Next Article in Journal
Ensemble Models Predict Invasive Bee Habitat Suitability Will Expand under Future Climate Scenarios in Hawai’i
Previous Article in Journal
Diel Rhythmicity of Field Responses to Synthetic Pheromone Lures in the Pine Sawyer Monochamus saltuarius
Article

Combination of Modified Atmosphere and Irradiation for the Phytosanitary Disinfestation of Trogoderma granarium Everts (Coleoptera: Dermestidae)

1
MOA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
2
Institute of Equipment Technology, Chinese Academy of Inspection and Quarantine, Beijing 100123, China
*
Authors to whom correspondence should be addressed.
Academic Editor: George N. Mbata
Insects 2021, 12(5), 442; https://doi.org/10.3390/insects12050442
Received: 19 April 2021 / Revised: 9 May 2021 / Accepted: 11 May 2021 / Published: 12 May 2021
The khapra beetle is defined as one of the most important quarantine pests globally, and fumigating by methyl bromide, one of the ozone-depleting substances under the Montreal Protocol, is a routine measure used for phytosanitary treatment. To protect the Ozone layer, an environmentally friendly measure is needed to be developed. The middle- to late-stage larvae and adults were treated with irradiation, modified atmosphere (MA) alone, and their combinations at room temperature of 24–26 ℃. As a result, late-stage larvae are determined as the most tolerant stage. Ionizing radiation was used to enhance the effects of 1% and 2% O2 MA treatments that the obvious synergistic effects are presented in all combinations, resulted in saving as high as 60% of the estimated exposure times comparing with MA treatment alone. A total of 111,366 late-stage larvae were exposed to a 1% O2 atmosphere for 14 or 15 days after a 200 Gy irradiation, resulted in no survivor in the validating tests. Therefore, the MA-irradiation combination treatment can provide quarantine security at a very high level, it may be combined with international transportation (train or sea container) to disinfest the commodities infested by khapra beetle and other stored products insect pests.
The khapra beetle, Trogoderma granarium Everts, is defined as one of the most important quarantine pests globally, and fumigation with methyl bromide, an ozone-depleting substance, is a common phytosanitary measure currently used. The modified atmosphere (MA), irradiation, and their combination treatments of T. granarium larvae and adults were performed at room temperature (24–26 ℃) to develop an ecofriendly phytosanitary disinfestation measure and to shorten the exposure time and overcome treatment disadvantages of irradiation. Late-stage larvae are determined as the most tolerant stage resulted in large LT99.9968 values of 32.6 (29.2–37.5) and 38.0 (35.1–41.7) days treated under 1% and 2% O2 (with N2 balance) atmosphere, respectively. Ionizing radiation was used to enhance the effect of MA and the mortality was highly significantly affected by all the interaction effects, indicating that the synergistic effects present in all the combined treatments. The synergistic ratios, which is defined as the estimated lethal time for MA treatment (LD90, LD99, and LD99.9968), divided by that of combined treatment, were between 1.47 and 2.47. In the confirmatory tests, no individuals recovered from a sum of 111,366 late-stage larvae treated under 1% O2 atmosphere for 14- or 15-d after 200 Gy irradiation, which resulted in validating the probit estimations and achieving an efficacy of 99.9973% mortality at 95% confidence level. Therefore, these treatment schedules are recommended to disinfest T. granarium infecting commodities for phytosanitary purposes under the warehouse, MA packaging, or in combination with international transportation by train or sea container. View Full-Text
Keywords: Trogoderma granarium; khapra beetle; modified atmosphere; irradiation; combined treatment; synergistic effects; synergism Trogoderma granarium; khapra beetle; modified atmosphere; irradiation; combined treatment; synergistic effects; synergism
Show Figures

Figure 1

MDPI and ACS Style

Zhao, Q.-Y.; Li, T.-X.; Song, Z.-J.; Sun, T.; Liu, B.; Han, X.; Li, Z.-H.; Zhan, G.-P. Combination of Modified Atmosphere and Irradiation for the Phytosanitary Disinfestation of Trogoderma granarium Everts (Coleoptera: Dermestidae). Insects 2021, 12, 442. https://doi.org/10.3390/insects12050442

AMA Style

Zhao Q-Y, Li T-X, Song Z-J, Sun T, Liu B, Han X, Li Z-H, Zhan G-P. Combination of Modified Atmosphere and Irradiation for the Phytosanitary Disinfestation of Trogoderma granarium Everts (Coleoptera: Dermestidae). Insects. 2021; 12(5):442. https://doi.org/10.3390/insects12050442

Chicago/Turabian Style

Zhao, Qing-Ying, Tian-Xiu Li, Zi-Jiao Song, Tao Sun, Bo Liu, Xin Han, Zhi-Hong Li, and Guo-Ping Zhan. 2021. "Combination of Modified Atmosphere and Irradiation for the Phytosanitary Disinfestation of Trogoderma granarium Everts (Coleoptera: Dermestidae)" Insects 12, no. 5: 442. https://doi.org/10.3390/insects12050442

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop