Weather Sensitivity of Sugar Bait Trapping of Nocturnal Moths: A Case Study from Northern Europe
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murillo-Ramos, L.; Sihvonen, P.; Brehm, G.; Ríos-Malaver, I.C.; Wahlberg, N. A database and checklist of geometrid moths (Lepidoptera) from Colombia. Biodivers. Data J. 2021, 9, e68693. [Google Scholar] [CrossRef]
- Franzen, M.; Johannesson, M. Predicting extinction risk of butterflies and moths (Macrolepidoptera) from distribution patterns and species characteristics. J. Insect Conserv. 2007, 11, 367–390. [Google Scholar] [CrossRef]
- Bell, J.R.; Blumgart, D.; Shortall, C.R. Are insects declining and at what rate? An analysis of standardised, systematic catches of aphid and moth abundances across Great Britain. Insect Conserv. Divers. 2020, 13, 115–126. [Google Scholar] [CrossRef]
- Uhl, B.; Wölfling, M.; Fiedler, K. Exploring the power of moth samples to reveal community patterns along shallow ecological gradients. Ecol. Entomol. 2022, 47, 371–381. [Google Scholar] [CrossRef]
- Choi, H.S.; Kim, G.J.; Shin, H.J. Biocontrol of moth pests in apple orchards: Preliminary field study of application potential for mass trapping. Biotechnol. Bioprocess Eng. 2011, 16, 153–157. [Google Scholar] [CrossRef]
- Yao, Q.; Lv, J.; Liu, Q.J.; Diao, G.Q.; Yang, B.J.; Chen, H.M.; Tang, J. An insect imaging system to automate rice light-trap pest identification. J. Integr. Agric. 2012, 11, 978–985. [Google Scholar] [CrossRef]
- Muirhead-Thomson, R.C. Trap Responses of Flying Insects; Academic Press: London, UK, 1991; pp. 1–65. [Google Scholar]
- Raimondo, S.; Strazanac, J.S.; Butler, L. Comparison of sampling techniques used in studying Lepidoptera population dynamics. Environ. Entomol. 2004, 33, 418–425. [Google Scholar] [CrossRef]
- Brehm, G. A new LED lamp for the collection of nocturnal Lepidoptera and a spectral comparison of light-trapping lamps. Nota Lepidopterol. 2017, 40, 87–108. [Google Scholar] [CrossRef]
- Fayle, T.M.; Sharp, R.E.; Majerus, M.E.N. The effect of moth trap type on catch size and composition in British Lepidoptera. Br. J. Entomol. Nat. Hist. 2007, 20, 221–232. [Google Scholar]
- Bjerge, K.; Nielsen, J.B.; Sepstrup, M.V.; Helsing-Nielsen, F.; Høye, T.T. An automated light trap to monitor moths (Lepidoptera) using computer vision-based tracking and deep learning. Sensors 2021, 21, 343. [Google Scholar] [CrossRef]
- Yela, J.L.; Holyoak, M. Effects of moonlight and meteorological factors on light and bait trap catches of noctuid moths (Lepidoptera: Noctuidae). Environ. Entomol. 1997, 26, 1283–1290. [Google Scholar] [CrossRef]
- Freitas, A.V.L.; Iserhard, C.A.; Santos, J.P.; Carreira, J.Y.O.; Ribeiro, D.B.; Melo, D.H.A.; Rosa, A.H.B.; Marini-Filho, O.J.; Accacio, G.M.; Uehara-Prado, M. Studies with butterfly bait traps: An overview. Rev. Colomb. Entomol. 2014, 40, 203–212. [Google Scholar]
- Süssenbach, D.; Fiedler, K. Noctuid moths attracted to fruit baits: Testing models and methods of estimating species diversity. Nota Lepidopterol. 1999, 22, 115–154. [Google Scholar]
- Laaksonen, J.; Laaksonen, T.; Itämies, J.; Rytkönen, S.; Välimäki, P. A new efficient bait-trap model for Lepidoptera surveys—The “Oulu” model. Entomol. Fenn. 2006, 17, 153–160. [Google Scholar] [CrossRef]
