Hot Water Treatment for Post-Harvest Disinfestation of Bactrocera dorsalis (Diptera: Tephritidae) and Its Effect on cv. Tommy Atkins Mango
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Mass Rearing of Fruit Flies
2.2. Procurement of Experimental Mango Fruits cv. Tommy Atkins
2.3. Hot Water Treatment Tank
2.4. Development Time and Heat Sensitivity of B. dorsalis in cv. Tommy Atkins Mango
2.5. Large-Scale Confirmatory Tests
2.6. Assessment of cv. Tommy Atkins Mango Quality after HWT
2.7. Data Analyses
3. Results
3.1. The Development Rate of Bactrocera dorsalis in cv. Tommy Atkins Mango
3.2. Heat Sensitivity of Bactrocera dorsalis in cv. Tommy Atkins Mango
3.3. Large-Scale Confirmatory Trials
3.4. Changes in cv. Tommy Atkins Mango Fruit Quality Parameters after HWT
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sennhenn, A.; Prinz, K.; Gebauer, J.; Whitbread, A.; Jamnadass, R.; Kehlenbeck, K. Identification of Mango (Mangifera Indica, L.) Landraces from Eastern and Central Kenya Using a Morphological and Molecular Approach. Genet. Resour. Crop Evol. 2014, 61, 7–22. [Google Scholar] [CrossRef]
- HCDA. Horticultural Crops Directorate Authority: Horticulture Validated Report 2016–2017; Agriculture and Food Authority: Nairobi, Kenya, 2017; pp. 1–61. [Google Scholar]
- Ekesi, S.; Mohamed, S.A.; Hanna, R.; Lux, S.A.; Gnanvossou, D.; Bokonon-Ganta, A. Fruit Fly Suppression—Purpose, Tools and Methodology; Ekesi, S., Billah, M.K., Eds.; Icipe Science Press: Nairobi, Kenya, 2007. [Google Scholar]
- FAO. Major Tropical Fruits Statistical Compendium 2019 2019, 18.
- Manrakhan, A.; Leblanc, L. Bactrocera dorsalis (Oriental Fruit Fly). In Invasive Species Compendium; CABI: Wallingford, UK, 2020; Available online: https://www.cabi.org/isc/datasheet/17685 (accessed on 13 August 2021).
- Mwatawala, M.W.; De Meyer, M.; Makundi, R.H.; Maerere, A.P. Seasonality and Host Utilization of the Invasive Fruit Fly, Bactrocera Invadens (Dipt., Tephritidae) in Central Tanzania. J. Appl. Entomol. 2006, 130, 530–537. [Google Scholar] [CrossRef]
- Rwomushana, I.; Ekesi, S.; Gordon, I.A.N. Host Plants and Host Plant Preference Studies for Bactrocera Invadens (Diptera: Tephritidae) in Kenya, a New Invasive Fruit Fly Species in Africa. Ann. Entomol. Soc. Am. 2008, 101, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Vayssieres, J.; Korie, S.; Coulibaly, O.; Temple, L.; Bouyl, S. The Mango Tree in Central and Northern Benin: Cultivar Inventory, Yield Assessment, Infested Stages and Loss Due to Fruit Flies (Diptera Tephritidae). Fruits 2008, 63, 335–348. [Google Scholar] [CrossRef]
- Ekesi, S.; De Meyer, M.; Mohamed, S.A.; Virgilio, M.; Borgemeister, C. Taxonomy, Ecology, and Management of Native and Exotic Fruit Fly Species in Africa. Annu. Rev. Entomol. 2016, 61, 219–238. [Google Scholar] [CrossRef]
- Korir, J.K.; Affognon, H.D.; Ritho, C.N.; Kingori, W.S.; Irungu, P.; Mohamed, S.A.; Ekesi, S. Grower Adoption of an Integrated Pest Management Package for Management of Mango-Infesting Fruit Flies (Diptera: Tephritidae) in Embu, Kenya. Int. J. Trop. Insect Sci. 2015, 35, 80–89. [Google Scholar] [CrossRef]
