Global Size Pattern in a Group of Important Ecological Indicators (Diptera, Chironomidae) Is Driven by Latitudinal Temperature Gradients
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Data Analysis
2.3. Phylogenetic Analysis
3. Results
4. Discussion
4.1. Phylogenetic Signal in Size Distribution within Chironomidae
4.2. Global Trends in the Wing Length of Chironomidae
4.3. Possible Drivers of Temperature–Size Rule in Chironomidae
4.4. Implications of the Findings for the Palaeoecological Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Timofeev, S.F. Bergmann’s principle and deep-water gigantism in marine crustaceans. Biol. Bull. Russ. Acad. Sci. 2001, 28, 646–650. [Google Scholar] [CrossRef]
- Chown, S.L.; Gaston, K.J. Body size variation in insects: A macroecological perspective. Biol. Rev. 2010, 85, 139–169. [Google Scholar] [CrossRef] [PubMed]
- Chown, S.L.; Gaston, K.J. The species–body size distribution: Energy, fitness and optimality. Funct. Ecol. 1997, 11, 365–375. [Google Scholar] [CrossRef]
- Meiri, S. Bergmann’s Rule–what’s in a name? Glob. Ecol. Biogeogr. 2011, 20, 203–207. [Google Scholar] [CrossRef]
- McLachlan, A. The relationship between habitat predictability and wing length in midges (Chironomidae). Oikos 1985, 44, 391–397. [Google Scholar] [CrossRef]
- Chown, S.L.; Addo-Bediako, A.; Gaston, K.J. Physiological variation in insects: Large-scale patterns and their implications. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2002, 131, 587–602. [Google Scholar] [CrossRef]
- McCulloch, G.A.; Wallis, G.P.; Waters, J.M. Does wing size shape insect biogeography? Evidence from a diverse regional stonefly assemblage. Glob. Ecol. Biogeogr. 2017, 26, 93–101. [Google Scholar] [CrossRef]
- Horne, C.R.; Hirst, A.G.; Atkinson, D. Insect temperature–body size trends common to laboratory, latitudinal and seasonal gradients are not found across altitudes. Funct. Ecol. 2018, 32, 948–957. [Google Scholar] [CrossRef][Green Version]
- James, A.C.; Azevedo RB, R.; Partridge, L. Genetic and environmental responses to temperature of Drosophila melanogaster from a latitudinal cline. Genetics 1997, 146, 881–890. [Google Scholar] [CrossRef]
- David, J.R.; Bocquet, C. Similarities and differences in latitudinal adaptation of two Drosophila sibling species. Nature 1975, 257, 588–591. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, A.A.; Hallas, R.; Sinclair, C.; Mitrovski, P. Levels of variation in stress resistance in Drosophila among strains, local populations, and geographic regions: Patterns for desiccation, starvation, cold resistance, and associated traits. Evolution 2001, 55, 1621–1630. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, R.B.R.; James, A.C.; Mccabe, J.; Partridge, L. Latitudinal variation of wing:thorax size ratio and wingaspect ratio in Drosophilia melanogaster. Evolution 1998, 52, 1353–1362. [Google Scholar] [PubMed]
- James, A.C.; Azevedo, R.B.R.; Partridge, L. Cellular basis and developmental timing in a size cline of Drosophila melanogaster. Genetics 1995, 140, 659–666. [Google Scholar] [CrossRef]
- Bryant, E.H. Morphometric adaptation of the housefly, Musca domestica L., in the United States. Evolution 1977, 31, 580–596. [Google Scholar] [CrossRef] [PubMed]
- Blanckenhorn, W.U.; Demont, M. Bergmann and converse Bergmann latitudinal clines in arthropods: Two ends of a continuum? Integr. Comp. Biol. 2004, 44, 413–424. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Alpatov, W.W. Biometrical studies on variation and races of the honey bee, Apis mellifera. Q. Rev. Biol. 1929, 4, 1–58. [Google Scholar] [CrossRef]
- Daly, H.V.; Hoelmer, K.; Gambino, P. Clinal geographic variation in feral honey bees in California, USA. Apidologie 1991, 22, 591–609. [Google Scholar] [CrossRef][Green Version]
