Sterile Insect Technique (SIT) against Aedes Species Mosquitoes: A Roadmap and Good Practice Framework for Designing, Implementing and Evaluating Pilot Field Trials
Abstract
:Simple Summary
Abstract
1. Background
2. Opening Steps—Determining Feasibility
2.1. Stakeholder Mapping, Regulatory Framework and Approval
2.2. Messaging Content and Progression
Understanding Stakeholder Concerns
2.3. Ethical Approvals
2.4. Financial Planning
2.5. Aligning with Current Vector Management
Combining Tools and Techniques for Integrated Vector Management
3. Selecting Pilot Trial Field Sites
3.1. Site Size
3.2. Replication—How Many Sites?
3.3. Site Isolation
3.4. Presence of Vector-Borne Disease
4. Characterizing Study Sites
4.1. The Human Component: Community Engagement
Information and Acceptance at Local Scale
4.2. The Mosquito Component: Entomological Characterization
4.2.1. Baseline Entomological Data Collection
4.2.2. Trapping Devices for Population Monitoring
4.2.3. Density and Dispersal Estimation: Mark Release Recapture Studies
5. Mosquito Sourcing: Purchase or Production?
5.1. Local Sterile Male Production
5.1.1. Rearing Facility
5.1.2. Mass Rearing Process
5.1.3. Sex-Separation Systems
5.1.4. Sterilization
5.2. Quality Control
6. Trial Implementation
6.1. Enhanced Stakeholder Engagement
6.2. Optimizing the Release Strategy to Meet Objectives
6.2.1. When to Start?
6.2.2. Release Ratios
6.2.3. Release Frequency
6.2.4. Release Locations
6.2.5. Marking Mosquitoes
6.3. Pilot Trial Duration
7. Pilot Trial Evaluation
7.1. Defining Success
7.2. Evaluation of Field Release Efficacy
7.3. Capacity Development
7.4. Evaluation of Production and Release Quality Control
7.5. Feedback to Stakeholders
8. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Knipling, E.F.; Laven, H.; Craig, G.B.; Pal, R.; Kitzmiller, J.B.; Smith, C.N.; Brown, A.W. Genetic Control of Insects of Public Health Importance. Bull. World Health Organ. 1968, 38, 421–438. [Google Scholar]
- Klassen, W.; Curtis, C.F. History of the Sterile Insect Technique. In Sterile Insect Technique; Dyck, V.A., Hendrichs, J., Robinson, A.S., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 3–36. ISBN 1-4020-4050-4. [Google Scholar]
- Dame, D.A.; Curtis, C.F.; Benedict, M.Q.; Robinson, A.S.; Knols, B.G. Historical Applications of Induced Sterilisation in Field Populations of Mosquitoes. Malar. J. 2009, 8, 1–10. [Google Scholar] [CrossRef]
- Hendrichs, J.; Vreysen, M.J.B.; Enkerlin, W.R.; Cayol, J.P. Strategic Options in Using Sterile Insects for Area-Wide Integrated Pest Management. In Sterile Insect Technique; Dyck, V.A., Hendrichs, J., Robinson, A., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 563–600. ISBN 1-4020-4050-4. [Google Scholar]
- Vreysen, M.J.B.; Gerardo-Abaya, J.; Cayol, J.P. Lessons from Area-Wide Integrated Pest Management (AW-IPM) Programmes with an SIT Component: An FAO/IAEA Perspective. In Area-Wide Control of Insect Pests; Vreysen, M.J.B., Robinson, A.S., Hendrichs, J., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 723–744. ISBN 978-1-4020-6058-8. [Google Scholar]
- Patterson, R.S.; Weidhaas, D.E.; Ford, H.R.; Lofgren, C.S. Suppression and Elimination of an Island Population of Culex pipiens quinquefasciatus with Sterile Males. Science 1970, 168, 1368–1370. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Weidhaas, D.E.; Schmidt, C.H.; Seabrook, E.L. Field Studies on the Release of Sterile Males for the Control of Anopheles quadrimaculatus. Mosq. News 1962, 22, 283–290. [Google Scholar]
- Weidhaas, D.E.; Breeland, S.G.; Lofgren, C.S.; Dame, D.A.; Kaiser, R. Release of Chemosterilized Males for the Control of Anopheles albimanus in El Salvador. IV. Dynamics of the Test Population. Am. J. Trop. Med. Hyg. 1974, 23, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Benedict, M.Q. Sterile Insect Technique: Lessons from the Past. J. Med. Entomol. under review.
- Bellini, R.; Medici, A.; Puggioli, A.; Balestrino, F.; Carrieri, M. Pilot Field Trials with Aedes albopictus Irradiated Sterile Males in Italian Urban Areas. J. Med. Entomol. 2013, 50, 317–325. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zheng, X.; Zhang, D.; Li, Y.; Yang, C.; Wu, Y.; Liang, X.; Liang, Y.; Pan, X.; Hu, L.; Sun, Q.; et al. Incompatible and Sterile Insect Techniques Combined Eliminate Mosquitoes. Nature 2019, 572, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Oliva, C.F.; Vreysen, M.J.B.; Dupé, S.; Lees, R.S.; Gilles, J.R.L.; Gouagna, L.-C.; Chhem, R. Current Status and Future Challenges for Controlling Malaria with the Sterile Insect Technique: Technical and Social Perspectives. Acta Trop. 2014, 132, S130–S139. [Google Scholar] [CrossRef]
- Lees, R.S.; Gilles, J.R.; Hendrichs, J.; Vreysen, M.J.B.; Bourtzis, K. Back to the Future: The Sterile Insect Technique against Mosquito Disease Vectors. Curr. Opin. Insect. Sci. 2015, 10, 156–162. [Google Scholar] [CrossRef][Green Version]
- EU Zikalliance Project. Available online: https://zikalliance.tghn.org/ (accessed on 16 December 2020).
