resistance and resistance mechanisms in Aedes aegypti from some Latin American countries. J. Am. Mosq. Control Assoc. 2007, 23, 420–429. [Google Scholar] [CrossRef]
- Nauen, R. Insecticide resistance in disease vectors of public health importance. Pest Manag. Sci. 2007, 63, 628–633. [Google Scholar] [CrossRef]
- Vontas, J.; Kioulos, E.; Pavlidi, N.; Morou, E.; della Torre, A.; Ranson, H. Insecticide resistance in the major dengue vectors Aedes albopictus and Aedes aegypti. Pestic. Biochem. Physiol. 2012, 104, 126–131. [Google Scholar] [CrossRef]
- Moyes, C.L.; Vontas, J.; Martins, A.J.; Ng, L.C.; Koou, S.Y.; Dusfour, I.; Raghavendra, K.; Pinto, J.; Corbel, V.; David, J.P.; et al. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl. Trop. Dis. 2017, 11, e0005625. [Google Scholar] [CrossRef]
- Monath, T.P. Vaccines against diseases transmitted from animals to humans: A one health paradigm. Vaccine 2013, 31, 5321–5338. [Google Scholar] [CrossRef]
- Oliva, C.F.; Benedict, M.Q.; Collins, C.M.; Baldet, T.; Bellini, R.; Bossin, H.; Bouyer, J.; Corbel, V.; Facchinelli, L.; Fouque, F.; et al. Sterile Insect Technique (SIT) against Aedes species mosquitoes: A roadmap and good practice framework for designing, implementing and evaluating pilot field trials. Insects 2021, 12, 191. [Google Scholar] [CrossRef]
- Bouyer, J.; Yamada, H.; Pereira, R.; Bourtzis, K.; Vreysen, M.J.B. Phased conditional approach for mosquito management using sterile insect technique. Trends Parasitol. 2020, 36, 325–336. [Google Scholar] [CrossRef] [Green Version]
- Dyck, V.A.; Hendrichs, J.; Robinson, A.S. Sterile Insect Technique Principles and Practice in Area Wide Integrated Pest Management; CRC Press: Boca Raton, FL, USA, 2021; p. 1216. [Google Scholar]
- Liedo, P.; Enkerlin, W.; Hendrichs, J. La Técnica del Insecto Estéril. In Moscas de la Fruta: Fundamentos y Procedimientos Para su Manejo; Montoya, P., Toledo, J., Hernández, E., Eds.; S y G Editores: Mexico City, Mexico, 2010; pp. 243–255. [Google Scholar]
- Knipling, E.F. The Basic Principles of Insect Population Suppression and Management; United States Department of Agriculture (USDA): Washington, DC, USA, 1979; p. 659.
- Liedo, P.; Enkerlin, W.; Hendrichs, J. La Técnica del Insecto Estéril. In Moscas de la Fruta: Fundamentos y Procedimientos para su Manejo, 2nd ed.; Montoya, P., Toledo, J., Hernández, E., Eds.; S y G Editores: Mexico City, Mexico, 2020; pp. 357–373. [Google Scholar]
- Bellini, R.; Calvitti, M.; Medici, A.; Carrieri, M.; Celli, G.; Maini, S. Use of the sterile insect technique against Aedes albopictus in Italy: First results of a pilot trial. In Area-Wide Control of Insect Pests; Vreysen, M.J.B., Robinson, A., Hendrichs, J., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 505–515. [Google Scholar]
- Zheng, X.; Zhang, D.; Li, Y.; Yang, C.; Wu, Y.; Liang, X.; Liang, Y.; Pan, X.; Hu, L.; Sun, Q.; et al. Incompatible and Sterile Insect Techniques combined eliminate mosquitoes. Nature 2019, 572, 56–61. [Google Scholar] [CrossRef]
