Impact of Biochar on Douglas-Fir Tussock Moth (Orgyia pseudotsugata Lepidoptera: Erebidae) Larvae Reared on Synthetic Diet
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects and Synthetic Diet
2.2. Biochar
2.3. Experiment 1: Surface-Applied Biochar Treatments
2.4. Experiment 2: Incorporated Biochar Treatments
2.5. Statistical Analysis
3. Results
3.1. Experiment 1. Surface-Applied Biochar Treatments
3.2. Experiment 2. Incorporated Biochar Treatments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Furniss, R.L.; Carolin, V.M. Western Forest Insects. USDA Forest Service Miscellaneous Publication No. 1339; US Government Printing Office: Washington, DC, USA, 1977. [Google Scholar]
- Mason, R.R. The Douglas-Fir Tussock Moth: A Synthesis. In USDA Technical Bulletin 1585. Forest Service Science and Education Agency; Brookes, M.H., Stark, R.W., Campbell, R.W., Eds.; U.S. Department of Agriculture: Washington, DC, USA, 1978; Volume 2, pp. 25–37. [Google Scholar]
- Wickman, B.E. Forest Health in the Blue Mountains: The Influence of Insects and Diseases. In Forest Health in the Blue Mountains: Science Perspectives; Quigley, T.M., Ed.; Gen. Tech. Rep. PNW-GTR-310; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1992. [Google Scholar]
- Mutch, R.W.; Arno, S.F.; Brown, J.K.; Carlson, C.E.; Ottmar, R.D.; Peterson, J.L. Forest Health in the Blue Mountains: A Management Strategy for Fire-Adapted Ecosystems. In Forest Health in the Blue Mountains: Science Perspectives; Quigley, T.M., Ed.; Gen. Tech. Rep. PNW-GTR-310; U.S Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1993. [Google Scholar]
- Wickman, B.E.; Mason, R.R.; Trostle, G.C. Douglas-Fir Tussock Moth; USDA Forest Service Forest Insect and Disease Leaflet 86; US Forest Service, US Government Printing Office: Washington, DC, USA, 1981. [Google Scholar]
- Kohler, G. Douglas-Fir Tussock Moth (Orgyia pseudotsugata): Outbreak Status of a Conifer Defoliating Caterpillar; Washington DNR Forest Health Alert: Olympia, WA, USA, 2012. [Google Scholar]
- Pederson, L.; Eckberg, T.; Lowrey, L.; Bulaon, B. Revised. Douglas-Fir Tussock Moth; USDA Forest Service Forest Insect and Disease Leaflet 86; US Forest Service, US Government Printing Office: Washington, DC, USA, 2020. [Google Scholar]
- McGrath, D. Pacific Northwest Insect Management Handbook; Oregon State University: Corvallis, OR, USA, 2001; 660p. [Google Scholar]
- Cook, S.P.; Sloniker, B.D.; Rust, M.L. Efficacy of two bole-injected systemic insecticides for protecting Douglas-Fir from damage by Douglas-fir tussock moth and fir coneworm. West. J. Appl. For. 2013, 28, 166–169. [Google Scholar] [CrossRef]
- Cook, S.P. Laboratory and field evaluation of tebufenozide, diflubenzuron, and Bacillus thurengiensis var. kurstaki for suppression of Douglas-fir tussock moth (Orgyia pseudotsugata (McDunnough)) in Idaho: A case study. J. Econ. Entomol. 2003, 96, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Cook, S.; Wenz, J.; Ragenovich, I.; Reardon, R.; Randall, C. Impact of mating disruption pheromone treatments to control Douglas-fir tussock moth, on egg parasitoids. Pan-Pac. Entomol. 2005, 81, 41–46. [Google Scholar]
- Vezina, A.; Peterman, R.M. Tests of the role of a nuclear polyhedrosis virus in the population dynamics of its host, douglas-fir tussock moth, Orgyia pseudotsugata (Lepidoptera: Lymantriidae). Oecologia 1985, 67, 260–266. [Google Scholar] [CrossRef]
- Torgersen, T.R.; Mason, R.R. Predation on Egg Masses of the Douglas-fir Tussock Moth (Lepidoptera: Lymantriidae). Environ. Entomol. 1987, 16, 90–93. [Google Scholar] [CrossRef]
