New Distributional Records and Characterization of the Climatic Niche of Lepturges (Lepturges) limpidus Bates, 1872 (Coleoptera, Cerambycidae): Sink or Source Population?
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rossa, R.; Goczał, J. Global Diversity and Distribution of Longhorn Beetles (Coleoptera: Cerambycidae). Eur. Zool. J. 2021, 88, 289–302. [Google Scholar] [CrossRef]
- Tavakilian, G.; Chevillotte, H. Titan: Base de Données Internationales Sur Les Cerambycidae Ou Longicornes. Available online: http://titan.gbif.fr/index.html (accessed on 22 July 2022).
- Haack, R.A. Cerambycid Pests in Forests and Urban Trees. In Cerambycidae of the World: Biology and Pest Management; Wang, Q., Ed.; CRC Press: London, UK; New York, NY, USA, 2017; pp. 352–397. ISBN 9781315313245. [Google Scholar]
- Martínez, C. Escarabajos Longicornios (Coleoptera: Cerambycidae) de Colombia. Available online: http://hdl.handle.net/20.500.11761/32687 (accessed on 22 July 2022).
- Noguera, F.A. Biodiversidad de Cerambycidae (Coleoptera) en México. Rev. Mex. Biodivers. 2014, 85, 290–297. [Google Scholar] [CrossRef]
- Monné, M.A. Catalogue of the Cerambycidae (Coleoptera) of the Neotropical Region. Part II. Subfamily Laminae. Available online: https://cerambycids.com/catalog/Monne_Jun2022_NeotropicalCat_part_II.pdf (accessed on 22 July 2022).
- Nascimento, F.E.L.; Botero, J.P. Synopsis of the Neotropical Genus Jupoata Martins & Monné, 2002 (Coleoptera: Cerambycidae). Pap. Avulsos Zool. 2018, 58, 6–9. [Google Scholar] [CrossRef]
- Monné, M.A.; Nascimento, F.E.L.; Monné, M.L.; Santos-Silva, A. New Records, New Genera, and New Species in Acanthocinini (Lamiinae) from the Neotropical Region, and New Synonym in Cerambycinae (Coleoptera, Cerambycidae). Zootaxa 2019, 4624, 491–506. [Google Scholar] [CrossRef]
- Nascimento, F.E.L.; Santos-Silva, A.; McClarin, J. Flat-Faced Longhorn Beetles (Coleoptera: Cerambycidae: Lamiinae) from the Neotropical Region: New Species from Ecuador, Nomenclatural Changes and Notes. Ann. Soc. Entomol. Fr. 2020, 56, 215–234. [Google Scholar] [CrossRef]
- Santos-Silva, A.; Botero, J.P.; Wappes, J.E. Neotropical Acanthoderini (Coleoptera, Cerambycidae, Lamiinae): Synonymies and New Status in Some Genera, New Species, Transferences and New Distributional Records. Pap. Avulsos Zool. 2020, 60, e20206006. [Google Scholar] [CrossRef]
- Lingafelter, S.W.; Morris II, R.F.; Frederick, W.S.J.; Santos-Silva, A. A New Genus Cicatrisphaerion, New Species, New Records, and Redescriptions of Neotropical Cerambycidae (Coleoptera). Available online: https://journals.flvc.org/mundi/article/view/128844/129962 (accessed on 22 July 2022).
- Seidel, M.; Lüttke, M.; Cocquempot, C.; Potts, K.; Heeney, W.J.; Husemann, M. Citizen Scientists Significantly Improve Our Knowledge on the Non-Native Longhorn Beetle Chlorophorus Annularis (Fabricius, 1787) (Coleoptera, Cerambycidae) in Europe. BioRisk 2021, 16, 1–13. [Google Scholar] [CrossRef]
- Levine, J.M.; D’Antonio, C.M. Forecasting Biological Invasions with Increasing International Trade. Conserv. Biol. 2003, 17, 322–326. [Google Scholar] [CrossRef]
- Brasier, C.M. The Biosecurity Threat to the UK and Global Environment from International Trade in Plants. Plant Pathol. 2008, 57, 792–808. [Google Scholar] [CrossRef]
- Hulme, P.E. Trade, Transport and Trouble: Managing Invasive Species Pathways in an Era of Globalization. J. Appl. Ecol. 2009, 46, 10–18. [Google Scholar] [CrossRef]
- Seebens, H.; Blackburn, T.M.; Dyer, E.E.; Genovesi, P.; Hulme, P.E.; Jeschke, J.M.; Pagad, S.; Pyšek, P.; Winter, M.; Arianoutsou, M.; et al. No Saturation in the Accumulation of Alien Species Worldwide. Nat. Commun. 2017, 8, 14435. [Google Scholar] [CrossRef] [PubMed]
- Haack, R.A.; Hérard, F.; Sun, J.; Turgeon, J.J. Managing Invasive Populations of Asian Longhorned Beetle and Citrus Longhorned Beetle: A Worldwide Perspective. Annu. Rev. Entomol. 2010, 55, 521–546. [Google Scholar] [CrossRef] [PubMed]
- Haack, R.A.; Bauer, L.S.; Gao, R.T.; McCarthy, J.J.; Miller, D.L.; Petrice, T.R.; Poland, T.M. Anoplophora Glabripennis Within-Tree Distribution, Seasonal Development, and Host Suitability in China and Chicago. Available online: https://scholar.valpo.edu/tgle/vol39/iss2/7 (accessed on 22 July 2022).