- Bouyer, J.; Yamada, H.; Pereira, R.; Bourtzis, K.; Vreysen, M.J.B. Phased Conditional Approach for Mosquito Management Using Sterile Insect Technique. Trends Parasitol. 2020, 36, 325–336. [Google Scholar] [CrossRef] [PubMed][Green Version]
- FAO; IAEA. Guidelines for Routine Colony Maintenance of Aedes Mosquito Species; Version 1.0; FAO/IAEA: Vienna, Austria, 2017. [Google Scholar]
- WHO; IAEA. Guidance Framework for Testing the Sterile Insect Technique (SIT) as a Vector Control. Tool against Aedes-Borne Diseases; World Health Organization and the International Atomic Energy Agency: Geneva, Switzerland, 2020. [Google Scholar]
- IPPC ISPM No. 3. Guidelines for the Export, Shipment, Import and Release of Biological Control. Agents and Other Beneficial Organisms; FAO: Rome, Italy, 2017. [Google Scholar]
- Von Grebmer, K.; Omamo, S.W. Options for a Rational Dialogue on the Acceptance of Biotechnology. Biotechnol. J. 2007, 2, 1121–1128. [Google Scholar] [CrossRef] [PubMed]
- Sinemus, K.; Egelhofer, M. Transparent Communication Strategy on GMOs: Will It Change Public Opinion? Biotechnol. J. 2007, 2, 1141–1146. [Google Scholar] [CrossRef]
- Pacheco, M.G.; (Moscamed, Juazeiro, Brazil). Personal communication, 2019.
- Gouagna, L.C.; Damiens, D.; Oliva, C.F.; Boyer, S.; Goff, G.L.; Brengues, C.; Dehecq, J.-S.; Raude, J.; Simard, F.; Fontenille, D. Strategic Approach, Advances, and Challenges in the Development and Application of the SIT for Area-Wide Control of Aedes albopictus Mosquitoes in Reunion Island. Insects 2020, 11, 770. [Google Scholar] [CrossRef] [PubMed]
- Bellini, R.; (CAA, Bologna, Italy). Personal communication, 2019.
- O’Neill, S.L. The Use of Wolbachia by the World Mosquito Program to Interrupt Transmission of Aedes aegypti Transmitted Viruses. Adv. Exp. Med. Biol. 2018, 1062, 355–360. [Google Scholar] [CrossRef]
- Dyck, V.A.; Hendrichs, J.; Robinson, A.S. Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest. Management, 2nd ed.; Routledge: Oxford, UK, 2021; 1218p. [Google Scholar]
- OECD. Consensus Document on the Biology of the Mosquito; Aedes, aegypti; Environment Directorate, Organisation for Economic Co-operation and Development, Health and Safety Publications; Series on Harmonisation of Regulatory Oversight in Biotechnology No. 65; OECD: Paris, France, 2018; 106p. [Google Scholar]
- Collins, C.M.; Bonds, J.A.S.; Quinlan, M.M.; Mumford, J.D. Effects of the Removal or Reduction in Density of the Malaria Mosquito, Anopheles gambiae s.l., on Interacting Predators and Competitors in Local Ecosystems. Med. Vet. Entomol. 2019, 33, 1–15. [Google Scholar] [CrossRef][Green Version]
- Kolopack, P.A.; Parsons, J.A.; Lavery, J.V. What Makes Community Engagement Effective?: Lessons from the Eliminate Dengue Program in Queensland Australia. PLoS NTD 2015, 9, e0003713. [Google Scholar] [CrossRef]
- IAEA. Sterile-Insect-Technique-for-Mosquitoes. Available online: https://nucleus.iaea.org/sites/naipc/dirsit/Pages/Sterile-Insect-Technique-for-Mosquitoes.aspx (accessed on 15 February 2021).
- Thizy, D.; Emerson, C.; Gibbs, J.; Hartley, S.; Kapiriri, L.; Lavery, J.; Lunshof, J.; Ramsey, J.; Shapiro, J.; Singh, J.A.; et al. Guidance on Stakeholder Engagement Practices to Inform the Development of Area-Wide Vector Control Methods. PLoS NTD 2019, 13, e0007286. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Finkel, A.M.; Trump, B.D.; Bowman, D.; Maynard, A. A “Solution-Focused” Comparative Risk Assessment of Conventional and Synthetic Biology Approaches to Control Mosquitoes Carrying the Dengue Fever Virus. Environ. Syst. Decis. 2018, 38, 177–197. [Google Scholar] [CrossRef]
- Sayed, B.B.E.; Malcolm, C.A.; Babiker, A.; Malik, E.M.; Tayeb, M.A.E.; Saeed, N.S.; Nugud, A.; Knols, B.G. Ethical, Legal and Social Aspects of the Approach in Sudan. Malar. J. 2009, 8, S3. [Google Scholar] [CrossRef][Green Version]
- Mumford, J.D. Application of Benefit/Cost Analysis to Insect Pest Control Using the Sterile Insect Technique. In Sterile Insect Technique; Dyck, J., Hendrichs, V.A., Hendrichs, J., Robinson, A., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 481–498. ISBN 9781402040504. [Google Scholar]
- Martelli, C.M.T.; Siqueira, J.B.; Parente, M.P.P.D.; de Zara, A.L.S.A.; Oliveira, C.S.; Braga, C.; Pimenta, F.G.; Cortes, F.; Lopez, J.G.; Bahia, L.R.; et al. Economic Impact of Dengue: Multicenter Study across Four Brazilian Regions. PLoS NTD 2015, 9, e0004042. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Fitzpatrick, C.; Haines, A.; Bangert, M.; Farlow, A.; Hemingway, J.; Velayudhan, R. An Economic Evaluation of Vector Control in the Age of a Dengue Vaccine. PLoS NTD 2017, 11, e0005785. [Google Scholar] [CrossRef][Green Version]
- Thuilliez, J.; Bellia, C.; Dehecq, J.-S.; Reilhes, O. Household-Level Expenditure on Protective Measures against Mosquitoes on the Island of La Réunion, France. PLoS NTD 2014, 8, e2609. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rosselló, J.; Santana-Gallego, M.; Awan, W. Infectious Disease Risk and International Tourism Demand. Health Policy Plan. 2017, 32, 538–548. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Baly, A.; Toledo, M.E.; Boelaert, M.; Reyes, A.; Vanlerberghe, V.; Ceballos, E.; Carvajal, M.; Maso, R.; Rosa, M.L.; Denis, O.; et al. Cost Effectiveness of Aedes aegypti Control Programmes: Participatory versus Vertical. Trans. R. Soc. Trop. Med. Hyg. 2007, 101, 578–586. [Google Scholar] [CrossRef]