- Sante, E. EUROPHYT-Interceptions-European Union Notification System for Plant Health Interceptions–Annual Report 2017; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
- Nankinga, C.; Isabiyre, B.; Muyinza, H.; Rwomushana, I.; Akol, A.M.; Stevenson, P.C.; AooI, W. Potential Economic Losses in the Uganda Mango Industry Due to Fruit Fly Infestation. In Proceedings of the 2nd National Agricultural Research Laboratories Conference, Kampala, Uganda, 11–13 November 2010; pp. 11–13. [Google Scholar]
- Dhami, M.K.; Gunawardana, D.N.; Voice, D.; Kumarasinghe, L. A Real-Time PCR Toolbox for Accurate Identification of Invasive Fruit Fly Species. J. Appl. Entomol. 2016, 140, 536–552. [Google Scholar] [CrossRef]
- CABI/EPPO. Bactrocera dorsalis. [Distribution Map]. Distribution Maps of Plant Pests; CAB Int.: Wallingford, UK, 2018. [Google Scholar] [CrossRef]
- EPPO. PM1002(29) EPPO A1 and A2 Lists of Pests Recommended for Regulation as Quarantine Pests. EPPO Bull. 2020, 2, 1–19. [Google Scholar]
- IPPC. Phytosanitary Measures Research Group—International Plant Protection Convention. Available online: https://www.ippc.int/en/external-cooperation/organizations-page-in-ipp/phytosanitarymeasuresresearchgroup/ (accessed on 14 August 2021).
- Kibira, M.; Affognon, H.; Njehia, B.; Muriithi, B.; Mohamed, S.; Ekesi, S. Economic Evaluation of Integrated Management of Fruit Fly in Mango Production in Embu County, Kenya. Afr. J. Agric. Resour. Econ. 2015, 10, 343–353. [Google Scholar]
- Muriithi, B.W.; Affognon, H.D.; Diiro, G.M.; Kingori, S.W.; Tanga, C.M.; Nderitu, P.W.; Mohamed, S.A.; Ekesi, S. Impact Assessment of Integrated Pest Management (IPM) Strategy for Suppression of Mango-Infesting Fruit Flies in Kenya. Crop Prot. 2016, 81, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Muriithi, B.W.; Gathogo, N.G.; Diiro, G.M.; Mohamed, S.A.; Ekesi, S. Potential Adoption of Integrated Pest Management Strategy for Suppression of Mango Fruit Flies in East Africa: An Ex Ante and Ex Post Analysis in Ethiopia and Kenya. Agriculture 2020, 10, 278. [Google Scholar] [CrossRef]
- Black, R.; Bartlett, D.M.F. Biosecurity Frameworks for Cross-Border Movement of Invasive Alien Species. Environ. Sci. Policy 2020, 105, 113–119. [Google Scholar] [CrossRef]
- OECD. In Mangoes, International Standards for Fruit and Vegetables; OECD Publ.: Paris, France, 2020; pp. 1–65. [CrossRef]
- Turner, R.M.; Brockerhoff, E.G.; Bertelsmeier, C.; Blake, R.E.; Caton, B.; James, A.; MacLeod, A.; Nahrung, H.F.; Pawson, S.M.; Plank, M.J.; et al. Worldwide Border Interceptions Provide a Window into Human-mediated Global Insect Movement. Ecol. Appl. 2021, e02412. [Google Scholar] [CrossRef] [PubMed]
- CBI. What Requirements Must Fresh Fruit or Vegetables Comply with to Be Allowed on the European Market? Available online: https://www.cbi.eu/market-information/fresh-fruit-vegetables/buyer-requirements (accessed on 13 August 2021).
- EUROPHYT. European Union Notification System for Plant Health Interceptions: Interceptions of Harmful Organisms in Imported Plants and Other Objects. Available online: https://ec.europa.eu/food/plants/plant-health-and-biosecurity/europhyt/interceptions_en#plant-interceptions--monthly-reports-2021 (accessed on 17 November 2021).