- Ernstsons, A.S.; Lin, M.Y.; Li, Y.; Hulcr, J. Host Associations between Xylophagous Longhorn Beetles (Coleoptera: Cerambycidae) and American Commodity Tree Species from Chinese Collection Sources. Manag. Biol. Invasions 2021, 12, 858–872. [Google Scholar] [CrossRef]
- Hänfling, B.; Edwards, F.; Gherardi, F. Invasive Alien Crustacea: Dispersal, Establishment, Impact and Control. BioControl 2011, 56, 573–595. [Google Scholar] [CrossRef]
- Jiménez-Valverde, A.; Peterson, A.T.; Soberón, J.; Overton, J.M.; Aragón, P.; Lobo, J.M. Use of Niche Models in Invasive Species Risk Assessments. Biol. Invasions 2011, 13, 2785–2797. [Google Scholar] [CrossRef]
- Robinson, N.M.; Nelson, W.A.; Costello, M.J.; Sutherland, J.E.; Lundquist, C.J. A Systematic Review of Marine-Based Species Distribution Models (SDMs) with Recommendations for Best Practice. Front. Mar. Sci. 2017, 4, 1–11. [Google Scholar] [CrossRef]
- Soberon, J.; Peterson, A.T. Interpretation of Models of Fundamental Ecological Niches and Species’ Distributional Areas. Biodivers. Inform. 2005, 2, 1–10. [Google Scholar] [CrossRef]
- Pearson, R.G.; Dawson, T.P. Predicting the Impacts of Climate Change on the Distribution of Species: Are Bioclimate Envelope Models Useful? Glob. Ecol. Biogeogr. 2003, 12, 361–371. [Google Scholar] [CrossRef]
- Soberón, J. Grinnellian and Eltonian Niches and Geographic Distributions of Species. Ecol. Lett. 2007, 10, 1115–1123. [Google Scholar] [CrossRef]
- Bascompte, J. Mutualistic Networks. Front. Ecol. Environ. 2009, 7, 429–436. [Google Scholar] [CrossRef]
- van Dam, N.M. How Plants Cope with Biotic Interactions. Plant Biol. 2009, 11, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Wisz, M.S.; Pottier, J.; Kissling, W.D.; Pellissier, L.; Lenoir, J.; Damgaard, C.F.; Dormann, C.F.; Forchhammer, M.C.; Grytnes, J.A.; Guisan, A.; et al. The Role of Biotic Interactions in Shaping Distributions and Realised Assemblages of Species: Implications for Species Distribution Modelling. Biol. Rev. 2013, 88, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Simões, M.V.P.; Peterson, A.T. Utility and Limitations of Climate-Matching Approaches in Detecting Different Types of Spatial Errors in Biodiversity Data. Insect Conserv. Divers. 2018, 11, 407–414. [Google Scholar] [CrossRef]
- Dias, P.C. Sources and Sinks in Population Biology. Trends Ecol. Evol. 1996, 11, 326–330. [Google Scholar] [CrossRef]
- Schipper, J. Humid Chaco. Available online: https://www.oneearth.org/ecoregions/dry-chaco/ (accessed on 22 July 2022).
