Vitex negundo L. Essential Oil: Odorant Binding Protein Efficiency Using Molecular Docking Approach and Studies of the Mosquito Repellent
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection Sites and Identification of V. negundo Leaves
2.2. Leaf Processing and Extraction of Essential Oils
2.3. GC-MS Profiling of the Essential Oils
2.4. Sampling, Rearing, and Identification of Mosquitoes
2.5. Anopheles Species Authentication: Genomic DNA Extraction and PCR Amplification
2.6. Mosquito Behavioral Study Repellency Y-Tube Olfactometer Test
2.7. Target Protein Selection and Preparation
2.8. Ligands Preparation
2.9. Molecular Docking Studies
2.10. Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADME/tox) Investigation
3. Results and Discussion
3.1. V. negundo Essential Oil Yields, Climate and Soil Type of the Six States
3.2. Chemical Composition of V. negundo Essential Oils
3.3. PCR Confirmation of Anopheles Gambiae s.s
3.4. Mosquito Behavioural Study
3.5. Effective Dose of the Essential Oils from the North-Central Geopolitical Zone
3.6. Validation of Molecular Docking Protocol
3.7. Molecular Docking
3.8. Target OBPs Amino Acid–Ligand Interactions
3.9. Efficiency Metrics of Selected Ligands
3.10. In Silico ADMET Properties of the Ligands against the Odorant Binding Proteins
3.10.1. ADMET Properties
3.10.2. In-silico Environmental Toxicity
3.11. Repellence Study of the Pure Selected Ligands
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mattingly, P.F. Anopheles gambiae B. Available online: http://didaktorika.gr/eadd/handle/10442/7428 (accessed on 5 September 2021).
- World Malaria Report. The “World Malaria Report 2019” at a Glance. Available online: https://www.who.int/news-room/feature-stories/detail/world-malaria-report-2019 (accessed on 25 June 2021).
- Di Gennaro, F.; Marotta, C.; Locantore, P.; Pizzol, D.; Putoto, G. Malaria and COVID-19: Common and Different Findings. Trop. Med. Infect. Dis. 2020, 5, 141. [Google Scholar] [CrossRef]
- Agomo, C.O.; Oyibo, W.A.; Anorlu, R.I.; Agomo, P.U. Prevalence of malaria in pregnant women in Lagos, South-West Nigeria. Korean J. Parasitol. 2009, 47, 179–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okoroiwu, H.U.; Uchendu, K.I.; Essien, R.A. Causes of morbidity and mortality among patients admitted in a tertiary hospital in southern Nigeria: A 6 year evaluation. PLoS ONE 2020, 15, e0237313. [Google Scholar] [CrossRef] [PubMed]
- Drugs, I.; Arrow, K.J.; Panosian, C.; Gelband, H. The Parasite, the Mosquito, and the Disease. In Saving Lives, Buying Time: Economics of Malaria Drugs in an Age of Resistance; National Academies Press (US): Washington, DC, USA, 2004. [Google Scholar]
- Coluzzi, M.; Sabatini, A.; Petrarca, V.; Di Deco, M.A. Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex. Trans. R. Soc. Trop. Med. Hyg. 1979, 73, 483–497. [Google Scholar] [CrossRef]
- White, N.J. Antimalarial drug resistance. J. Clin. Investig. 2004, 113, 1084–1092. [Google Scholar] [CrossRef] [PubMed]
- Tse, E.G.; Korsik, M.; Todd, M.H. The past, present and future of anti-malarial medicines. Malar. J. 2019, 18, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CDC CDC—Malaria—Malaria Worldwide-How Can Malaria Cases and Deaths Be Reduced?—Vaccines. Available online: http://www.cdc.gov/malaria/malaria_worldwide/reduction/vaccine.html (accessed on 5 September 2021).
- Sharma, V.P. Health Hazards of Mosquito Repellents and Safe Alternatives. Available online: https://www.researchgate.net/publication/237353181_Health_hazards_of_mosquito_repellents_and_safe_alternatives (accessed on 5 September 2021).