- Dohino, T.; Hallman, G.J.; Grout, T.G.; Clarke, A.R.; Follett, P.A.; Cugala, D.R.; Minh Tu, D.; Murdita, W.; Hernandez, E.; Pereira, R.; et al. Phytosanitary Treatments against Bactrocera dorsalis (Diptera: Tephritidae): Current Situation and Future Prospects. J. Econ. Entomol. 2016, 110, 67–79. [Google Scholar] [CrossRef] [Green Version]
- Bambalele, N.L.; Mditshwa, A.; Magwaza, L.S.; Tesfay, S.Z. Recent Advances on Postharvest Technologies of Mango Fruit: A Review. Int. J. Fruit Sci. 2021, 21, 565–586. [Google Scholar] [CrossRef]
- Julius, H. Fruit Irradiation Lack of Feasibility. Available online: http://www.rag.org.au/modifiedfoods/fruit irradiation lack of feasibility.htm (accessed on 13 August 2021).
- Moy, J.H. Tropical Fruit Irradiation—From Research to Commercial Application. In Proceedings of the International Symposium “New Frontier of Irradiated food and Non-Food Products”, Bangkok, Thailand, 22–23 September 2005. [Google Scholar]
- Ducom, P. Methyl Bromide Alternatives. Pest Manag. Focus 2012, 5, 19–20. [Google Scholar]
- Verghese, A.; Nagaraju, D.K.; Sreedevi, K. Hot Water as an Effective Post Harvest Disinfestant for the Oriental Fruit Fly, Bactrocera dorsalis (Hendel) on Mango. Pest Manag. Hortic. Ecosyst. 2011, 17, 63–68. [Google Scholar]
- Pongener, A.; Sharma, S.; Purbey, S. Heat Treatment of Fruits and Vegetables. In Postharvest Disinfection of Fruits and Vegetables; Academic Press: Cambridge, MA, USA, 2018; pp. 179–196. [Google Scholar]
- Ndlela, S.; Mwando, N.L.; Mohamed, S.A. Advances in Postharvest Disinfestation of Fruits and Vegetables Using Hot Water Treatment Technology-Updates from Africa. In Postharvest Technology—Recent Advances, New Perspectives and Applications [Working Title]; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- IPPC. International Plant Protection Convention, ISPM 42: Requirements for the Use of Temperature Treatments as Phytosanitary Measures. Available online: https://www.ippc.int/en/publications/86087/ (accessed on 16 November 2021).
- Melvin Couey, H.; Chew, V. Confidence Limits and Sample Size in Quarantine Research. J. Econ. Entomol. 1986, 79, 887–890. [Google Scholar] [CrossRef]
- Schortemeyer, M.; Thomas, K.; Haack, R.A.; Uzunovic, A.; Hoover, K.; Simpson, J.A.; Grgurinovic, C.A. Appropriateness of Probit-9 in the Development of Quarantine Treatments for Timber and Timber Commodities. J. Econ. Entomol. 2011, 104, 717–731. [Google Scholar] [CrossRef] [PubMed]
- Self, G.; Ducamp, M.N.; Vayssières, J.F. The Effects of Phytosanitary Hot Water Treatments on West African Mangoes Infested with Bactrocera invadens (Diptera: Tephritidae). Fruits 2012, 67, 439–449. [Google Scholar] [CrossRef] [Green Version]
- Ndlela, S.; Ekesi, S.; Ndegwa, P.N.; Ong’amo, G.O.; Mohamed, S.A. Post-Harvest Disinfestation of Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) in Mango Using Hot-Water Treatments. J. Appl. Entomol. 2017, 141, 848–859. [Google Scholar] [CrossRef]
- Jacobi, K.K.; MacRae, E.A.; Hetherington, S.E. Postharvest Heat Disinfestation Treatments of Mango Fruit. Sci. Hortic. 2001, 89, 171–193. [Google Scholar] [CrossRef]
- USDA-APHIS. Treatment Manual; United States Department of Agriculture- Animal and Plant Health Inspection Service: Washington, DC, USA, 2021; p. 920.