- Gomez Lutz, M.C.; Godoy, M.C. Diversidad y Grupos Funcionales de Formicidae (Insecta, Hymenoptera) de La Reserva Natural Educativa Colonia Benítez (Provincia Del Chaco, Argentina). Rev. FABICIB 2010, 14, 180–195. [Google Scholar] [CrossRef]
- Escobar, M.J.; Avalos, G.; Damborsky, M.P. Diversidad de Araneae (Arachnida) En La Reserva Colonia Benitez, Chaco Oriental Húmedo, Argentina. FACENA 2012, 28, 3–17. [Google Scholar] [CrossRef]
- Ibarra-Polesel, M.G.; Damborsky, M.P.; Porcel, E. Escarabajos Copronecrófagos (Scarabaeidae: Scarabaeinae) de La Reserva Natural Educativa Colonia Benítez, Chaco, Argentina. Rev. Mex. Biodivers. 2015, 86, 744–753. [Google Scholar] [CrossRef]
- Ibarra Polesel, M.G.; Damborsky, M.P. Changes in the Structure of Melolonthidae (Coleoptera: Scarabaeoidea) Assemblages along a Temporal Gradient in a Natural Reserve in Chaco, Argentina. Austral Entomol. 2017, 57, 377–386. [Google Scholar] [CrossRef]
- Morrone, J.J. Biogeographical Regionalisation of the Neotropical Region. Zootaxa 2014, 3782, 1–110. [Google Scholar] [CrossRef]
- Morello, J. Ecorregíón Chaco Húmedo. In Ecorregiones Y Complejos Ecosistémicos Argentinos; Morello, J., Matteucci, S., Rodriguez, A., Silva, M., Eds.; Orientación Gráfica Editora: Buenos Aires, Argentina, 2012; pp. 205–224. [Google Scholar]
- Bates, H.W. IX. On the Longicorn Coleoptera of Chontales, Nicaragua. Trans. R. Entomol. Soc. Lond. 1872, 20, 163–238. [Google Scholar] [CrossRef]
- Barros, R.C.; Da Fonseca, M.G.; Vendramini, V.E.; Julio, C.E.D.A. Species of Lamiinae (Insecta, Coleoptera, Cerambycidae) from East Paraná State (Brazil), with New Geographic Records. Zootaxa 2019, 4545, 179–204. [Google Scholar] [CrossRef] [PubMed]
- Santos-Silva, A.; Botero, J.P.; Nascimento, F.E.D.L.; Silva, W.D. A New Synonym and Seventeen New Distributional Records in South American Cerambycidae (Coleoptera), with Notes on Chlorethe Scabrosa Zajciw, 1963. Pap. Avulsos Zool. 2020, 60, e20206010. [Google Scholar] [CrossRef]
- Melzer, J. Longicórneos Do Brasil, Novos Ou Pouco Conhecidos II (Coleoptera, Cerambycidae). Arch. Inst. Biol. 1930, 3, 187–208. [Google Scholar]
- Gilmour, E.F. On the Neotropical Acanthocinini (Coleoptera, Cerambycidae, Lamiinae). Some New Species of Lepturges Bates. Available online: https://repositorio.unal.edu.co/handle/unal/43192 (accessed on 22 July 2022).
- Tavakilian, G.; Berkov, A.; Meurer-Grimes, B.; Mori, S. Neotropical Tree Species and Their Faunas of Xylophagous Longicorns (Coleoptera: Cerambycidae) in French Guiana. Bot. Rev. 1997, 63, 303–355. [Google Scholar] [CrossRef]
- Turnbow, R.H.; Cave, R.D.; Thomas, M.C. A List of the Cerambycidae of Honduras, with Additions of Previously Unrecorded Species. Available online: http://hdl.handle.net/11036/3196 (accessed on 22 July 2022).
- Maes, J.M.; Berghe, E.; Dauber, D.; Audureau, A.; Nearns, E.; Skilman, F.; Monné, M.A. Catalogo Ilustrado de Los Cerambycidae (Coleoptera) de Nicaragua. Parte IV. Lamiinae-Disteniinae. Available online: https://www.zin.ru/animalia/Coleoptera/pdf/nicaragua_cerambycidae_2010-s4-lamiinae.pdf (accessed on 22 July 2022).
- Morvan, O.; Roguet, J.P. Inventaire Des Cerambycidae de Guyane (Coleoptera). Suppl. Bull. Liaison d’ACOREP Fr. “Le Coleopt. 2013, 7, 3–44. [Google Scholar]
- Roguet, J. Lamiaires Du Monde. Available online: https://lamiinae.org/about.html (accessed on 22 July 2022).
- Galileo, M.H.M.; Martins, U.R.; Santos-Silva, A. Two new species and one new genus of South American Cerambycidae (Coleoptera), with redescriptions and distributional records for other taxa. Insecta Mundi 2014, 360, 1–14. [Google Scholar]
- Cobos, M.E.; Jiménez, L.; Nuñez-Penichet, C.; Romero-Alvarez, D.; Simões, M. Sample data and training modules for cleaning biodiversity information. Biodivers. Inform. 2018, 13, 49–50. [Google Scholar] [CrossRef]
- RStudio, T. RStudio: Integrated Development for R. Available online: http://www.rstudio.com/ (accessed on 22 July 2022).
- Aiello-Lammens, M.E.; Boria, R.A.; Radosavljevic, A.; Vilela, B.; Anderson, R.P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 2015, 38, 541–545. [Google Scholar] [CrossRef]
- Hijmans, R.J. Geographic Data Analysis and Modeling. R Package Version 3.4-5. Available online: https://cran.r-project.org/package=raster (accessed on 22 July 2022).