- Packierisamy, P.R.; Ng, C.-W.; Dahlui, M.; Inbaraj, J.; Balan, V.K.; Halasa, Y.A.; Shepard, D.S. Cost of Dengue Vector Control Activities in Malaysia. Am. J. Trop. Med. Hyg. 2015, 93, 1020–1027. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Selck, F.W.; Adalja, A.A.; Boddie, C.R. An Estimate of the Global Health Care and Lost Productivity Costs of Dengue. Vector Borne Zoonotic Dis. 2014, 14, 824–826. [Google Scholar] [CrossRef]
- Bradshaw, C.J.A.; Leroy, B.; Bellard, C.; Roiz, D.; Albert, C.; Fournier, A.; Barbet-Massin, M.; Salles, J.-M.; Simard, F.; Courchamp, F. Massive yet Grossly Underestimated Global Costs of Invasive Insects. Nat. Commun. 2016, 7, 12986–12988. [Google Scholar] [CrossRef]
- Shepard, D.S.; Undurraga, E.A.; Halasa, Y.A.; Stanaway, J.D. The Global Economic Burden of Dengue: A Systematic Analysis. Lancet Infect. Dis. 2016, 16, 935–941. [Google Scholar] [CrossRef]
- FAO; IAEA. Spreadsheet for Designing Aedes Mosquito Mass-Rearing and Release Facilities, 1st ed.; Argilés, R., Cáceres, C., Bouyer, J., Eds.; Food and Agriculture Organization of the United Nations/International Atomic Energy Agency: Vienna, Austria, 2019. [Google Scholar]
- Undurraga, E.A.; Halasa, Y.A.; Shepard, D.S. Economic analysis of genetically modified mosquito strategies. In Genetic Control of Malaria and Dengue; Adelman, Z.N., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 375–408. ISBN 9780128002469. [Google Scholar]
- Reiter, P.; Gubler, D. Surveillance and control of urban dengue vectors. In Dengue and Dengue Hemorrhagic Fever; National Library of Medicine: Bethesda MA, USA, 2001; pp. 425–462. [Google Scholar]
- WHO/TDR; FNIH. Guidance Framework for Testing Genetically Modified Mosquitoes; WHO World Health Organization: Geneva, Switzerland, 2014; 159p. [Google Scholar]
- Bowman, L.R.; Donegan, S.; McCall, P.J. Is Dengue Vector Control Deficient in Effectiveness or Evidence? Systematic Review and Meta-Analysis. PLoS NTD 2016, 10, e0004551. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Roiz, D.; Wilson, A.L.; Scott, T.W.; Fonseca, D.M.; Jourdain, F.; Müller, P.; Velayudhan, R.; Corbel, V. Integrated Aedes Management for the Control of Aedes-Borne Diseases. PLoS NTD 2018, 12, e0006845. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bellini, R.; Calvitti, M.; Medici, A.; Carrieri, M.; Celli, G.; Maini, S. Use of the sterile insect technique against Aedes albopictus in Italy: First results of a pilot trial. In Area-Wide Control of Insect Pests; Vreysen, M.J.B., Robinson, A., Hendrichs, J., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 505–515. [Google Scholar]
- Lloyd, L.S.; Winch, P.; Ortega-Canto, J.; Kendall, C. Results of a Community-Based Aedes aegypti Control Program in Merida, Yucatan, Mexico. Am. J. Trop. Med. Hyg. 1992, 46, 635–642. [Google Scholar] [CrossRef]
- Leontsini, E.; Gil, E.; Kendall, C.; Clark, G.G. Effect of a Community-Based Aedes aegypti Control Programme on Mosquito Larval Production Sites in El Progreso, Honduras. Trans. R. Soc. Trop. Med. Hyg. 1993, 87, 267–271. [Google Scholar] [CrossRef]
- Stefopoulou, Α.; Balatsos, G.; Petraki, A.; LaDeau, S.L.; Papachristos, D.; Michaelakis, Α. Reducing Aedes albopictus Breeding Sites through Education: A Study in Urban Area. PLoS ONE 2018, 13, e0202451. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Aik, J.; Neo, Z.W.; Rajarethinam, J.; Chio, K.; Lam, W.M.; Ng, L.-C. The Effectiveness of Inspections on Reported Mosquito Larval Habitats in Households: A Case-Control Study. PLoS NTD 2019, 13, e0007492. [Google Scholar] [CrossRef][Green Version]
- Donati, L.; Carrieri, M.; Bellini, R. A Door-to-Door Strategy for Aedes albopictus Control in Northern Italy: Efficacy, Cost-Analysis and Public Perception. Vector Biol. J. 2020, 5. [Google Scholar] [CrossRef]
- Guzzetta, G.; Trentini, F.; Poletti, P.; Baldacchino, F.A.; Montarsi, F.; Capelli, G.; Rizzoli, A.; Rosà, R.; Merler, S.; Melegaro, A. Effectiveness and Economic Assessment of Routine Larviciding for Prevention of Chikungunya and Dengue in Temperate Urban Settings in Europe. PLoS NTD 2017, 11, e0005918. [Google Scholar] [CrossRef]
- Huang, Y.-J.S.; Higgs, S.; Vanlandingham, D.L. Biological Control Strategies for Mosquito Vectors of Arboviruses. Insects 2017, 8, 21. [Google Scholar] [CrossRef] [PubMed]
- Boyce, R.; Lenhart, A.; Kroeger, A.; Velayudhan, R.; Roberts, B.; Horstick, O. Bacillus thuringiensis Israelensis (Bti) for the Control of Dengue Vectors: Systematic Literature Review. Trop. Med. Int. Health 2013, 18, 564–577. [Google Scholar] [CrossRef] [PubMed]
- Abad-Franch, F.; Zamora-Perea, E.; Ferraz, G.; Padilla-Torres, S.D.; Luz, S.L.B. Mosquito-Disseminated Pyriproxyfen Yields High Breeding-Site Coverage and Boosts Juvenile Mosquito Mortality at the Neighborhood Scale. PLoS NTD 2015, 9, e0003702. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Abad-Franch, F.; Zamora-Perea, E.; Luz, S.L.B. Mosquito-Disseminated Insecticide for Citywide Vector Control and Its Potential to Block Arbovirus Epidemics: Entomological Observations and Modeling Results from Amazonian Brazil. PLoS Med. 2017, 14, e1002213. [Google Scholar] [CrossRef][Green Version]