- Ekesi, S.; Mohammed, S. Mass Rearing and Quality Control Parameters for Tephritid Fruit Flies of Economic Importance in Africa. In Wide Spectra of Quality Control; IntechOpen: London, UK, 2011. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis of AOAC International, 16th ed.; AOAC International: Rockville, MD, USA, 1998. [Google Scholar]
- Padda, M.S.; do Amarante, C.V.T.; Garcia, R.M.; Slaughter, D.C.; Mitcham, E.J. Methods to Analyze Physico-Chemical Changes during Mango Ripening: A Multivariate Approach. Postharvest Biol. Technol. 2011, 62, 267–274. [Google Scholar] [CrossRef]
- Abbott, W.S. A Method for Computing the Effectiveness of an Insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Robertson, J.; Jones, M.; Olguin, E.; Alberts, B. Bioassays with Arthropods, 3rd ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- R-Development Core-Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.r-project.org/ (accessed on 13 August 2021).
- Fletcher, B. Temperature-Development Rate Relationships of the Immature Stages and Adults of Tephritid Fruit Flies. In World Crop Pests: Fruit Flies: Their Biology, Natural Enemies and Control; Elsevier Science: Amsterdam, The Netherlands, 1989; Volume 3A, pp. 273–289. [Google Scholar]
- Rwomushana, I.; Ekesi, S.; Ogol, C.K.P.O.; Gordon, I. Effect of Temperature on Development and Survival of Immature Stages of Bactrocera invadens (Diptera: Tephritidae). J. Appl. Entomol. 2008, 132, 832–839. [Google Scholar] [CrossRef]
- Rattanapun, W.; Amornsak, W.; Clarke, A.R. Bactrocera dorsalis Preference for and Performance on Two Mango Varieties at Three Stages of Ripeness. Entomol. Exp. Appl. 2009, 131, 243–253. [Google Scholar] [CrossRef] [Green Version]
- Ekesi, S.; Nderitu, P.W.; Rwomushana, I. Field Infestation, Life History and Demographic Parameters of the Fruit Fly Bactrocera invadens (Diptera: Tephritidae) in Africa. Bull. Entomol. Res. 2006, 96, 379–386. [Google Scholar] [CrossRef]
- Gomina, M.; Mondedji, A.D.; Nyamador, W.; Vayssières, J.F.; Amevoin, K.; Glitho, A.I. Development and Demographic Parameters of Bactrocera invadens (Diptera: Tephritidae) in Guinean Climatic Zone of Togo. Int. J. Nat. Sci. Res. 2014, 2, 263–277. [Google Scholar]
- Huang, Y.B.K.; Chi, H. Fitness of Bactrocera dorsalis (Hendel) on Seven Host Plants and an Artificial Diet. Turk. Entomol. Derg. 2014, 38, 401–414. [Google Scholar] [CrossRef]
- Samayoa, A.C.; Choi, K.S.; Wang, Y.S.; Hwang, S.Y.; Huang, Y.B.; Ahn, J.J. Thermal Effects on the Development of Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) and Model Validation in Taiwan. Phytoparasitica 2018, 46, 365–376. [Google Scholar] [CrossRef]
- Foliaki, S.; Armstrong, J.W. Heat Tolerances of Immature Stages of Bactrocera facialis and B. xanthodes (Diptera: Tephritidae). In Aciar Proceedings; Australian Centre for International Agricultural Research: Canberra, Australia, 1997; pp. 239–246. [Google Scholar]