- Kittayapong, P.; Ninphanomchai, S.; Limohpasmanee, W.; Chansang, C.; Chansang, U.; Mongkalangoon, P. Combined sterile insect technique and incompatible insect technique: The first proof-of-concept to suppress Aedes aegypti vector populations in semi-rural settings in Thailand. PLoS Negl. Trop. Dis. 2019, 13, e0007771. [Google Scholar] [CrossRef] [Green Version]
- Mubarqui, R.L.; Perez, R.C.; Kladt, R.A.; Lopez, J.L.; Parker, A.; Seck, M.T.; Sall, B.; Bouyer, J. The smart aerial release machine, a universal system for applying the sterile insect technique. PLoS ONE 2014, 9, e103077. [Google Scholar] [CrossRef] [Green Version]
- Bouyer, J.; Culbert, N.J.; Dicko, A.H.; Pacheco, M.G.; Virginio, J.; Pedrosa, M.C.; Garziera, L.; Pinto, A.M.; Klaptocz, A.; Germann, J.; et al. Field performance of sterile male mosquitoes released from an uncrewed aerial vehicle. Sci. Robot. 2020, 5, eaba6251. [Google Scholar] [CrossRef]
- Culbert, N.J.; Lees, R.S.; Vreysen, M.J.; Darby, A.C.; Gilles, J.R. Optimised conditions for handling and transport of male Anopheles arabiensis: Effects of low temperature, compaction, and ventilation on male quality. Entomol. Exp. Appl. 2017, 164, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Culbert, N.J.; Balestrino, F.; Dor, A.; Herranz, G.S.; Yamada, H.; Wallner, T.; Bouyer, J. A rapid quality control test to foster the development of genetic control in mosquitoes. Sci. Rep. 2018, 8, 16179. [Google Scholar] [CrossRef] [Green Version]
- Culbert, N.J.; Gilles, J.R.L.; Bouyer, J. Investigating the impact of chilling temperature on male Aedes aegypti and Aedes albopictus survival. PLoS ONE 2019, 14, e0221822. [Google Scholar] [CrossRef]
- Sasmita, H.I.; Ernawan, B.; Sadar, M.; Nasution, I.A.; Indarwatmi, M.; Tu, W.C.; Neoh, K.B. Assessment of packing density and transportation effect on sterilized pupae and adult Aedes aegypti (Diptera: Culicidae) in non-chilled conditions. Acta Tropica 2021, 226, 106243. [Google Scholar] [CrossRef]
- Hendrichs, J.; Robinson, A.S.; Cayol, J.P.; Enkerlin, W. Medfly area wide sterile insect technique programmes for prevention, suppression or eradication: The importance of mating behavior studies. Fla. Entomol. 2002, 85, 1–13. [Google Scholar] [CrossRef]
- Oliva, C.F.; Jacquet, M.; Gilles, J.; Lemperiere, G.; Maquart, P.O.; Quilici, S.; Schooneman, F.; Vreysen, M.J.; Boyer, S. The sterile insect technique for controlling populations of Aedes albopictus (Diptera: Culicidae) on Reunion Island: Mating vigour of sterilized males. PLoS ONE 2012, 7, e49414. [Google Scholar] [CrossRef] [Green Version]
- Lees, R.S.; Gilles, J.R.L.; Hendrichs, J.; Vreysen, M.J.B.; Bourtzis, K. Back to the future: The sterile insect technique against mosquito disease vectors. Curr. Opin. Insect Sci. 2015, 10, 156–162. [Google Scholar] [CrossRef] [Green Version]
- Marina, C.F.; Bond, J.G.; Hernández-Arriaga, K.; Valle, J.; Ulloa, A.; Fernández-Salas, I.; Carvalho, D.O.; Bourtzis, K.; Dor, A.; Williams, T.; et al. Population dynamics of Aedes aegypti and Aedes albopictus in two rural villages in Southern Mexico: Baseline data for an evaluation of the Sterile Insect Technique. Insects 2021, 12, 58. [Google Scholar] [CrossRef]