- Nieminen, M.; Hanski, I. Metapopulations of moths on islands: A test of two contrasting models. J. Anim. Ecol. 1998, 67, 149–160. [Google Scholar] [CrossRef]
- Nieminen, M.; Rita, H.; Uuvana, P. Body size and migration rate in moths. Ecography 1999, 22, 697–707. [Google Scholar] [CrossRef]
- Merckx, T.; Kaiser, A.; van Dyck, H. Increased body size along urbanization gradients at both community and intraspecific level in macro-moths. Glob. Chang. Biol. 2018, 24, 3837–3848. [Google Scholar] [CrossRef]
- Jonason, D.; Franzen, M.; Pettersson, L.B. Transient peak in moth diversity as a response to organic farming. Basic Appl. Ecol. 2013, 14, 515–522. [Google Scholar] [CrossRef]
- El-Sayed, A.M.; Heppelthwaite, V.J.; Manning, L.M.; Gibb, A.R.; Suckling, D.M. Volatile constituents of fermented sugar baits and their attraction to lepidopteran species. J. Agric. Food Chem. 2005, 53, 953–958. [Google Scholar] [CrossRef]
- Butler, L.; Kondo, C.; Barrows, E.M.; Townsend, E.C. Effects of weather conditions and trap types on sampling for richness and abundance of forest Macrolepidoptera. Environ. Entomol. 1999, 28, 795–811. [Google Scholar] [CrossRef]
- Steinbauer, M.J.; Haslem, A.; Edwards, E.D. Using meteorological and lunar information to explain catch variability of Orthoptera and Lepidoptera from 250 W Farrow light traps. Insect Conserv. Divers. 2011, 5, 367–380. [Google Scholar] [CrossRef]
- Jonason, D.; Franzén, M.; Ranius, T. Surveying moths using light traps: Effects of weather and time of year. PLoS ONE 2014, 9, e92453. [Google Scholar] [CrossRef]
- Niermann, J.; Brehm, G. The number of moths caught by light traps is affected more by microhabitat than the type of UV lamp used in a grassland habitat. Eur. J. Entomol. 2022, 119, 36–42. [Google Scholar] [CrossRef]
- Rosenvald, R.; Lõhmus, P.; Rannap, R.; Remm, L.; Rosenvald, K.; Runnel, K.; Lõhmus, A. Assessing long-term effectiveness of green-tree retention. For. Ecol. Manag. 2019, 448, 543–548. [Google Scholar] [CrossRef]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-153. 2021. Available online: https://CRAN.R-project.org/package=nlme (accessed on 25 August 2022).
- R Core Team, R. A Language and Environment for Statistical Computing (Version 4.1.2); R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Jürivete, U.; Õunap, E. Estonian Lepidoptera Catalogue; Eesti lepidopteroologide Selts: Tallinn, Estonia, 2020; pp. 5–192. [Google Scholar]
- Troen, I.; Peterson, E.L. European Wind Atlas; Risø National Laboratory: Roskilde, Denmark, 1989; p. 656. ISBN 87-550-1482-8.
- Jaagus, J.; Kull, A. Changes in surface wind directions in Estonia during 1966-2008 and their relationships with large-scale atmospheric circulation. Est. J. Earth Sci. 2011, 60, 220–231. [Google Scholar] [CrossRef]
- Hikisz, J.; Soszynska-Maj, A. What moths fly in winter? The assemblage of moths active in a temperate deciduous forest during the cold season in Central Poland. J. Entomol. Res. Soc. 2015, 17, 59–71. [Google Scholar]
- Contreras, H.L.; Goyret, J.; von Arx, M.; Pierce, C.T.; Bronstein, J.L.; Raguso, R.A.; Davidowitz, G. The effect of ambient humidity on the foraging behavior of the hawkmoth Manduca sexta. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 2013, 199, 1053–1063. [Google Scholar] [CrossRef]