- Bivand, R.; Keitt, T.; Rowlingson, B. Bindings for the “Geospatial” Data Abstraction Library. R Package Version 1.5-32. Available online: https://cran.r-project.org/package=rgdal (accessed on 22 July 2022).
- Bezark, L.G. A Photographic Catalog of the Cerambycidae of the New World. Available online: http://bezbycids.com/byciddb/wdefault.asp?w=n/ (accessed on 22 July 2022).
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very High Resolution Interpolated Climate Surfaces for Global Land Areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Escobar, L.E.; Lira-Noriega, A.; Medina-Vogel, G.; Peterson, A.T. Potential for Spread of the White-Nose Fungus (Pseudogymnoascus destructans) in the Americas: Use of Maxent and NicheA to Assure Strict Model Transference. Geospat. Health 2014, 9, 221. [Google Scholar] [CrossRef]
- Campbell, L.P.; Luther, C.; Moo-Llanes, D.; Ramsey, J.M.; Danis-Lozano, R.; Peterson, A.T. Climate Change Influences on Global Distributions of Dengue and Chikungunya Virus Vectors. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140135. [Google Scholar] [CrossRef] [PubMed]
- Cobos, M.E.; Peterson, A.T.; Barve, N.; Osorio-Olvera, L. Kuenm: An R Package for Detailed Development of Ecological Niche Models Using Maxent. PeerJ 2019, 7, e6281. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015; Available online: https://www.r-project.org/ (accessed on 22 July 2022).
- Dey, L.S.; Husemann, M.; Hochkirch, A.; Simões, M.V.P. Species Distribution Modelling Sheds Light on the Widespread Distribution of Sphingonotus (Sphingonotus) rubescens (Orthoptera: Acrididae: Oedipodinae). Biol. J. Linn. Soc. 2021, 132, 912–924. [Google Scholar] [CrossRef]
- Drake, J.M. Range Bagging: A New Method for Ecological Niche Modelling from Presence-Only Data. J. R. Soc. Interface 2015, 12, 20150086. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, L.; Soberón, J.; Christen, J.A.; Soto, D. On the Problem of Modeling a Fundamental Niche from Occurrence Data. Ecol. Model. 2019, 397, 74–83. [Google Scholar] [CrossRef]
- Nuñez-Penichet, C.; Osorio-Olvera, L.; Gonzalez, V.H.; Cobos, M.E.; Jiménez, L.; DeRaad, D.A.; Alkishe, A.; Contreras-Díaz, R.G.; Nava-Bolaños, A.; Utsumi, K.; et al. Geographic Potential of the World’s Largest Hornet, Vespa mandarinia Smith (Hymenoptera: Vespidae), Worldwide and Particularly in North America. PeerJ 2021, 9, e10690. [Google Scholar] [CrossRef]
- Brown, J.H. On the Relationship between Abundance and Distribution of Species. Available online: http://www.jstor.org/stable/2461494 (accessed on 22 July 2022).
- Osorio-Olvera, L.; Soberón, J.; Falconi, M. On Population Abundance and Niche Structure. Ecography 2019, 42, 1415–1425. [Google Scholar] [CrossRef]
- Cobos, M.E.; Osorio-Olvera, L.; Soberón, J.; Peterson, A.T.; Barve, V.; Barve, N. Ellipsenm: Ecological Niche’s Characterizations Using Ellipsoids. R Package. Available online: https://github.com/marlonecobos/ellipsenm (accessed on 22 July 2022).
- Van Aelst, S.; Rousseeuw, P. Minimum Volume Ellipsoid. Wiley Interdiscip. Rev. Comput. Stat. 2009, 1, 71–82. [Google Scholar] [CrossRef]
- Peterson, A.T.; Papeş, M.; Soberón, J. Rethinking Receiver Operating Characteristic Analysis Applications in Ecological Niche Modeling. Ecol. Model. 2008, 213, 63–72. [Google Scholar] [CrossRef]
- Anderson, R.P.; Lew, D.; Peterson, A.T. Evaluating Predictive Models of Species’ Distributions: Criteria for Selecting Optimal Models. Ecol. Model. 2003, 162, 211–232. [Google Scholar] [CrossRef]
- Barve, N.; Barve, V.; Jiménez-Valverde, A.; Lira-Noriega, A.; Maher, S.P.; Peterson, A.T.; Soberón, J.; Villalobos, F. The Crucial Role of the Accessible Area in Ecological Niche Modeling and Species Distribution Modeling. Ecol. Model. 2011, 222, 1810–1819. [Google Scholar] [CrossRef]
- Haack, R.A.; Keena, M.A.; Eyre, D. Life History and Population Dynamics of Cerambycids. In Cerambycidae of the World: Biology and Pest Management; Wang, Q., Ed.; CRC Press: London, UK; New York, NY, USA, 2017; pp. 71–94. ISBN 9781315313245. [Google Scholar]
- Williams, J.N.; Seo, C.; Thorne, J.; Nelson, J.K.; Erwin, S.; O’Brien, J.M.; Schwartz, M.W. Using Species Distribution Models to Predict New Occurrences for Rare Plants. Divers. Distrib. 2009, 15, 565–576. [Google Scholar] [CrossRef]
- Brown, J.L. SDMtoolbox: A Python-Based GIS Toolkit for Landscape Genetic, Biogeographic and Species Distribution Model Analyses. Methods Ecol. Evol. 2014, 5, 694–700. [Google Scholar] [CrossRef]
- QGIS Development Team QGIS Geographic Information System. Open Source Geospatial Foundation Project. Available online: http://www.qgis.org/ (accessed on 22 July 2022).