- Bond, J.G.; Ramírez-Osorio, A.; Marina, C.F.; Fernández-Salas, I.; Liedo, P.; Dor, A.; Williams, T. Efficiency of two larval diets for mass-rearing of the mosquito Aedes aegypti. PLoS ONE 2017, 12, e0187420. [Google Scholar] [CrossRef] [Green Version]
- Bond, J.G.; Ramírez-Osorio, A.; Avila, N.; Gómez-Simuta, Y.; Marina, C.F.; Fernández-Salas, I.; Liedo, P.; Dor, A.; Carvalho, D.O.; Bourtzis, K.; et al. Optimization of irradiation dose to Aedes aegypti and Ae. albopictus in a Sterile Insect Technique program. PLoS ONE 2019, 14, e0212520. [Google Scholar] [CrossRef]
- Bond, J.G.; Aguirre-Ibañez, S.R.; Osorio, A.; Marina, C.F.; Gómez-Simuta, Y.; Tamayo-Escobar, R.; Dor, A.; Liedo, P.; Carvalho, D.O.; Williams, T. Sexual competitiveness and induced egg sterility by Aedes aegypti and Aedes albopictus gamma-irradiated males: A laboratory and field study in Mexico. Insects 2021, 12, 145. [Google Scholar] [CrossRef]
- García, E. Modificaciones al sistema de clasificación climática de Köppen, para adaptarlo a las condiciones de la República Mexicana. In Instituto de Geografía; UNAM: Mexico City, Mexico, 1988; p. 205. [Google Scholar]
- Verhulst, N.O.; Loonen, J.A.; Takken, W. Advances in methods for colour marking of mosquitoes. Parasit. Vectors 2013, 6, 200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rojas-Araya, D.; Barry, W.; Alto, B.W.; Burkett-Cadena, N.; Cummings, D.A. Detection of fluorescent powders and their effect on survival and recapture of Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 2020, 57, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Rueda, L.M. Pictorial keys for the identification of mosquitoes (Diptera: Culicidae) associated with dengue virus transmission. Zootaxa 2004, 589, 1–60. [Google Scholar] [CrossRef]
- Valerio, L.; Facchinelli, L.; Ramsey, J.M.; Bond, J.G.; Scott, T.W. Dispersal of male Aedes aegypti in a coastal village in southern Mexico. Am. J. Trop. Med. Hyg. 2012, 86, 665–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinde, J.; Demétrio, C.G.B. Overdispersion: Models and estimation. Comput. Stat. Data Anal. 1998, 27, 151–170. [Google Scholar] [CrossRef]
- The R Project for Statistical Computing. Available online: www.r-project.org (accessed on 22 March 2021).
- Lacroix, R.; McKemey, A.R.; Raduan, N.; Wee, L.K.; Ming, W.H.; Ney, T.G. Open field release of genetically engineered sterile male Aedes aegypti in Malaysia. PLoS ONE 2012, 7, e42771. [Google Scholar] [CrossRef] [PubMed]
- Brady, O.J.; Johansson, M.A.; Guerra, C.A.; Bhatt, S.; Golding, N.; Pigott, D.M. Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings. Parasit. Vectors 2013, 6, 351. [Google Scholar] [CrossRef] [Green Version]
- Valdez-Delgado, K.M.; Moo-Llanes, D.A.; Danis-Lozano, R.; Cisneros-Vázquez, L.A.; Flores-Suarez, A.E.; Ponce-García, G.; Medina-De la Garza, C.E.; Díaz-González, E.E.; Fernández-Salas, I. Field effectiveness of drones to identify potential Aedes aegypti breeding sites in household environments from Tapachula, a dengue-endemic city in southern Mexico. Insects 2021, 12, 663. [Google Scholar] [CrossRef]