- Pleydell, D.R.J.; Bouyer, J. Biopesticides Improve Efficiency of the Sterile Insect Technique for Controlling Mosquito-Driven Dengue Epidemics. Commun. Biol. 2019, 2, 201–211. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Corbel, V.; Achee, N.L.; Chandre, F.; Coulibaly, M.B.; Dusfour, I.; Fonseca, D.M.; Grieco, J.; Juntarajumnong, W.; Lenhart, A.; Martins, A.J.; et al. Tracking Insecticide Resistance in Mosquito Vectors of Arboviruses: The Worldwide Insecticide Resistance Network (WIN). PLoS NTD 2016, 10, e0005054. [Google Scholar] [CrossRef][Green Version]
- Carrieri, M.; Albieri, A.; Angelini, P.; Baldacchini, F.; Venturelli, C.; Zeo, S.M.; Bellini, R. Surveillance of the Chikungunya Vector Aedes albopictus (Skuse) in Emilia-Romagna (Northern Italy): Organizational and Technical Aspects of a Large Scale Monitoring System. J. Vector Ecol. 2011, 36, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Barrera, R.; Amador, M.; Acevedo, V.; Caban, B.; Felix, G.; Mackay, A.J. Use of the CDC Autocidal Gravid Ovitrap to Control and Prevent Outbreaks of Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 2014, 51, 145–154. [Google Scholar] [CrossRef][Green Version]
- Barrera, R.; Amador, M.; Acevedo, V.; Hemme, R.R.; Felix, G. Sustained, Area-Wide Control of Aedes aegypti Using CDC Autocidal Gravid Ovitraps. Am. J. Trop. Med. Hyg. 2014, 91, 1269–1276. [Google Scholar] [CrossRef] [PubMed]
- Lorenzi, O.D.; Major, C.; Acevedo, V.; Pérez-Padilla, J.; Rivera, A.; Biggerstaff, B.J.; Muñoz-Jordán, J.; Waterman, S.; Barrera, R.; Sharp, T.M. Reduced Incidence of Chikungunya Virus Infection in Communities with Ongoing Aedes aegypti Mosquito Trap Intervention Studies—Salinas and Guayama, Puerto Rico, November 2015-February 2016; Morbidity and Mortality Weekly Report; CDC: Atlanta, GA, USA, 2016; pp. 479–480. [Google Scholar]
- Sharp, T.M.; Lorenzi, O.; Torres-Velásquez, B.; Acevedo, V.; Pérez-Padilla, J.; Rivera, A.; Muñoz-Jordán, J.; Margolis, H.S.; Waterman, S.H.; Biggerstaff, B.J.; et al. Autocidal Gravid Ovitraps Protect Humans from Chikungunya Virus Infection by Reducing Aedes aegypti Mosquito Populations. PLoS NTD 2019, 13, e0007538. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Johnson, B.J.; Rohde, B.B.; Zeak, N.; Staunton, K.M.; Prachar, T.; Ritchie, S.A. A Low-Cost, Battery-Powered Acoustic Trap for Surveilling Male Aedes aegypti during Rear-and-Release Operations. PLoS ONE 2018, 13, e0201709. [Google Scholar] [CrossRef]
- Correa-Morales, F.; Dzul-Manzanilla, F.; Bibiano-Marín, W.; Vadillo-Sánchez, J.; Medina-Barreiro, A.; Martin-Park, A.; Villegas-Chim, J.; Elizondo-Quiroga, A.E.; Lenhart, A.; Vazquez-Prokopec, G.M.; et al. Entomological Efficacy of Aerial Ultra-Low Volume Insecticide Applications against Aedes aegypti (Diptera: Culicidae) in Mexico. J. Med. Entomol. 2019, 56, 1331–1337. [Google Scholar] [CrossRef]
- Dunbar, M.W.; Correa-Morales, F.; Dzul-Manzanilla, F.; Medina-Barreiro, A.; Bibiano-Marín, W.; Morales-Ríos, E.; Vadillo-Sánchez, J.; López-Monroy, B.; Ritchie, S.A.; Lenhart, A.; et al. Efficacy of Novel Indoor Residual Spraying Methods Targeting Pyrethroid-Resistant Aedes aegypti within Experimental Houses. PLoS NTD 2019, 13, e0007203. [Google Scholar] [CrossRef]
- Iyaloo, D.P.; Elahee, K.B.; Bheecarry, A.; Lees, R.S. Guidelines to Site Selection for Population Surveillance and Mosquito Control Trials: A Case Study from Mauritius. Acta Trop. 2014, 132, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Barclay, H.J.; Matlock, R.; Gilchrist, S.; Suckling, D.M.; Reyes, J.; Enkerlin, W.R.; Vreysen, M.J.B. A Conceptual Model for Assessing the Minimum Size Area for an Area-Wide Integrated Pest Management Program. Int. J. Agron. 2011, 2011, 409328. [Google Scholar] [CrossRef][Green Version]
- WHO. How to Design Vector Control Efficacy Trials, Guidance on Phase III Vector Control Field Trial Design; World Health Organization: Geneva, Switzerland, 2017; 80p. [Google Scholar]
- Valerio, L.; Facchinelli, L.; Ramsey, J.M.; Bond, J.G.; Scott, T.W. Dispersal of Male Aedes aegypti in a Coastal Village in Southern Mexico. Am. J. Trop. Med. Hyg. 2012, 86, 665–676. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Russell, R.C.; Webb, C.E.; Williams, C.R.; Ritchie, S.A. Mark-Release-Recapture Study to Measure Dispersal of the Mosquito Aedes aegypti in Cairns, Queensland, Australia. Med. Vet. Entomol. 2005, 19, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Marini, F.; Caputo, B.; Pombi, M.; Tarsitani, G.; Torre, A.D. Study of Aedes albopictus Dispersal in Rome, Italy, Using Sticky Traps in Mark-Release-Recapture Experiments. Med. Vet. Entomol. 2010, 24, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Liew, C.; Curtis, C.F. Horizontal and Vertical Dispersal of Dengue Vector Mosquitoes, Aedes aegypti and Aedes albopictus, in Singapore. Med. Vet. Entomol. 2004, 18, 351–360. [Google Scholar] [CrossRef]
- Goff, G.L.; Damiens, D.; Ruttee, A.-H.; Payet, L.; Lebon, C.; Dehecq, J.-S.; Gouagna, L.-C. Field Evaluation of Seasonal Trends in Relative Population Sizes and Dispersal Pattern of Aedes albopictus Males in Support of the Design of a Sterile Male Release Strategy. Parasit. Vectors 2019, 12, 81–110. [Google Scholar] [CrossRef] [PubMed]