- Komatsu, M.; Kurihara, K.; Saito, S.; Domae, M.; Masuya, N.; Shimura, Y.; Kajiyama, S.; Kanda, Y.; Sugizaki, K.; Ebina, K.; et al. Management of flying insects on expressways through an academic-industrial collaboration: Evaluation of the effect of light wavelengths and meteorological factors on insect attraction. Zool. Lett. 2020, 6, 15. [Google Scholar] [CrossRef]
- Miao, J.; Guo, P.; Li, H.; Wei, C.; Liu, Q.; Gong, Z.; Duan, Y.; Li, T.; Jiang, Y.; Feng, H.; et al. Low barometric pressure enhances tethered-flight performance and reproductive of the oriental armyworm, Mythimna separata (Lepidoptera: Noctuidae). J. Econ. Entomol. 2021, 114, 620–626. [Google Scholar] [CrossRef]
- Pellegrino, A.C.; Peñaflor, M.F.G.V.; Nardi, C.; Bezner-Kerr, W.; Guglielmo, C.G.; Bento, J.M.S.; McNeil, J.N. Weather forecasting by Insects: Modified sexual behaviour in response to atmospheric pressure changes. PLoS ONE 2013, 8, e75004. [Google Scholar] [CrossRef] [PubMed]
- Zagvazdina, N.Y.; Paris, T.M.; Udell, B.J.; Stanislauskas, M.; McNeill, S.; Allan, S.A.; Mankin, R.W. Effects of atmospheric pressure trends on calling, mate-seeking, and phototaxis of Diaphorina citri (Hemiptera: Liviidae). Ann. Entomol. Soc. Am. 2015, 108, 762–777. [Google Scholar] [CrossRef]
- Austin, C.J.; Guglielmo, C.G.; Moehring, A.J. A direct test of the effects of changing atmospheric pressure on the mating behavior of Drosophila melanogaster. Evol. Ecol. 2014, 28, 535–544. [Google Scholar] [CrossRef]

| Village | Coordinates * | Altitude (m asl) ** | 
|---|---|---|
| Ivaste | 58°08′05″ N 26°37′26″ E | 165 | 
| 58°08′02″ N 26°38′08″ E | 176 | |
| Lutike | 58°07′28″ N 26°36′32″ E | 163 | 
| 58°07′13″ N 26°36′29″ E | 156 | 
| Species | Total Abundance | 
|---|---|
| Drepanidae | |
| Thyatira batis | 193 | 
| Tethea or | 2 | 
| Ochropacha duplaris | 5 | 
| Geometridae | |
| Timandra comae | 1 | 
| Idaea biselata | 4 | 
| Idaea aversata | 1 | 
| Scopula immutata | 1 | 
| Xanthorhoe spadicearia | 1 | 
| Ecliptopera silaceata | 4 | 
| Ecliptopera capitata | 2 | 
| Eupithecia icterata | 1 | 
| Hypomecis roboraria | 1 | 
| Hypomecis punctinalis | 1 | 
| Epione repandaria | 3 | 
| Cabera exanthemata | 1 | 
| Sphingidae | |
| Deilephila elpenor | 2 | 
| Deilephila porcellus | 1 | 
| Erebidae | |
| Scoliopteryx libatrix | 8 | 
| Rivula sericealis | 6 | 
| Pelosia muscerda | 2 | 
| Lithosia quadra | 1 | 
| Schrankia costaestrigalis | 137 | 
| Parascotia fuliginaria | 6 | 
| Catocala fulminea | 25 | 
| Catocala fraxini | 192 | 
| Catocala nupta | 31 | 
| Catocala pacta | 3 | 
| Noctuidae | |
| Autographa gamma | 10 | 
| Deltote pygarga | 1 | 
| Amphipyra pyramidea | 2 | 
| Amphipyra perflua | 20 | 
| Amphipyra tragopoginis | 1 | 
| Allophyes oxyacanthae | 54 | 
| Acronicta cuspis | 1 | 
| Acronicta auricoma | 8 | 
| Acronicta rumicis | 26 | 
| Caradrina morpheus | 1 | 
| Dypterygia scabriuscula | 1 | 
| Trachea atriplicis | 33 | 
| Amphipoea fucosa | 1 | 
| Amphipoea oculea | 1 | 
| Photedes fluxa | 17 | 
| Xanthia togata | 1 | 
| Agrochola helvola | 2 | 
| Agrochola lota | 1 | 
| Enargia paleacea | 1 | 
| Ammoconia caecimacula | 10 | 
| Mniotype satura | 7 | 
| Lacanobia thalassina | 1 | 
| Lacanobia oleracea | 1 | 
| Mythimna conigera | 1 | 