- Waddell, B.C.; Clare, G.K.; Petry, R.J.; Maindonald, J.H.; Purea, M.; Wigmore, W.; Joseph, P.; Fullerton, R.A.; Batchelor, T.A.; Lay-Yee, M.; et al. Quarantine Heat Treatment for Bactrocera melanotus (Coquillett) and B. xanthodes (Broun) (Diptera: Tephritidae) in Waimanalo Papaya in Cook Islands. In ACIAR Proceedings; Australian Centre for International Agricultural Research: Canberra, Australia, 1997; pp. 251–255. [Google Scholar]
- Motswagole, R.; Gotcha, N.; Nyamukondiwa, C. Thermal Biology and Seasonal Population Abundance of Bactrocera dorsalis Hendel (Diptera: Tephritidae): Implications on Pest Management. Int. J. Insect Sci. 2019, 11, 117954331986341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salum, J.K.; Mwatawala, M.W.; Kusolwa, P.M.; Meyer, M.D. Demographic Parameters of the Two Main Fruit Fly (Diptera: Tephritidae) Species Attacking Mango in Central Tanzania. J. Appl. Entomol. 2014, 138, 441–448. [Google Scholar] [CrossRef]
- Hernández, E.; Aceituno-Medina, M.; Toledo, J.; Gómez-Simuta, Y.; Villarreal-Fuentes, J.M.; Carrasco, M.; Liedo, P.; Hallman, G.J.; Montoya, P. Generic irradiation and hot water phytosanitary treatments for mango fruits cv.‘Ataulfo’niño infested by Anastrepha ludens and Anastrepha obliqua (Diptera: Tephritidae). J. Econ. Entomol. 2018, 111, 2010–2119. [Google Scholar] [CrossRef]
- Collin, M.; Arnaud, C.; Kagy, V.; Didier, C. Fruit Flies: Disinfestation, Techniques Used, Possible Application to Mango. Fruits 2007, 62, 223–229. [Google Scholar] [CrossRef]
- Yamamura, K.; Katsumata, H.; Yoshioka, J.; Yuda, T.; Kasugai, K. Sampling Inspection to Prevent the Invasion of Alien Pests: Statistical Theory of Import Plant Quarantine Systems in Japan. Popul. Ecol. 2016, 58, 63–80. [Google Scholar] [CrossRef]
- Lurie, S.; Pedreschi, R. Fundamental Aspects of Postharvest Heat Treatments. Hortic. Res. 2014, 1, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Tang, G. Current Status and Development Trend of Heat Transfer Mechanism Research of Fruit Heat Treatment. Int. J. Front. Sociol. 2021, 3, 36–39. [Google Scholar] [CrossRef]
- Sharp, J.; Spalding, D.H. Hot Water as a Quarantine Treatment for Florida Mangos Infested with Caribbean Fruit Fly. Proc. Fla. State Hortic. Soc. 1985, 97, 355–357. [Google Scholar]
- Sharp, J.L.; Ouye, M.T.; Hart, W.; Ingle, S.; Hallman, G.; Gould, W.; Chew, V. Immersion of Florida Mangos in Hot Water as a Quarantine Treatment for Caribbean Fruit Fly (Diptera: Tephritidae). J. Econ. Entomol. 1989, 82, 186–188. [Google Scholar] [CrossRef]
- Le, T.N.; Shiesh, C.C.; Lin, H.L. Effect of Vapor Heat and Hot Water Treatments on Disease Incidence and Quality of Taiwan Native Strain Mango Fruits. Int. J. Agric. Biol. 2010, 12, 673–678. [Google Scholar]
- Spalding, D.H.; King, J.R.; Sharp, J.L. Quality and Decay of Mangos Treated with Hot Water for Quarantine Control of Fruit Fly. Trop. Sci. 1988, 28, 99–101. [Google Scholar]