- Honorio, N.A.; da Costa Silva, W.; Leite, P.J.; Gonçalves, J.M.; Lounibos, L.P.; Lourenço-de-Oliveira, R. Dispersal of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in an Urban Endemic Dengue Area in the State of Rio de Janeiro, Brazil. Mem. Inst. Oswaldo Cruz 2003, 98, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Brown, H.E.; Cox, J.; Comrie, A.C.; Barrera, R. Habitat and Density of Oviposition Opportunity Influences Aedes Aegypti (Diptera: Culicidae) Flight Distance. J. Med. Entomol. 2017, 54, 1385–1389. [Google Scholar] [CrossRef]
- Akhoundi, M.; Jourdain, F.; Chandre, F.; Delaunay, P.; Roiz, D. Effectiveness of a Field Trap Barrier System for Controlling Aedes albopictus: A “Removal Trapping” Strategy. Parasit. Vectors 2018, 11, 101. [Google Scholar] [CrossRef][Green Version]
- Yasuno, M.; Macdonald, W.W.; Curtis, C.F.; Grover, K.K.; Rajagopalan, P.K.; Sharma, L.S.; Sharma, V.P.; Singh, D.; Singh, K.; Agarwal, H.V. A Control Experiment with Chemosterilized Male Culex pipiens fatigans Wiedemann in a Village near Delhi Surrounded by a Breeding-Free Zone. Jpn. J. Sanit. Zool. 1975, 29, 325–343. [Google Scholar] [CrossRef][Green Version]
- Eritja, R.; Palmer, J.R.B.; Roiz, D.; Sanpera-Calbet, I.; Bartumeus, F. Direct Evidence of Adult Aedes albopictus Dispersal by Car. Sci. Rep. 2017, 7, 1–15. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bartumeus, F.; Costa, G.B.; Eritja, R.; Kelly, A.H.; Finda, M.; Lezaun, J.; Okumu, F.; Quinlan, M.M.; Thizy, D.C.; Toé, L.P.; et al. Sustainable Innovation in Vector Control Requires Strong Partnerships with Communities. PLoS NTD 2019, 13, e0007204. [Google Scholar] [CrossRef]
- Wanyama, E.C.; Dicko, B.; Toe, L.P.; Coulibaly, M.B.; Barry, N.; Traore, K.B.; Diabate, A.; Drabo, M.; Kayondo, J.K.; Kekele, S.; et al. Co-developing a Common Glossary with Stakeholders for Engagement on New Genetic Approaches for Malaria Control in a Local African Setting. Malar. J. 2021, 20, 53. [Google Scholar] [CrossRef] [PubMed]
- Suttie, D. Involving Local Communities in Setting the Agricultural Development Agenda: Participation in Policy and Practice. Ag4Dev 2020, 40, 5–8. [Google Scholar]
- Conops—LIFE Conops. Available online: https://www.conops.gr/?lang=en (accessed on 16 December 2020).
- Birungi, K.; Namukwaya, A.; Mabuka, P.; Dicko, B.; Collins, C.M. Ensuring Conformity of Consent: Developing Appropriate Messaging and an Informed Consent Process for Volunteer Participants in Vector Field Studies at a Trans-African Scale. In Proceedings of the 7th Multilateral Initiative on Malaria, Dakar, Senegal, 20 April 2018; pp. 1–13. [Google Scholar]
- Mau, R.F.L.; Jang, E.B.; Vargas, R.I. The Hawaii Area-Wide Fruit Fly Pest Management Programme: Influence of Partnerships and a Good Education Programme. In Area-Wide Control of Insect Pests; Vreysen, M.J.B., Robinson, A., Hendrichs, J., Eds.; Springer: Netherlands, The Netherlands, 2007; pp. 671–683. ISBN 978-1-4020-6058-8. [Google Scholar]
- Carrieri, M.; Angelini, P.; Venturelli, C.; Maccagnani, B.; Bellini, R. Aedes albopictus (Diptera: Culicidae) Population Size Survey in the 2007 Chikungunya Outbreak Area in Italy. II: Estimating Epidemic Thresholds. J. Med. Entomol. 2012, 49, 388–399. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Maciel-de-Freitas, R.; Eiras, A.E.; Lourenço-de-Oliveira, R. Field Evaluation of Effectiveness of the BG-Sentinel, a New Trap for Capturing Adult Aedes aegypti (Diptera: Culicidae). Mem. Inst. Oswaldo Cruz. 2006, 101, 321–325. [Google Scholar] [CrossRef][Green Version]
- Donatti, J.E.; de Castro Gomes, A. Adultrap: Descrição de Armadilha Para Adulto de Aedes aegypti (Diptera, Culicidae). Rev. Bras. Entomol. 2007, 51, 255–256. [Google Scholar] [CrossRef][Green Version]
- Facchinelli, L.; Valerio, L.; Pombi, M.; Reiter, P.; Costantini, C.; Torre, A.D. Development of a Novel Sticky Trap for Container-Breeding Mosquitoes and Evaluation of Its Sampling Properties to Monitor Urban Populations of Aedes albopictus. Med. Vet. Entomol. 2007, 21, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Bellini, R.; Albieri, A.; Balestrino, F.; Carrieri, M.; Porretta, D.; Urbanelli, S.; Calvitti, M.; Moretti, R.; Maini, S. Dispersal and Survival of Aedes albopictus (Diptera: Culicidae) Males in Italian Urban Areas and Significance for Sterile Insect Technique Application. J. Med. Entomol. 2010, 47, 1082–1091. [Google Scholar] [CrossRef]
- Cianci, D.; Broek, J.V.D.; Caputo, B.; Marini, F.; Torre, A.D.; Heesterbeek, H.; Hartemink, N. Estimating Mosquito Population Size From Mark–Release–Recapture Data. J. Med. Entomol. 2013, 50, 533–542. [Google Scholar] [CrossRef][Green Version]
- Benedict, M.Q.; Charlwood, J.D.; Harrington, L.C.; Lounibos, L.P.; Reisen, W.K.; Tabachnick, W.J. Guidance for Evaluating the Safety of Experimental Releases of Mosquitoes, Emphasizing Mark-Release-Recapture Techniques. Vector Borne Zoonotic Dis. 2018, 18, 39–48. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Iyaloo, D.P.; Damiens, D.; Facknath, S.; Elahee, K.B.; Bheecarry, A. Dispersal and Survival of Radio-Sterilised Male Aedes albopictus Skuse (Diptera: Culicidae) and Estimation of the Wild Populations in View of an Sterile Insect Technique Programme in Pointe Des Lascars, Mauritius. Int. J. Trop. Insect Sci. 2019, 39, 63–72. [Google Scholar] [CrossRef]
- Bouyer, J.; Culbert, N.J.; Dicko, A.H.; Pacheco, M.G.; Virginio, J.; Pedrosa, M.C.; Garziera, L.; Pinto, A.T.M.; Klaptocz, A.; Germann, J.; et al. Field Performance of Sterile Male Mosquitoes Released from an Uncrewed Aerial Vehicle. Sci. Robot. 2020, 5, eaba6251. [Google Scholar] [CrossRef]