- Mason, R.; Torgersen, T.; Wickman, B.; Paul, H. Natural Regulation of a Douglas-Fir Tussock Moth (Lepidoptera: Lymantriidae) Population in the Sierra Nevada. Environ. Entomol. 1983, 12, 587–594. [Google Scholar] [CrossRef]
- Raffa, K.F.; Powell, J.S. Tolerance of plant monoterpenes and diterpene acids by four species of Lymantriidae (Lepidoptera) exhibiting a range of feeding specificities. Great Lakes Entomol. 2004, 37, 116–125. [Google Scholar]
- Lockner, A.D.; Cook, S.P.; Kimsey, M.; McDonald, A.G.; Shaw, T. Toxicity to Douglas-fir tussock moth and foliar concentration of individual monoterpenes in Douglas-fir foliage following fertilization in thinned stands. Northwest Sci. 2019, 93, 163–170. [Google Scholar] [CrossRef]
- Biederman, L.A.; Harpole, W.S. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy 2013, 5, 202–214. [Google Scholar] [CrossRef]
- Bridgewater, A. Biomass fast pyrolysis. Therm. Sci. 2004, 8, 21–49. [Google Scholar] [CrossRef]
- Abit, S.M.; Bolster, C.H.; Cai, P.; Walker, S.L. Influence of feedstock and pyrolysis temperature of biochar amendments on transport of Escherichia coli in saturated and unsaturated soil. Environ. Sci. Technol. 2012, 46, 8097–8105. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Gaunt, J.; Rondon, M. Bio-char Sequestration in Terrestrial Ecosystems—A Review. Mitig. Adapt. Strateg. Glob. Clim. Chang. 2006, 11, 403–427. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science and Technology; Earthscan: London, UK, 2009. [Google Scholar]
- Page-Dumroese, D.S.; Coleman, M.D.; Thomas, S.C. Opportunities and uses of biochar on forest sites in North America. In Biochar: A Regional Supply Chain Approach in View of Climate Change Mitigation; Bruckman, V., Varol, E.A., Uzun Basak, L.J., Eds.; Cambridge University Press: Cambridge, UK, 2017; Chapter 15; pp. 315–335. [Google Scholar]
- Sarauer, J.; Page-Dumroese, D.S.; Coleman, M.D. Soil greenhouse gas, carbon content, and tree growth response to biochar amendment in western United States forests. Glob. Chang. Biol. Bioenergy 2018, 11, 660–671. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; DeLuca, T.H. Biochar alters nitrogen and phosphorus dynamics in a western rangeland ecosystem. Soil Biol. Biochem. 2020, 148, 107868. [Google Scholar] [CrossRef]
- Rodriguez-Franco, C.; Page-Dumroese, D.S. Woody biochar potential for abandoned mine land restoration in the US: A review. Biochar 2021, 3, 7–22. [Google Scholar] [CrossRef]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Marris, E. Putting the carbon back: Black is the new green. Nature 2006, 624, 626. [Google Scholar] [CrossRef]
- Waqas, M.; Khan, A.L.; Kang, S.M.; Kim, Y.H.; Lee, J. Phytohormone-producing fungal endophytes and hard-wood-derived biochar interact to ameliorate heavy metal stress in soybeans. Biol. Fertil. Soils 2014, 50, 1155–1167. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Y.; Song, L.; Song, X.; Hanninen, H.; Wu, J. Biochar enhances nut quality of Torreya grandis and soil fertility under simulated nitrogen deposition. For. Ecol. Manag. 2017, 391, 321–329. [Google Scholar] [CrossRef]
- Wang, J.Y.; Xiong, Z.Q.; Kuzyakov, Y. Biochar stability in soil: Meta-analysis of decomposition and priming effects. Glob. Chang. Biol. Bioenergy 2016, 8, 512–523. [Google Scholar] [CrossRef] [Green Version]
- Lahori, A.H.; Zhanyu, G.; Zhang, Z.; Li, R.; Mahar, A.; Awasthi, M. Use of biochar as an amendment for remediation of heavy metal-contaminated soils: Prospects and challenges. Pedosphere 2017, 27, 991–1014. [Google Scholar] [CrossRef]