- Hernández, E.; Rivera, P.; Bravo, B.; Toledo, J.; Caro-Corrales, J.; Montoya, P. Hot-Water Phytosanitary Treatment against Ceratitis capitata (Diptera: Tephritidae) in “Ataulfo” Mangoes. J. Econ. Entomol. 2012, 105, 1940–1953. [Google Scholar] [CrossRef] [PubMed]
- Ding, P.; Mijin, S. Physico-Chemical Characteristics of Chok Anan Mango Fruit after Hot Water Treatment. Pertanika J. Trop. Agric. Sci. 2013, 36, 359–372. [Google Scholar]
- Kim, Y.; Lounds-Singleton, A.J.; Talcott, S.T. Antioxidant Phytochemical and Quality Changes Associated with Hot Water Immersion Treatment of Mangoes (Mangifera indica L.). Food Chem. 2009, 115, 989–993. [Google Scholar] [CrossRef]
- Dautt-Castro, M.; Ochoa-Leyva, A.; Contreras-Vergara, C.A.; Muhlia-Almazán, A.; Rivera-Domínguez, M.; Casas-Flores, S.; Martinez-Tellez, M.A.; Sañudo-Barajas, A.; Osuna-Enciso, T.; Baez-Sañudo, M.A.; et al. Mesocarp RNA-Seq Analysis of Mango (Mangifera indica L.) Identify Quarantine Postharvest Treatment Effects on Gene Expression. Sci. Hortic. 2018, 227, 146–153. [Google Scholar] [CrossRef]
- Oladele, O.O.; Fatukasi, O.I. Effect of Pre-Storage Hot Air and Hot Water Treatments on Post-Harvest Quality of Mango (Mangifera indica Linn.) Fruit. Not. Sci. Biol. 2020, 12, 842–851. [Google Scholar] [CrossRef]
- Mansour, F.S.; Abd-El-Aziz, S.A.; Helal, G.A. Effect of Fruit Heat Treatment in Three Mango Varieties on Incidence of Postharvest Fungal Diseases. Source J. Plant Pathol. 2006, 88, 141–148. [Google Scholar]
- Wang, H.; Yang, Z.; Song, F.; Chen, W.; Zhao, S. Effects of Heat Treatment on Changes of Respiration Rate and Enzyme Activity of Ivory Mangoes During Storage. J. Food Process. Preserv. 2017, 41, e12737. [Google Scholar] [CrossRef] [Green Version]
% of Different Developmental Stage | ||||
---|---|---|---|---|
Day | Eggs | First Instar | Second Instar | Third Instar |
1 | 100 | 0 | 0 | 0 |
2 | 9.5 | 90.5 | 0 | 0 |
3 | 0 | 98 | 2 | 0 |
4 | 0 | 5.5 | 94.5 | 0 |
5 | 0 | 2.5 | 96.5 | 1 |
6 | 0 | 0 | 98 | 2 |
7 | 0 | 0 | 39.5 | 60.5 |
8 | 0 | 0 | 0.5 | 99.5 |
9 | 0 | 0 | 0 | 100 |
Stage | Time (min) | No. of Insects | No. Dead | % Mortality |
---|---|---|---|---|
Egg | 8 | 7014 | 109 | 1.55 |
15 | 7032 | 1496 | 21.27 | |
23 | 6633 | 3911 | 58.96 | |
30 | 6207 | 5812 | 93.64 | |
38 | 6372 | 6366 | 99.91 | |
53 | 7717 | 7717 | 100.00 | |
60 | 7418 | 7418 | 100.00 | |
68 | 6760 | 6760 | 100.00 | |
1st instar | 8 | 6782 | 186 | 2.74 |
15 | 6691 | 1070 | 15.99 | |
23 | 7134 | 3011 | 42.21 | |
30 | 6524 | 4187 | 64.18 | |
38 | 6548 | 6121 | 93.48 | |
53 | 6489 | 6489 | 100.00 | |
60 | 7402 | 7402 | 100.00 | |
68 | 6843 | 6843 | 100.00 | |
2nd instar | 8 | 7118 | 176 | 2.47 |
15 | 7216 | 633 | 8.77 | |
23 | 7190 | 2520 | 35.05 | |
30 | 7300 | 4869 | 66.70 | |
38 | 7132 | 6092 | 85.42 | |
53 | 7035 | 7034 | 99.99 | |
60 | 7487 | 7487 | 100.00 | |
68 | 7926 | 7926 | 100.00 | |
3rd instar | 8 | 5907 | 132 | 2.23 |