- Soberón, J.; Nakamura, M. Niches and Distributional Areas: Concepts, Methods, and Assumptions. Proc. Natl. Acad. Sci. USA 2009, 106, 19644–19650. [Google Scholar] [CrossRef] [PubMed]
- Kelly, A.E.; Goulden, M.L. Rapid Shifts in Plant Distribution with Recent Climate Change. Proc. Natl. Acad. Sci. USA 2008, 105, 11823–11826. [Google Scholar] [CrossRef]
- Lenoir, J.; Gégout, J.C.; Marquet, P.A.; De Ruffray, P.; Brisse, H. A Significant Upward Shift in Plant Species Optimum Elevation During the 20th Century. Science 2008, 320, 1768–1771. [Google Scholar] [CrossRef]
- Barbet-Massin, M.; Thuiller, W.; Jiguet, F. How Much Do We Overestimate Future Local Extinction Rates When Restricting the Range of Occurrence Data in Climate Suitability Models? Ecography 2010, 33, 878–886. [Google Scholar] [CrossRef]
- Dullinger, S.; Gattringer, A.; Thuiller, W.; Moser, D.; Zimmermann, N.E.; Guisan, A.; Willner, W.; Plutzar, C.; Leitner, M.; Mang, T.; et al. Extinction Debt of High-Mountain Plants under Twenty-First-Century Climate Change. Nat. Clim. Chang. 2012, 2, 619–622. [Google Scholar] [CrossRef]
- Fassbender, J.L. Diversity, Resource Partitioning, and Species Turnover in Neotropical Saproxylic Beetles (Coleoptera: Cerambycidae, Curculionidae) Associated with Trees in the Brazil Nut Family (Lecythidaceae). Ph.D. Thesis, City University of New York, New York, NY, USA, 2013. [Google Scholar]
- Holdefer, D.R.; Sartor, V.; Mello García, F.R. Flutuação Populacional De Espécies Predominantes De Cerambycidae Em Mata Atlântica Do Sul Do Brasil. Available online: https://www.interciencia.net/wp-content/uploads/2017/11/745-Holdefer-6.pdf (accessed on 22 July 2022).
- Berkov, A. Seasonality and Stratification: Neotropical Saproxylic Beetles Respond to a Heat and Moisture Continuum with Conservatism and Plasticity. In Saproxylic Insects: Diversity, Ecology and Conservation; Ulyshen, M.D., Ed.; Springer: Heidelberg, Germany, 2018; pp. 547–578. [Google Scholar]
- POWO Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew, UK. Available online: http://www.plantsoftheworldonline.org/ (accessed on 22 July 2022).
- Chudnoff, M. Tropical Timbers of the World; USDA Forest Service: Washington, DC, USA, 1984. [Google Scholar]
- Mark, J.; Newton, A.; Oldfield, S.; Rivers, M. The International Timber Trade: A Working List of Commercial Timber Tree Species. Available online: http://eprints.bournemouth.ac.uk/24470/7/TimberWorkingList.pdf (accessed on 22 July 2022).