- Hawkins, B.A.; Lawton, J.H. Latitudinal gradients in butterfly body sizes: Is there a general pattern? Oecologia 1995, 102, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Cushman, J.H.; Lawton, J.H.; Manly, B.F.J. Latitudinal patterns in European ant assemblages: Variation in species richness and body size. Oecologia 1993, 95, 30–37. [Google Scholar] [CrossRef]
- Barlow, N.D. Size distribution of butterfly species and the effect of latitude on species sizes. Oikos 1994, 71, 326–332. [Google Scholar] [CrossRef]
- Clapham, M.E.; Karr, J.A. Environmental and biotic controls on the evolutionary history of insect body size. Proc. Natl. Acad. Sci. USA 2012, 109, 10927–10930. [Google Scholar] [CrossRef][Green Version]
- Jutfelt, F.; Norin, T.; Åsheim, E.R.; Rowsey, L.E.; Andreassen, A.H.; Morgan, R.; Clark, T.D.; Speers-Roesch, B. Aerobic scope protection reduces ectotherm growth under warming. Funct. Ecol. 2021, 1–11. [Google Scholar] [CrossRef]
- Wonglersak, R.; Fenberg, P.B.; Langdon, P.G.; Brooks, S.J.; Price, B.W. Insect body size changes under future warming projections: A case study of Chironomidae (Insecta: Diptera). Hydrobiologia 2021, 848, 2785–2796. [Google Scholar] [CrossRef]
- Jourdan, J.; Baranov, V.; Wagner, R.; Plath, M.; Haase, P. Elevated temperatures translate into reduced dispersal abilities in a natural population of an aquatic insect. J. Anim. Ecol. 2019, 88, 1498–1509. [Google Scholar] [CrossRef] [PubMed]
- Baranov, V.; Jourdan, J.; Pilotto, F.; Wagner, R.; Haase, P. Complex and nonlinear climate-driven changes in freshwater insect communities over 42 years. Conserv. Biol. 2020, 34, 1241–1251. [Google Scholar] [CrossRef]
- Armitage, P.D.; Pinder, L.C.; Cranston, P.S. (Eds.) The Chironomidae: Biology and Ecology of Non-Biting Midges; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Ashe, P.; O’Connor, J.P. A World Catalogue of Chironomidae (Diptera), Part 1: Buchonomyiinae, Chilenomyiinae, Podonominae, Aphroteniinae, Tanypodinae, Usambaromyiinae, Diamesinae, Prodiamesinae and Telmatogetoninae; Irish Biogeographical Society and National Museum of Ireland: Dublin, Ireland, 2009. [Google Scholar]
- Ashe, P.; O’Connor, J.P. A World Catalogue of Chironomidae (Diptera). Part 2. Orthocladiinae; Irish Biogeographical Society and National Museum of Ireland: Dublin, Ireland, 2012. [Google Scholar]
- Eggermont, H.; Heiri, O. The chironomid-temperature relationship: Expression in nature and palaeoenvironmental implications. Biol. Rev. 2012, 87, 430–456. [Google Scholar] [CrossRef]
- Sæther, O.A.; Andersen, T. First Afrotropical records of Doithrix and Georthocladius, with notes on the Pseudorthocladius group (Diptera: Chironomidae). Tijdschr. Voor Entomol. 1996, 139, 243–256. [Google Scholar]
- Sæther, O.A.; OA, S. Glossary of chironomid morphology terminology (Diptera: Chironomidae). Entomol. Scand. Suppl. 1980, 14, 1–51. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- R Foundation for Statistical Computing, Vienna, Austria. Available online: https://www.R-project.org/ (accessed on 28 November 2021).
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D. R Core Team (2020) nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1–148. 2020. Available online: https://cran.r-project.org/web/packages/nlme/index.html (accessed on 28 November 2021).
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA.
- Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 2010, 1, 103–113. [Google Scholar] [CrossRef]
- Komsta, L.; Komsta, M.L. Package ‘mblm’. 2013. Available online: https://cran.r-project.org/web/packages/mblm/index.html (accessed on 28 November 2021).