- Waqas, M.; Kim, Y.H.; Khan, A.L.; Shahzad, R.; Asaf, S.; Hamayun, M. Additive effects due to biochar and endophyte application enable soybean to enhance nutrient uptake and modulate nutritional parameters. J. Zhejiang Univ.-Sci. 2017, 18, 109–124. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Li, R.; Li, B.; Meng, L. Biochar applications decrease reproductive potential of the English grain aphid Sitobion avenae and upregulate defense-related gene expression. Pest Manag. Sci. 2019, 75, 1310–1316. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Baoping, L.; Ling, M. Effects of biochar amendment to soil on life history traits of Laodelphax striatellus (Hemiptera: Delphacidae) on rice plants. Chin. J. Rice Sci. 2018, 32, 200–206. [Google Scholar]
- Cook, S.P.; Neto, V.R.A. Laboratory Evaluation of the Direct Impact of Biochar on Adult Survival of Four Forest Insect Species. Northwest Sci. 2018, 92, 1–8. [Google Scholar] [CrossRef]
- Hou, X.; Meng, L.; Li, L.; Pan, G.; Li, B. Biochar amendment to soils impairs developmental and reproductive performances of a major rice pest Nilaparvata lugens (Homopera: Delphacidae). J. Appl. Entomol. 2015, 139, 727–733. [Google Scholar] [CrossRef]
- Anderson, N.; Jones, J.G.; Page-Dumroese, D.; McCollum, D.; Baker, S.; Loeffler, D.; Chung, W. A comparison of producer gas, biochar, and activated carbon from two distributed scale thermochemical conversion systems used to process forest biomass. Energies 2013, 6, 164–183. [Google Scholar] [CrossRef]
- SAS Institute, Inc. SAS/STAT® 13.1 User’s Guide; SAS Institute, Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Larson, S. Stressful times for the plant stress-insect performance hypothesis. Oikos 1989, 56, 277–283. [Google Scholar] [CrossRef]
- Raubenheimer, D.; Simpson, S.J. The geometry of compensatory feeding in the locust. Anim. Behav. 1993, 45, 953–964. [Google Scholar] [CrossRef] [Green Version]
mg Biochar | LT50 (days) | 95% CI | LT95 (days) | 95% CI |
---|---|---|---|---|
0 | 18.5 a | 17.1–19.7 | 54.7 a | 50.6–59.8 |
5 | 12.7 b | 11.6–13.8 | 38.9 b | 35.8–42.8 |
10 | 10.9 b | 10.0–12.0 | 35.5 b | 32.3–39.5 |
(% Biochar) | LT50 (Days) | 95% CI | LT95 (Days) | 95% CI |
---|---|---|---|---|
0 | 18.7 a | 17.6–19.8 | 42.0 a | 39.2–45.5 |
10 | 16.2 b | 14.9–17.4 | 51.9 b | 47.8–57.0 |
20 | 12.4 c | 11.3–13.4 | 36.6 c | 31.8–38.1 |
40 | 8.9 d | 8.1–9.6 | 19.0 d | 17.3–21.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rice-Marshall, S.; Cook, S.P.; Randall, J. Impact of Biochar on Douglas-Fir Tussock Moth (Orgyia pseudotsugata Lepidoptera: Erebidae) Larvae Reared on Synthetic Diet. Insects 2021, 12, 1065. https://doi.org/10.3390/insects12121065
Rice-Marshall S, Cook SP, Randall J. Impact of Biochar on Douglas-Fir Tussock Moth (Orgyia pseudotsugata Lepidoptera: Erebidae) Larvae Reared on Synthetic Diet. Insects. 2021; 12(12):1065. https://doi.org/10.3390/insects12121065
Chicago/Turabian StyleRice-Marshall, Stacey, Stephen P. Cook, and John Randall. 2021. "Impact of Biochar on Douglas-Fir Tussock Moth (Orgyia pseudotsugata Lepidoptera: Erebidae) Larvae Reared on Synthetic Diet" Insects 12, no. 12: 1065. https://doi.org/10.3390/insects12121065
APA StyleRice-Marshall, S., Cook, S. P., & Randall, J. (2021). Impact of Biochar on Douglas-Fir Tussock Moth (Orgyia pseudotsugata Lepidoptera: Erebidae) Larvae Reared on Synthetic Diet. Insects, 12(12), 1065. https://doi.org/10.3390/insects12121065