- Achee, N.L.; Youngblood, L.; Bangs, M.J.; Lavery, J.V.; James, S. Considerations for the Use of Human Participants in Vector Biology Research: A Tool for Investigators and Regulators. Vector Borne Zoonotic Dis. 2015, 15, 89–102. [Google Scholar] [CrossRef][Green Version]
- Mumford, J.D.; Leach, A.W.; Benedict, M.Q.; Facchinelli, L.; Quinlan, M.M. Maintaining Quality of Candidate Strains of Transgenic Mosquitoes for Studies in Containment Facilities in Disease Endemic Countries. Vector Borne Zoonotic Dis. 2018, 18, 31–38. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zheng, M.-L.; Zhang, D.-J.; Damiens, D.D.; Lees, R.S.; Gilles, J.R.L. Standard Operating Procedures for Standardized Mass Rearing of the Dengue and Chikungunya Vectors Aedes aegypti and Aedes albopictus (Diptera: Culicidae)-II-Egg Storage and Hatching. Parasit. Vectors 2015, 8, 348. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zhang, D.; Li, Y.; Sun, Q.; Zheng, X.; Gilles, J.R.L.; Yamada, H.; Wu, Z.; Xi, Z.; Wu, Y. Establishment of a Medium-Scale Mosquito Facility: Tests on Mass Production Cages for Aedes albopictus (Diptera: Culicidae). Parasit. Vectors 2018, 11, 189. [Google Scholar] [CrossRef]
- Papathanos, P.-A.; Bourtzis, K.; Tripet, F.; Bossin, H.; Virginio, J.F.; Capurro, M.L.; Pedrosa, M.C.; Guindo, A.; Sylla, L.; Coulibaly, M.B.; et al. A Perspective on the Need and Current Status of Efficient Sex Separation Methods for Mosquito Genetic Control. Parasit. Vectors 2018, 11, 654. [Google Scholar] [CrossRef]
- Franz, G. Genetic sexing strains in mediterranean fruit fly, an example for other species amenable to large-scale rearing for the sterile insect technique. In Sterile Insect Technique; Dyck, V.A., Hendrichs, J., Robinson, A., Eds.; Springer: Dordrecht, The Netherlands, 2005; Volume 28, pp. 427–451. ISBN 1-4020-4050-4. [Google Scholar]
- Koskinioti, P.; Augustinos, A.A.; Carvalho, D.O.; Misbah-ul-Haq, M.; Pillwax, G.; de la Fuente, L.D.; Salvador-Herranz, G.; Herrero, R.A.; Bourtzis, K. Genetic Sexing Strains for the Population Suppression of the Mosquito Vector Aedes aegypti. Philos. Trans. R. Soc. B 2021, 376, 20190808. [Google Scholar] [CrossRef]
- Gilles, J.R.L.; Schetelig, M.F.; Scolari, F.; Marec, F.; Capurro, M.L.; Franz, G.; Bourtzis, K. Towards Mosquito Sterile Insect Technique Programmes: Exploring Genetic, Molecular, Mechanical and Behavioural Methods of Sex Separation in Mosquitoes. Acta Trop. 2014, 132, S178–S187. [Google Scholar] [CrossRef]
- Xi, Z.; (Sun Yat-Sen University, Guangzhou, China). Personal communication, 2019.
- Bakri, A.; Mehta, K.; Lance, D.R. Sterilizing Insects with Ionizing Radiation. In Sterile Insect Technique; Dyck, V.A., Hendrichs, J., Robinson, A.S., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 233–268. ISBN 1-4020-4050-4. [Google Scholar]
- Yamada, H.; Maiga, H.; Juarez, J.; Carvalho, D.D.O.; Mamai, W.; Ali, A.; Bimbile-Somda, N.S.; Parker, A.G.; Zhang, D.; Bouyer, J. Identification of Critical Factors That Significantly Affect the Dose-Response in Mosquitoes Irradiated as Pupae. Parasit. Vectors 2019, 12, 435. [Google Scholar] [CrossRef] [PubMed]
- Bellini, R.; Balestrino, F.; Medici, A.; Gentile, G.; Veronesi, R.; Carrieri, M. Mating Competitiveness of Aedes albopictus Radio-Sterilized Males in Large Enclosures Exposed to Natural Conditions. J. Med. Entomol. 2013, 50, 94–102. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bond, J.G.; Osorio, A.R.; Avila, N.; Gómez-Simuta, Y.; Marina, C.F.; Fernández-Salas, I.; Liedo, P.; Dor, A.; Carvalho, D.O.; Bourtzis, K.; et al. Optimization of Irradiation Dose to Aedes aegypti and Ae. albopictus in a Sterile Insect Technique Program. PLoS ONE 2019, 14, e0212520. [Google Scholar] [CrossRef]
- Bouyer, J.; Vreysen, M.J.B. Yes, Irradiated Sterile Male Mosquitoes Can Be Sexually Competitive! Trends Parasitol. 2020, 36, 877–880. [Google Scholar] [CrossRef] [PubMed]
- Dumont, Y.; Thuilliez, J. Human Behaviors: A Threat to Mosquito Control? Math. Biosci. 2016, 281, 9–23. [Google Scholar] [CrossRef][Green Version]
- Thuilliez, J.; Dumont, Y. Public Mosquito Abatement: A Cluster Randomized Experiment. World Bank Econ. Rev. 2019, 33, 479–497. [Google Scholar] [CrossRef]
- Bliman, P.-A.; Cardona-Salgado, D.; Dumont, Y.; Vasilieva, O. Implementation of Control Strategies for Sterile Insect Techniques. Math. Biosci. 2019, 314, 43–60. [Google Scholar] [CrossRef][Green Version]
- Multerer, L.; Smith, T.; Chitnis, N. Modeling the Impact of Sterile Males on an Aedes aegypti Population with Optimal Control. Math. Biosci. 2019, 311, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Klassen, W. Area-Wide Integrated Pest Management and the Sterile Insect Technique. In Sterile Insect Technique; Dyck, V.A., Hendrichs, J., Robinson, A.S., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 39–68. ISBN 1-4020-4050-4. [Google Scholar]
- Gouagna, L.-C.; Dehecq, J.-S.; Fontenille, D.; Dumont, Y.; Boyer, S. Seasonal Variation in Size Estimates of Aedes albopictus Population Based on Standard Mark-Release-Recapture Experiments in an Urban Area on Reunion Island. Acta Trop. 2015, 143, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Erguler, K.; Smith-Unna, S.E.; Waldock, J.; Proestos, Y.; Christophides, G.K.; Lelieveld, J.; Parham, P.E. Large-Scale Modelling of the Environmentally-Driven Population Dynamics of Temperate Aedes albopictus (Skuse). PLoS ONE 2016, 11, e0149282. [Google Scholar] [CrossRef][Green Version]