- Revell, L.J. Phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 2012, 3, 217–223. [Google Scholar] [CrossRef]
- Cranston, P.S.; Hardy, N.B.; Morse, G.E. A dated molecular phylogeny for the Chironomidae (Diptera). Syst. Entomol. 2012, 37, 172–188. [Google Scholar] [CrossRef]
- Farisenkov, S.E.; Lapina, N.A.; Petrov, P.N.; Polilov, A.A. Extraordinary flight performance of the smallest beetles. Proc. Natl. Acad. Sci. USA 2020, 117, 24643–24645. [Google Scholar] [CrossRef] [PubMed]
- Yavorskaya, M.I.; Beutel, R.G.; Farisenkov, S.E.; Polilov, A.A. The locomotor apparatus of one of the smallest beetles–The thoracic skeletomuscular system of Nephanes titan (Coleoptera, Ptiliidae). Arthropod Struct. Dev. 2019, 48, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Ferrington, L.C. Global Diversity of Non-Biting Midges (Chironomidae; Insecta-Diptera) in freshwater. In Freshwater Animal Diversity Assessment; Springer: Dordrecht, The Netherlands, 2007; pp. 447–455. [Google Scholar]
- Brundin, L. Transantarctic relationship and their significance, as evidenced by chironomid midges. With a monograph of the subfamilies Podonominae and Aphroteniinae and the austral Heptagyiae. K. Svenska Vetensk Akad. Handl. 1966, 11, 1–472. [Google Scholar]
- Hoefnagel, K.N.; Verberk, W.C. Is the temperature-size rule mediated by oxygen in aquatic ectotherms? J. Therm. Biol. 2015, 54, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Verberk, W.C.; Bilton, D.T.; Calosi, P.; Spicer, J.I. Oxygen supply in aquatic ectotherms: Partial pressure and solubility together explain biodiversity and size patterns. Ecology 2011, 92, 1565–1572. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Baranov, V.; Lewandowski, J.; Krause, S. Bioturbation enhances the aerobic respiration of lake sediments in warming lakes. Biol. Lett. 2016, 12, 20160448. [Google Scholar] [CrossRef]
- Spicer, R.A.; Yang, J.; Spicer, T.E.; Farnsworth, A. Woody dicot leaf traits as a palaeoclimate proxy: 100 years of development and application. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 562, 110138. [Google Scholar] [CrossRef]
- Baranov, V.; Giłka, W.; Zakrzewska, M.; Jarzembowski, E. New non-biting midges (Diptera: Chironomidae) from Lower Cretaceous Wealden amber of the Isle of Wight (UK). Cretac. Res. 2019, 95, 138–145. [Google Scholar] [CrossRef]
Independent Variable | df | χ2 | p Value (χ2) |
---|---|---|---|
Latitude | 1 | 534.01 | <0.001 *** |
Hemisphere | 1 | 0.57 | 0.44 |
Genus | 24 | 4309.88 | <0.001 *** |
Latitude × Genus | 24 | 154.49 | <0.001 *** |
Latitude × Hemisphere | 1 | 4.62 | 0.03 * |
Independent Variable | df | χ2 | p Value (χ2) |
---|---|---|---|
Temperature | 1 | 548.5266 | <0.001 *** |
Hemisphere | 1 | 3.2669 | 0.07 |
Genus | 24 | 4107.34 | <0.001 *** |
Temperature × Hemisphere | 1 | 6.11 | 0.01 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baranov, V.; Jourdan, J.; Hunter-Moffatt, B.; Noori, S.; Schölderle, S.; Haug, J.T. Global Size Pattern in a Group of Important Ecological Indicators (Diptera, Chironomidae) Is Driven by Latitudinal Temperature Gradients. Insects 2022, 13, 34. https://doi.org/10.3390/insects13010034
Baranov V, Jourdan J, Hunter-Moffatt B, Noori S, Schölderle S, Haug JT. Global Size Pattern in a Group of Important Ecological Indicators (Diptera, Chironomidae) Is Driven by Latitudinal Temperature Gradients. Insects. 2022; 13(1):34. https://doi.org/10.3390/insects13010034
Chicago/Turabian StyleBaranov, Viktor, Jonas Jourdan, Blue Hunter-Moffatt, Sajad Noori, Simon Schölderle, and Joachim T. Haug. 2022. "Global Size Pattern in a Group of Important Ecological Indicators (Diptera, Chironomidae) Is Driven by Latitudinal Temperature Gradients" Insects 13, no. 1: 34. https://doi.org/10.3390/insects13010034