- Chung, H.N.; Rodriguez, S.D.; Gonzales, K.K.; Vulcan, J.; Cordova, J.J.; Mitra, S.; Adams, C.G.; Moses-Gonzales, N.; Tam, N.; Cluck, J.W.; et al. Toward implementation of mosquito sterile insect technique: The effect of storage conditions on survival of male Aedes aegypti mosquitoes (Diptera: Culicidae) during transport. J. Insect Sci. 2018, 18, 6. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Xi, Z.; Li, Y.; Wang, X.; Yamada, H.; Qiu, J.; Liang, Y.; Zhang, M.; Wu, Y.; Zheng, X. Toward implementation of combined incompatible and sterile insect techniques for mosquito control: Optimized chilling conditions for handling Aedes albopictus male adults prior to release. PLoS Negl. Trop. Dis. 2020, 14, e0008561. [Google Scholar] [CrossRef]
- Iyaloo, D.P.; Facknath, S.; Bheecarry, A. Investigating the effects of low temperature and compaction on the quality of adult radio-sterilised Aedes albopictus (Diptera: Culicidae) males in view of their optimal transport to the pilot sterile release site in Mauritius. Int. J. Trop. Insect Sci. 2020, 40, 53–62. [Google Scholar] [CrossRef]
- Harrington, L.C.; Edman, J.D.; Scott, T.W. Why do female Aedes aegypti (Diptera: Culicidae) feed preferentially and frequently on human blood? J. Med. Entomol. 2001, 38, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Rey, J.R.; Nishimura, N.; Wagner, B.; Braks, M.A.H.; O’Connell, S.M.; Lounibos, L.P. Habitat segregation of mosquito arbovirus vectors in south Florida. J. Med. Entomol. 2006, 43, 1134–1141. [Google Scholar] [CrossRef]
- Causa, R.; Ochoa-Díaz-López, H.; Dor, A.; Rodríguez-León, F.; Solís-Hernández, R.; Pacheco-Soriano, A.L. Emerging arboviruses (dengue, chikungunya, and Zika) in southeastern Mexico: Influence of socio-environmental determinants on knowledge and practices. Cad. Saúde Pública 2020, 36, e00110519. [Google Scholar] [CrossRef] [PubMed]




Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marina, C.F.; Liedo, P.; Bond, J.G.; R. Osorio, A.; Valle, J.; Angulo-Kladt, R.; Gómez-Simuta, Y.; Fernández-Salas, I.; Dor, A.; Williams, T. Comparison of Ground Release and Drone-Mediated Aerial Release of Aedes aegypti Sterile Males in Southern Mexico: Efficacy and Challenges. Insects 2022, 13, 347. https://doi.org/10.3390/insects13040347
Marina CF, Liedo P, Bond JG, R. Osorio A, Valle J, Angulo-Kladt R, Gómez-Simuta Y, Fernández-Salas I, Dor A, Williams T. Comparison of Ground Release and Drone-Mediated Aerial Release of Aedes aegypti Sterile Males in Southern Mexico: Efficacy and Challenges. Insects. 2022; 13(4):347. https://doi.org/10.3390/insects13040347
Chicago/Turabian StyleMarina, Carlos F., Pablo Liedo, J. Guillermo Bond, Adriana R. Osorio, Javier Valle, Roberto Angulo-Kladt, Yeudiel Gómez-Simuta, Ildefonso Fernández-Salas, Ariane Dor, and Trevor Williams. 2022. "Comparison of Ground Release and Drone-Mediated Aerial Release of Aedes aegypti Sterile Males in Southern Mexico: Efficacy and Challenges" Insects 13, no. 4: 347. https://doi.org/10.3390/insects13040347
APA StyleMarina, C. F., Liedo, P., Bond, J. G., R. Osorio, A., Valle, J., Angulo-Kladt, R., Gómez-Simuta, Y., Fernández-Salas, I., Dor, A., & Williams, T. (2022). Comparison of Ground Release and Drone-Mediated Aerial Release of Aedes aegypti Sterile Males in Southern Mexico: Efficacy and Challenges. Insects, 13(4), 347. https://doi.org/10.3390/insects13040347