- Tran, A.; L’Ambert, G.; Lacour, G.; Benoît, R.; Demarchi, M.; Cros, M.; Cailly, P.; Aubry-Kientz, M.; Balenghien, T.; Ezanno, P. A Rainfall- and Temperature-Driven Abundance Model for Aedes albopictus Populations. Int. J. Environ. Res. Public Health 2013, 10, 1698–1719. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Alten, B.; Bellini, R.; Caglar, S.S.; Simsek, F.M.; Kaynas, S. Species Composition and Seasonal Dynamics of Mosquitoes in the Belek Region of Turkey. J. Vector Ecol. 2000, 25, 146–154. [Google Scholar]
- Vreysen, M.J.B. Monitoring sterile and wild insects in area-wide integrated pest management programmes. In Sterile Insect Technique; Dyck, V.A., Hendrichs, J., Robinson, A.S., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 325–361. [Google Scholar]
- Medeiros, M.C.I.; Boothe, E.C.; Roark, E.B.; Hamer, G.L. Dispersal of Male and Female Culex quinquefasciatus and Aedes albopictus Mosquitoes Using Stable Isotope Enrichment. PLoS NTD 2017, 11, e0005347. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Marcantonio, M.; Reyes, T.; Barker, C.M. Quantifying Aedes aegypti Dispersal in Space and Time: A Modeling Approach. Ecosphere 2019, 10. [Google Scholar] [CrossRef][Green Version]
- Service, M.W. Mosquito (Diptera: Culicidae) Dispersal: The Long and Short of It. J. Med. Entomol. 1997, 34, 579–588. [Google Scholar] [CrossRef]
- Tsuda, Y.; Takagi, M.; Wang, S.; Wang, Z.; Tang, L. Movement of Aedes aegypti (Diptera: Culicidae) Released in a Small Isolated Village on Hainan Island, China. J. Med. Entomol. 2001, 38, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Juarez, J.G.; Garcia-Luna, S.; Chaves, L.F.; Carbajal, E.; Valdez, E.; Avila, C.; Tang, W.; Martin, E.; Barrera, R.; Hemme, R.R.; et al. Dispersal of Female and Male Aedes aegypti from Discarded Container Habitats Using a Stable Isotope Mark-Capture Study Design in South Texas. Sci. Rep. 2020, 10, 6803. [Google Scholar] [CrossRef]
- Oliva, C.F.; Jacquet, M.; Gilles, J.; Lemperière, G.; Maquart, P.-O.; Quilici, S.; Schooneman, F.; Vreysen, M.J.B.; Boyer, S. The Sterile Insect Technique for Controlling Populations of Aedes albopictus (Diptera: Culicidae) on Reunion Island: Mating Vigour of Sterilized Males. PLoS ONE 2012, 7, e49414. [Google Scholar] [CrossRef][Green Version]
- Damiens, D.; Lebon, C.; Wilkinson, D.A.; Dijoux-Millet, D.; Le Goff, G.; Bheecarry, A.; Gouagna, L.-C. Cross-Mating Compatibility and Competitiveness among Aedes albopictus Strains from Distinct Geographic Origins—Implications for Future Application of SIT Programs in the South West Indian Ocean Islands. PLoS ONE 2016, 11, e0163788. [Google Scholar] [CrossRef] [PubMed]
- Virginio, J.F.; Gomez, M.; Almeida, F.; Pedrosa, M.C.; Pinto, A.T.; Garziera, L.; Klaptocz, A.; Germann, J.; Ponsot, W.; Lopez, O.; et al. Drone-Based Aerial Release Mechanism for Mosquitoes; WeRobotics: Geneva, Switzerland, 2018; p. 32. [Google Scholar]
- Culbert, N.J.; Kaiser, M.; Venter, N.; Vreysen, M.J.B.; Gilles, J.R.L.; Bouyer, J. A Standardised Method of Marking Male Mosquitoes with Fluorescent Dust. Parasite Vector 2020, 13, 192. [Google Scholar] [CrossRef][Green Version]
- Aviles, E.I.; Rotenberry, R.D.; Collins, C.M.; Dotson, E.M.; Benedict, M.Q. Fluorescent Markers Rhodamine B and Uranine for Anopheles gambiae Adults and Matings. Malar. J. 2020, 19, 236. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.J.; Mitchell, S.N.; Paton, C.J.; Stevenson, J.; Staunton, K.M.; Snoad, N.; Beebe, N.; White, B.J.; Ritchie, S.A. Use of Rhodamine B to Mark the Body and Seminal Fluid of Male Aedes aegypti for Mark-Release-Recapture Experiments and Estimating Efficacy of Sterile Male Releases. PLoS NTD 2017, 11, e0005902. [Google Scholar] [CrossRef][Green Version]
- Helinski, M.E.H.; Hood-Nowotny, R.; Mayr, L.; Knols, B.G.J. Stable Isotope-Mass Spectrometric Determination of Semen Transfer in Malaria Mosquitoes. J. Exp. Biol. 2007, 210, 1266–1274. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Faiman, R.; Krajacich, B.J.; Graber, L.; Dao, A.; Yaro, A.S.; Yossi, O.; Sanogo, Z.L.; Diallo, M.; Samaké, D.; Sylla, D.; et al. A Novel Fluorescence and DNA Combination for Complex, Long-Term Marking of Mosquitoes. Biorxiv 2020. [Google Scholar] [CrossRef]
- Dicko, A.H.; Lancelot, R.; Seck, M.T.; Guerrini, L.; Sall, B.; Lo, M.; Vreysen, M.J.B.; Lefrançois, T.; Fonta, W.M.; Peck, S.L.; et al. Using Species Distribution Models to Optimize Vector Control in the Framework of the Tsetse Eradication Campaign in Senegal. PNAS 2014, 111, 10149–10154. [Google Scholar] [CrossRef][Green Version]
- Sagna, A.B.; Kassié, D.; Couvray, A.; Adja, A.M.; Hermann, E.; Riveau, G.; Salem, G.; Fournet, F.; Remoue, F. Spatial Assessment of Human-Mosquitoes’ Contact (Anopheles and Aedes) in a Medium-Sized African Urban Setting Using Salivary Antibody-Based Biomarkers. J. Infect. Dis. 2019, 388, 1545. [Google Scholar] [CrossRef]
- FAO; IAEA. Manuals & Protocols, Insect Pest Control—NAFA. Available online: http://www-naweb.iaea.org/nafa/ipc/public/manuals-ipc.html#mosquitos (accessed on 16 December 2020).