- Haack, R.A.; Britton, K.O.; Brockerhoff, E.G.; Cavey, J.F.; Garrett, L.J.; Kimberley, M.; Lowenstein, F.; Nuding, A.; Olson, L.J.; Turner, J.; et al. Effectiveness of the International Phytosanitary Standard ISPM No. 15 on Reducing Wood Borer Infestation Rates in Wood Packaging Material Entering the United States. PLoS ONE 2014, 9, e96611. [Google Scholar] [CrossRef]
- Rassati, D.; Faccoli, M.; Haack, R.A.; Rabaglia, R.J.; Toffolo, E.P.; Battisti, A.; Marini, L. Bark and Ambrosia Beetles Show Different Invasion Patterns in the USA. PLoS ONE 2016, 11, e0158519. [Google Scholar] [CrossRef]
- Meurisse, N.; Rassati, D.; Hurley, B.P.; Brockerhoff, E.G.; Haack, R.A. Common Pathways by Which Non-Native Forest Insects Move Internationally and Domestically. J. Pest Sci. 2019, 92, 13–27. [Google Scholar] [CrossRef]
- Rabitsch, W. Pathways and Vectors of Alien Arthropods in Europe. Chapter 3. BioRisk 2010, 4, 27–43. [Google Scholar] [CrossRef]
- Coyle, D.R.; Trotter, R.T.; Bean, M.S.; Pfister, S.E. First Recorded Asian Longhorned Beetle (Coleoptera: Cerambycidae) Infestation in the Southern United States. J. Integr. Pest Manag. 2021, 12, 10. [Google Scholar] [CrossRef]
- Hierro, J.L.; Maron, J.L.; Callaway, R.M. A Biogeographical Approach to Plant Invasions: The Importance of Studying Exotics in Their Introduced and Native Range. J. Ecol. 2005, 93, 5–15. [Google Scholar] [CrossRef]
- Mitchell, C.E.; Power, A.G. Release of Invasive Plants from Fungal and Viral Pathogens. Nature 2003, 421, 625–627. [Google Scholar] [CrossRef]
- Torchin, M.E.; Lafferty, K.D.; Dobson, A.P.; McKenzie, V.J.; Kuris, A.M. Introduced Species and Their Missing Parasites. Nature 2003, 421, 628–630. [Google Scholar] [CrossRef]
- Sax, D.F.; Kinlan, B.P.; Smith, K.F. A Conceptual Framework for Comparing Species Assemblages in Native and Exotic Habitats. Oikos 2005, 108, 457–464. [Google Scholar] [CrossRef]
- Callaway, R.M.; Maron, J.L. What Have Exotic Plant Invasions Taught Us over the Past 20 Years? Trends Ecol. Evol. 2006, 21, 369–374. [Google Scholar] [CrossRef]
- Mitchell, C.E.; Agrawal, A.A.; Bever, J.D.; Gilbert, G.S.; Hufbauer, R.A.; Klironomos, J.N.; Maron, J.L.; Morris, W.F.; Parker, I.M.; Power, A.G.; et al. Biotic Interactions and Plant Invasions. Ecol. Lett. 2006, 9, 726–740. [Google Scholar] [CrossRef]
- Whitney, K.D.; Gabler, C.A. Rapid Evolution in Introduced Species, ‘Invasive Traits’ and Recipient Communities: Challenges for Predicting Invasive Potential. Divers. Distrib. 2008, 14, 569–580. [Google Scholar] [CrossRef]
- Kovalev, O. The Solitary Population Wave, a Physical Phenomenon Accompanying the Introduction of a Chrysomelid. In New Developments in the Biology of Chrysomelidae; Jolivet, P., Santiago-Blay, J.A., Schmitt, M., Eds.; SPB Academic Publishing: The Hague, The Netherlands, 2004; pp. 591–601. [Google Scholar]
- Kergoat, G.J.; Meseguer, A.S.; Jousselin, E. Evolution of Plant–Insect Interactions: Insights from Macroevolutionary Approaches in Plants and Herbivorous Insects. Adv. Bot. Res. 2017, 81, 25–53. [Google Scholar] [CrossRef]
- Berkov, A.; Tavakilian, G. Host utilization of the Brazil nut family (Lecythidaceae) by sympatric wood-boring species of Palame (Coleoptera, Cerambycidae, Lamiinae, Acanthocinini). Biol. J. Linn. Soc. 1999, 67, 181–198. [Google Scholar] [CrossRef]
- Linsley, E.G. Ecology of Cerambycidae. Annu. Rev. Entomol. 1959, 4, 99–138. [Google Scholar] [CrossRef]