| Mythimna impura | 1 | 
| Ochropleura plecta | 1 | 
| Noctua pronuba | 4 | 
| Eurois occulta | 1 | 
| Xestia c-nigrum | 5 | 
| Xestia baja | 11 | 
| Xestia xanthographa | 3 | 
| Nolidae | |
| Meganola strigula | 1 | 
| Variable | Average | Minimum | Maximum | Average Norm * | 
|---|---|---|---|---|
| independent | ||||
| Temperature (°C) | 12.1 | 3.4 | 18.6 | 13.4 (3.4–27.5) | 
| Humidity (%) | 93.4 | 78.5 | 98.5 | 78 (87) | 
| Air pressure (mbar) | 1010.9 | 998.7 | 1020.7 | 1014.0 | 
| Change in pressure during the night (mbar) | −0.05 | −4.5 | 2.4 | n.a. | 
| Wind speed (m/s) | 0.10 | 0.00 | 1.21 | 0.16 | 
| Rainfall (mm) | 0.56 | 0.00 | 8.4 | 2.54 | 
| dependent | ||||
| Abundance | 5.43 | 0 | 52 | |
| Shannon index | 0.72 | 0 | 2.78 | 
| Type 1 Tests of Fixed Effects | |||||
|---|---|---|---|---|---|
| Effect | ω2, % * | NumDF | DenDF | F Value | p | 
| Date | 16.1 | 1 | 135 | 42.88 | <0.0001 | 
| Date2 | 10.1 | 1 | 135 | 10.11 | 0.0018 | 
| Temperature | 22.4 | 1 | 135 | 96.92 | <0.0001 | 
| Humidity | 9.7 | 1 | 135 | 37.57 | <0.0001 | 
| Variable | Abundance | Shannon Index | ||||
|---|---|---|---|---|---|---|
| t | p | Direction 1 | t | p | Direction 1 | |
| Air pressure | −0.42 | 0.66 | X | X | X | |
| Air pressure change | −0.86 | 0.39 | X | X | X | |
| Wind speed | −1.76 | 0.08 | Negative | −0.4 | 0.69 | |
| Maximal wind speed | −1.21 | 0.22 | 0.77 | 0.44 | ||
| Dew 2 | −1.24 | 0.21 | −1.33 | 0.18 | Negative | |
| Rainfall 3 | 0.15 | 0.87 | 1.39 | 0.16 | Positive | |
| Raining time 4 | 0.27 | 0.78 | 1.27 | 0.2 | ||
| Rain in daytime 5 | 1.16 | 0.24 | 1.82 | 0.07 | Positive | |
| Type 1 Tests of Fixed Effects | |||||
|---|---|---|---|---|---|
| Effect | ω2, % * | NumDF | DenDF | F Value | p | 
| Date | 19.4 | 1 | 134 | 21.30 | <0.0001 | 
| Temperature | 12.2 | 1 | 134 | 62.14 | <0.0001 | 
| Humidity | 6.3 | 1 | 134 | 34.46 | <0.0001 | 
| Air pressure | 2.5 | 1 | 134 | 6.70 | 0.0107 | 
| Air pr. change | 0.9 | 1 | 134 | 5.94 | 0.0161 | 
| Measure of Temperature and Humidity | Abundance, Delta AIC | Shannon, Delta AIC | 
|---|---|---|
| Full night | ||
| Maximal | 31.26 | 13.5 | 
| Minimal | 20.4 | 0.89 | 
| First half of the night | ||
| Average | 1.12 | 2.17 | 
| Maximal | 23.59 | 4.14 | 
| Minimal | 4.69 | −1.72 | 
| Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. | 
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fetnassi, N.; Ude, K.; Kull, A.; Tammaru, T. Weather Sensitivity of Sugar Bait Trapping of Nocturnal Moths: A Case Study from Northern Europe. Insects 2022, 13, 1087. https://doi.org/10.3390/insects13121087
Fetnassi N, Ude K, Kull A, Tammaru T. Weather Sensitivity of Sugar Bait Trapping of Nocturnal Moths: A Case Study from Northern Europe. Insects. 2022; 13(12):1087. https://doi.org/10.3390/insects13121087
Chicago/Turabian StyleFetnassi, Nidal, Kadri Ude, Ain Kull, and Toomas Tammaru. 2022. "Weather Sensitivity of Sugar Bait Trapping of Nocturnal Moths: A Case Study from Northern Europe" Insects 13, no. 12: 1087. https://doi.org/10.3390/insects13121087
APA StyleFetnassi, N., Ude, K., Kull, A., & Tammaru, T. (2022). Weather Sensitivity of Sugar Bait Trapping of Nocturnal Moths: A Case Study from Northern Europe. Insects, 13(12), 1087. https://doi.org/10.3390/insects13121087
 
        


 
       