15 | 5886 | 568 | 9.65 | |
23 | 5915 | 2321 | 39.24 | |
30 | 5813 | 3531 | 60.74 | |
38 | 5734 | 4534 | 79.07 | |
53 | 5893 | 5781 | 98.10 | |
60 | 5924 | 5892 | 99.46 | |
68 | 6034 | 6034 | 100.00 |
Stage | No. of Insects | LT50 | LT90 | LT99 | LT99.9 | LT99.99 | LT99.9968 |
---|---|---|---|---|---|---|---|
Egg | 55,153 | 20.90 (20.52–21.28) | 28.91 (28.34–29.49) | 35.45 (34.56–36.33) | 40.22 (39.10–41.35) | 44.16 (42.82–45.49) | 45.90 (44.47–47.33)a |
1st instar | 54,413 | 24.81 (24.34–25.27) | 36.20 (35.43–36.98) | 45.50 (44.29–46.70) | 52.29 (50.74–53.84) | 57.88 (56.05–59.71) | 60.36 (58.40–62.32)b |
2nd instar | 58,404 | 27.28 (26.81–27.75) | 38.71 (37.90–39.52) | 48.03 (46.78–49.27) | 54.84 (53.25–56.43) | 60.45 (58.57–62.39 | 62.93 (60.93–64.94)b |
3rd instar | 47,106 | 28.35 (27.81–28.89) | 42.55 (41.61–43.48) | 54.12 (52.68–55.56) | 62.58 (60.75–64.42) | 69.55 (67.38–71.72) | 72.63 (70.32–74.95)c |
Hot Water Treatment | Untreated Control | ||||||||
---|---|---|---|---|---|---|---|---|---|
Replicate | No. of Fruits | No. of Insects | No. Dead | No. Alive | % Mortality | No. of Insects | No. Dead | No. Alive | % Mortality |
1 | 160 | 9159 | 9159 | 0 | 100 | 9448 | 228 | 9220 | 2.41 |
2 | 160 | 7142 | 7142 | 0 | 100 | 7266 | 151 | 7115 | 2.08 |
3 | 160 | 7339 | 7339 | 0 | 100 | 7451 | 148 | 7303 | 1.99 |
4 | 160 | 7483 | 7483 | 0 | 100 | 7522 | 122 | 7400 | 1.62 |
5 | 160 | 6957 | 6957 | 0 | 100 | 7192 | 216 | 6976 | 3.00 |
6 | 160 | 7825 | 7825 | 0 | 100 | 7838 | 318 | 7520 | 4.06 |
7 | 160 | 6583 | 6583 | 0 | 100 | 6625 | 284 | 6341 | 4.29 |
8 | 160 | 6632 | 6632 | 0 | 100 | 6680 | 263 | 6417 | 3.94 |
Total | 1280 | 59,120 | 59,120 | 0 | 100 | 60,022 | 1730 | 58,292 | 2.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mwando, N.L.; Ndlela, S.; Meyhöfer, R.; Subramanian, S.; Mohamed, S.A. Hot Water Treatment for Post-Harvest Disinfestation of Bactrocera dorsalis (Diptera: Tephritidae) and Its Effect on cv. Tommy Atkins Mango. Insects 2021, 12, 1070. https://doi.org/10.3390/insects12121070
Mwando NL, Ndlela S, Meyhöfer R, Subramanian S, Mohamed SA. Hot Water Treatment for Post-Harvest Disinfestation of Bactrocera dorsalis (Diptera: Tephritidae) and Its Effect on cv. Tommy Atkins Mango. Insects. 2021; 12(12):1070. https://doi.org/10.3390/insects12121070
Chicago/Turabian StyleMwando, Nelson L., Shepard Ndlela, Rainer Meyhöfer, Sevgan Subramanian, and Samira A. Mohamed. 2021. "Hot Water Treatment for Post-Harvest Disinfestation of Bactrocera dorsalis (Diptera: Tephritidae) and Its Effect on cv. Tommy Atkins Mango" Insects 12, no. 12: 1070. https://doi.org/10.3390/insects12121070
APA StyleMwando, N. L., Ndlela, S., Meyhöfer, R., Subramanian, S., & Mohamed, S. A. (2021). Hot Water Treatment for Post-Harvest Disinfestation of Bactrocera dorsalis (Diptera: Tephritidae) and Its Effect on cv. Tommy Atkins Mango. Insects, 12(12), 1070. https://doi.org/10.3390/insects12121070