- Serra, C.A.; Jorge, P.E.; Abud-Antún, A.J.; Alvarez, P.; Perguero, B. Invasive Alien Species Inthe Dominican Republic: Their Impact and Strategies to Manage Introduced Pests. In Proceedings of the 39th Annual Meeting, West Indies, Grenada, 13–18 July 2003; Volume 39, pp. 102–118. [Google Scholar]
- Atauchi, P.J.; Peterson, A.T.; Flanagan, J. Species Distribution Models for Peruvian Plantcutter Improve with Consideration of Biotic Interactions. J. Avian Biol. 2018, 49, jav-01617. [Google Scholar] [CrossRef]
- Barbaro, L.; Allan, E.; Ampoorter, E.; Castagneyrol, B.; Charbonnier, Y.; De Wandeler, H.; Kerbiriou, C.; Milligan, H.T.; Vialatte, A.; Carnol, M.; et al. Biotic Predictors Complement Models of Bat and Bird Responses to Climate and Tree Diversity in European Forests. Proc. R. Soc. B Biol. Sci. 2019, 286, 20182193. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’Amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth. Bioscience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- The Nature Conservancy. Evaluación Ecoregional Del Gran Chaco Americano. Evaluación Ecoregional Del Gran Chaco Americano. Fundación Vida Silvestre Argentina, 1st ed.; The Nature Conservancy, Fundación DeSdel Chaco, Wildlife Conservation Society-Bolivia: Buenos Aires, Argentina, 2005; ISBN 9509427128. [Google Scholar]
- Aide, T.M.; Clark, M.L.; Grau, H.R.; López-Carr, D.; Levy, M.A.; Redo, D.; Bonilla-Moheno, M.; Riner, G.; Andrade-Núñez, M.J.; Muñiz, M. Deforestation and Reforestation of Latin America and the Caribbean (2001–2010). Biotropica 2013, 45, 262–271. [Google Scholar] [CrossRef]
Locality Name | Latitude | Longitude | Reference |
---|---|---|---|
Itatiaia, Rio de Janeiro (Brazil) | 22°29′46″ S | 44°33′47″ W | speciesLink (2022) |
Valentim Gentil, Sao Paulo (Brazil) | 20°22′25″ S | 50°05′17″ W | GBIF.org (2022) |
Céu Azul, Parana (Brazil) | 25°04′09″ S | 53°39′35″ W | GBIF.org (2022) |
Laranja da Terra, Río Guandú, Espirito Santo (Brazil) | 19°54′39″ S | 41°05′04″ W | [41] |
Parintins, Amazonas (Brazil) | 02°38′06″ S | 56°43′55″ W | MZSP |
Rio Purus, Amazonas (Brazil) | 03°41′20″ S | 61°26′46″ W | MZSP |
Maués, Amazonas (Brazil) | 03°23′00″ S | 57°43′06″ W | MZSP |
Salobra, Mato Grosso (Brazil) | 20°11′59″ S | 56°31′39″ W | MZSP |
Fazenda Beija Flor, Mato Grosso (Brazil) | 21°02′06″ S | 56°27′23″ W | MZSP |
Nova Teutônia, Santa Catarina (Brazil) | 27°09′48″ S | 52°25′22″ W | MZSP |
Linhares, Espírito Santo (Brazil) | 19°23′57″ S | 40°03′56″ W | MZSP |
Córrego do Itá, Espírito Santo (Brazil) | 18°38′21″ S | 40°51′42″ W | MZSP |
Rio Nhamundá, Pará (Brazil) | 01°10′09″ S | 57°57′51″ W | MZSP |
Pouso Alegre, Minas Gerais (Brazil) | 22°13′41″ S | 45°56′01″ W | MZSP |
Belo Horizonte, Minas Gerais (Brazil) | 19°55′41″ S | 43°56′31″ W | MZSP |
Viçosa, Minas Gerais (Brazil) | 20°45′14″ S | 42°52′55″ W | MZSP |
Rondon, Brasilien (Brazil) | 24°38′00″ S | 54°07′00″ W | Smithsonian Institute |
Hotel F & F, Buena Vista, Santa Cruz (Bolivia) | 17°27′31″ S | 63°40′09″ W | Smithsonian Institute |
Guanay (Bolivia) | 15°29′54″ S | 67°53′03″ W | MZSP |
Area de Conservación Guanacaste, La Cruz, Finca Jenny, Guanacaste (Costa Rica) | 10°51′57″ N | 85°34′26″W | GBIF.org (2022) |
Bagaces, Parque Nacional Palo Verde, Sector Palo Verde, Guanacaste (Costa Rica) | 10°20′56″ N | 85°21′08″ W | GBIF.org (2022) |
A.C.P.C, Garabito, Tarcoles, Estación Quebrada Bonita, Puntarenas (Costa Rica) | 09°46′02″ N | 84°36′29″ W | GBIF.org (2022) |
Osa, Ciudad Puerto Cortes, Cuesta del Burro Puntarenas (Costa Rica) | 09°01′25″ N | 83°30′31″ W | GBIF.org (2022) |
Ebene Limón, Reventazon, Hamburg Farm (Costa Rica) | 10°04′45″ N | 83°34′39″ W | MZSP |