- WHO. Global Vector Control Response 2017–2030: A Strategic Approach to Tackle Vector-Borne Diseases; WHO: Geneva, Switzerland, 2017; p. 4. [Google Scholar]
Stakeholder Engagement | Production |
---|---|
Message development | Larval and adult diet |
Media costs (electronic and printing) Social networking | Staff training and costs Sex sorting |
Staff training + costs | Disposable materials |
Transport and site costs | Sterilization (local or through purchase) |
Facility operation | Release and monitoring |
Facility leasing, renovation or purchase costs | Staff training and costs |
Administration | Traps |
Maintenance and utilities | Disposable materials |
Cleaning services and staff costs | Transport and site costs |
Waste disposal | Data management and analysis |
Source reduction ranges from simply reducing artificial larval sites (removing or draining non-essential or disposable containers on most properties), to long-term habitat-altering measures, and may almost eliminate any need for larviciding. This approach, which primarily targets artificial containers in private and public spaces, is emphasized in any SIT pilot intervention. This requires the active involvement of the community and a public information campaign is essential to obtain community mobilization [50,51]. Larval habitat elimination through public engagement is useful, but rarely sufficient without the active involvment of supervision from official control services [52,53]. |
Door-to-door (DtoD) or house-to-house based reduction of larval habitats of Ae. albopictus has been used in several trials in Italy, and is both legally enforced and inspected as part of mosquito control in Singapore. This entails regular inspection of private properties, with larvicide treatment of permanent larval sites and the removal or treatment of temporary ones (source reduction), together with relevant control information provided to the residents. In this program, accessing 95% of the private properties, resulted in a 69–72% reduction in the density of Ae. albopictus females and a 36–62% reduction in ovitrap collections [54]. For effective and sustained source reduction, DtoD requires appropriate communication materials, planning and manpower. |
Larviciding is the use of chemicals or biological agents to control immature stages developing in aquatic habitats. The feasibility, effectiveness, acceptability and cost of biological larviciding in some countries are summarized in Guzzetta et al. [55]. The most widely used tools are biological control agents such as copepods, Bacillus thuringiensis israelensis (Bti), Lysinibacillus sphaericus (Ls) and spinosad [56,57], or insect growth regulators (IGR) such as diflubenzuron, methoprene and pyriproxifen. Auto-dissemination (AD) of the pyriproxifen can deliver impressive levels of suppression in field trials [58,59]. However, AD works well at high, but not low, mosquito densities and some degree of population recovery is expected once pyriproxifen levels fall [60]. Area-wide application of pyriproxifen cannot provide long-term reduction in mosquitoes because cryptic populations are likely to re-surge; so coupling AD with SIT has great potential [60]. Larval habitat treatment with IGRs within release areas may also reduce the influence of any immigration by fertile females. |
Physical control by gravid mass-trapping and kill tactics. Each gravid Aedes sp. female can lay 100–200 eggs and contribute to rapid population build-up with a generation every six to nine days for Ae. albopictus under optimal conditions. Originally developed for population monitoring, gravid traps baited with an oviposition medium and with either sticky devices or insecticides can reduce local population densities [61,62]. The use of three CDC autocidal gravid traps per home in more than 85% of houses within a treatment area has shown sustained and effective reductions (80%) of Ae. aegypti populations [63,64,65,66]. The BG-GAT (Biogents’ Gravid Aedes Trap) against Ae. albopictus has shown good results in the USA when house coverage is over 80% [67]. |
Ground or aerial adulticiding with ultra-low volume (ULV) spraying of pyrethroid or carbamate insecticides is usually employed during public health emergencies to reduce further human disease transmission. Depending on the Aedes species present, indoor or outdoor residual treatments can affect vector densities [68]. In some contexts, when the natural population of Aedes remains high all year long and where there is no evidence of insecticide resistance [69], adulticiding may be neccessary to reduce the wild population preceding the sterile male releases. This requires careful weighing of the risks and benefits in each situation. Insecticide resistance should be carefully monitored, not only in the pre-suppression phase, but in the broad context of any IVM strategy [61]. Long-term use of adulticides should be avoided because of stakeholder perception and the risks of resistance and potential impact on non-target organisms and the environment. |
Indoor residual spraying using pyrethroid or other insecticide classes can reduce the presence of Ae. aegypti females because these prefer biting and resting indoors. This is showing promising results in tropical and subtropical areas of Latin America [69]. |
Entomological: Initial or historical estimates of vector bio-ecology and density, validation of monitoring tools (traps adapted to the context). Ecological: The degree of ecological isolation. |
Logistic: The expected sterile male mosquito production levels that would be required for the site, the constraints (geographical, topographical, etc.) related to mass releases. |
Social/ Financial: The expected political/social stakeholder support available locally and regionally. |
Local Production | Purchase/Import | |
---|---|---|
Advantages |
|
|
Disadvantages |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliva, C.F.; Benedict, M.Q.; Collins, C.M.; Baldet, T.; Bellini, R.; Bossin, H.; Bouyer, J.; Corbel, V.; Facchinelli, L.; Fouque, F.; et al. Sterile Insect Technique (SIT) against Aedes Species Mosquitoes: A Roadmap and Good Practice Framework for Designing, Implementing and Evaluating Pilot Field Trials. Insects 2021, 12, 191. https://doi.org/10.3390/insects12030191
Oliva CF, Benedict MQ, Collins CM, Baldet T, Bellini R, Bossin H, Bouyer J, Corbel V, Facchinelli L, Fouque F, et al. Sterile Insect Technique (SIT) against Aedes Species Mosquitoes: A Roadmap and Good Practice Framework for Designing, Implementing and Evaluating Pilot Field Trials. Insects. 2021; 12(3):191. https://doi.org/10.3390/insects12030191
Chicago/Turabian StyleOliva, Clélia F., Mark Q. Benedict, C Matilda Collins, Thierry Baldet, Romeo Bellini, Hervé Bossin, Jérémy Bouyer, Vincent Corbel, Luca Facchinelli, Florence Fouque, and et al. 2021. "Sterile Insect Technique (SIT) against Aedes Species Mosquitoes: A Roadmap and Good Practice Framework for Designing, Implementing and Evaluating Pilot Field Trials" Insects 12, no. 3: 191. https://doi.org/10.3390/insects12030191