Sándalo, Golfo Dulce (Costa Rica) | 08°34′08″ N | 83°22′14″ W | Smithsonian Institute |
Zone Sinnamary, Crique Plomb, Sinnamary (French Guyana) | 05°00′00″ N | 52°57′14″ W | [43] |
Zone Bélizon, Route Forestière, Roura (French Guyana) | 04°16′33″ N | 52°38′34″ W | [46] |
Zone L’île de Cayenne, Rémire (Degrad des Cannes), Cayenne, (French Guyana) | 04°53′02″ N | 52°19′12″ W | [46] |
Zone Iracoubo, RN 1 (PK 172), Iracoubo (French Guyana) | 05°29′20″ N | 53°19′58″ W | [46] |
Zone Centrale, Saül, Saül (French Guyana) | 03°51′57″N | 53°23′13″ W | [46] |
El Paraiso, Caripe, (Honduras) | 13°58′55″N | 85°49′26″ W | [44] |
NE Ixtapa, Hwy 200, Guerro (Mexico) | 17°39′28″N | 101°34′32″ W | Smithsonian Institute |
Gomez Farias, Bocatoma, Tamaulipas (Mexico) | 22°59′15″ N | 99°08′55″ W | Smithsonian Institute |
Barro Colorado I., C. Zone (Panamá) | 09°09′58″ N | 79°50′21″ W | Smithsonian Institute |
W. Ipiti, Bayano (Panamá) | 09°09′00″ N | 78°50′00″ W | Smithsonian Institute |
Los Guatuzos, Rio Papaturro, Río San Juan (Nicaragua) | 11°02′27″ N | 85°05′13″ W | GBIF.org (2022) |
Las Flores, Masaya (Nicaragua) | 12°00′16″ N | 86°01′11″ W | GBIF.org (2022) |
Matagalpa, La Sombra (Nicaragua) | 13°11′06″ N | 85°45′00″ W | [47] |
Chontales, (Nicaragua) | 12°16′00″ N | 84°59′00″ W | [38] |
Caaguazú, Repatriación (Paraguay) | 25°32′16″ S | 55°59′24″ W | [48] |
Concepción, Azotey (Paraguay) | 23°19′08″ S | 56°29′16″ W | [48] |
Junín, Chanchamayo (Peru) | 11°03′00″ S | 75°18′14″ W | [42] |
Private field, Primero de Mayo, Colonia Benítez, Chaco (Argentina) | 27°20′17″ S | 58°58′01″ W | This publication |
Los Chaguares, Primero de Mayo, Colonia Benítez, Chaco (Argentina) | 27°19′59″ S | 58°57′57″ W | This publication |
Method | Mean AUC Ratio at 5% | p-Value (Partial ROC) | Valid Iterations | Omission Rate | Prevalence in E-Space | Prevalence in G-Space |
---|---|---|---|---|---|---|
covmat | 1.984 | <0.001 | 500 | 0 | 0.712 | 0.712 |
mve1 | 1.68 | <0.001 | 500 | 0 | 0.693 | 0.693 |
Bioclimatic Variables | Niche Volume: C. fragans | Niche Volume: L. limpidus | Overlap | Overlap (p-Value) | Size Ratio: Niche 1 vs. Niche 2 | Size Ratio: Niche 2 vs. Niche 1 |
---|---|---|---|---|---|---|
All | 4.947 | 114.518 | 0.529 | 0.845 | 0.529 | 1.890 |
Precipitation | 5.458 | 42.262 | 0.533 | 0.651 | 0.533 | 1.876 |
Temperature | 0.664 | 32.309 | 0.488 | 0.936 | 0.488 | 2.050 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valle, N.G.; Simões, M.V.P. New Distributional Records and Characterization of the Climatic Niche of Lepturges (Lepturges) limpidus Bates, 1872 (Coleoptera, Cerambycidae): Sink or Source Population? Insects 2022, 13, 1069. https://doi.org/10.3390/insects13111069
Valle NG, Simões MVP. New Distributional Records and Characterization of the Climatic Niche of Lepturges (Lepturges) limpidus Bates, 1872 (Coleoptera, Cerambycidae): Sink or Source Population? Insects. 2022; 13(11):1069. https://doi.org/10.3390/insects13111069
Chicago/Turabian StyleValle, Néstor G., and Marianna V. P. Simões. 2022. "New Distributional Records and Characterization of the Climatic Niche of Lepturges (Lepturges) limpidus Bates, 1872 (Coleoptera, Cerambycidae): Sink or Source Population?" Insects 13, no. 11: 1069. https://doi.org/10.3390/insects13111069
APA StyleValle, N. G., & Simões, M. V. P. (2022). New Distributional Records and Characterization of the Climatic Niche of Lepturges (Lepturges) limpidus Bates, 1872 (Coleoptera, Cerambycidae): Sink or Source Population? Insects, 13(11), 1069. https://doi.org/10.3390/insects13111069