- Hogarh, J.N.; Antwi-Agyei, P.; Obiri-Danso, K. Application of mosquito repellent coils and associated self-reported health issues in Ghana. Malar. J. 2016, 15, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diaz, J.H. Chemical and plant-based insect repellents: Efficacy, safety, and toxicity. Wilderness Environ. Med. 2016, 27, 153–163. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.Y. Essential Oils as Repellents against Arthropods. BioMed Res. Int. 2018, 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choochote, W.; Chaithong, U.; Kamsuk, K.; Jitpakdi, A.; Tippawangkosol, P.; Tuetun, B.; Champakaew, D.; Pitasawat, B. Repellent activity of selected essential oils against Aedes aegypti. Fitoterapia 2007, 78, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Maia, M.F.; Moore, S.J. Plant-based insect repellents: A review of their efficacy, development and testing. Malar. J. 2011, 10, S11. [Google Scholar] [CrossRef] [Green Version]
- Hebbalkar, D.S.; Hebbalkar, G.D.; Sharma, R.N.; Joshi, V.S.; Bhat, V.S. Mosquito repellent activity of oils from Vitex negundo Linn. leaves. Indian J. Med. Res.-Sect. A Infect. Dis. 1992, 95, 200–203. [Google Scholar]
- Kheder, D.A.; Al-Habib, O.A.M.; Gilardoni, G.; Vidari, G. Components of Volatile Fractions from Eucalyptus camaldulensis Leaves from Iraqi–Kurdistan and Their Potent Spasmolytic Effects. Molecules 2020, 25, 804. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Niranjan, U.S.; Rao, M.M.; Padhi, M.M.; Babu, R. A review of the important chemical constituents and medicinal uses of Vitex genus. Asian J. Tradit. Med. 2011, 6, 54–60. [Google Scholar]
- Zheng, C.J.; Li, H.Q.; Ren, S.C.; Xu, C.L.; Rahman, K.; Qin, L.P.; Sun, Y.H. Phytochemical and pharmacological profile of Vitex negundo. Phyther. Res. 2015, 29, 633–647. [Google Scholar] [CrossRef]
- Jagetia, G.C.; Baliga, M.S. The evaluation of nitric oxide scavenging activity of certain Indian medicinal plants in vitro: A preliminary study. J. Med. Food 2004, 7, 343–348. [Google Scholar] [CrossRef]
- Alam, M.I.; Gomes, A. Snake venom neutralization by Indian medicinal plants (Vitex negundo and Emblica officinalis) root extracts. J. Ethnopharmacol. 2003, 86, 75–80. [Google Scholar] [CrossRef]
- Chandramu, C.; Manohar, R.D.; Krupadanam, D.G.L.; Dashavantha, R.V. Isolation, characterization and biological activity of betulinic acid and ursolic acid from Vitex negundo L. Phyther. Res. 2003, 17, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Abd Aziz, N.A.; Hasham, R.; Sarmidi, M.R.; Suhaimi, S.H.; Idris, M.K.H. A review on extraction techniques and therapeutic value of polar bioactives from Asian medicinal herbs: Case study on Orthosiphon aristatus, Eurycoma longifolia and Andrographis paniculata. Saudi Pharm. J. 2021, 29, 143–165. [Google Scholar] [CrossRef] [PubMed]
- Paluch, G.; Bartholomay, L.; Coats, J. Mosquito repellents: A review of chemical structure diversity and olfaction. Pest Manag. Sci. 2010, 66, 1155. [Google Scholar] [CrossRef]
- Zheng, W.; Peng, W.; Zhu, C.; Zhang, Q.; Saccone, G.; Zhang, H. Identification and expression profile analysis of odorant binding proteins in the oriental fruit fly Bactrocera dorsalis. Int. J. Mol. Sci. 2013, 14, 14936–14949. [Google Scholar] [CrossRef] [Green Version]
- Di Pietrantonio, F.; Benetti, M.; Cannata, D.; Varriale, A.; D’Auria, S.; Palla-Papavlu, A.; Serra, P.; Verona, E. Surface acoustic wave biosensor based on odorant binding proteins deposited by laser induced forward transfer. In Proceedings of the IEEE International Ultrasonics Symposium, IUS, Prague, Czech Republic, 21–25 July 2013; pp. 2144–2147. [Google Scholar]
- Sankaran, S.; Panigrahi, S.; Mallik, S. Olfactory receptor based piezoelectric biosensors for detection of alcohols related to food safety applications. Sens. Actuators B Chem. 2011, 155, 8–18. [Google Scholar] [CrossRef]
- Possas-Abreu, M.; Rousseau, L.; Ghassemi, F.; Lissorgues, G.; Habchi, M.; Scorsone, E.; Cal, K.; Persaud, K. Biomimetic diamond MEMS sensors based on odorant-binding proteins: Sensors validation through an autonomous electronic system. In Proceedings of the ISOEN 2017—ISOCS/IEEE International Symposium on Olfaction and Electronic Nose, Montreal, QC, Canada, 28–31 May 2017; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017. [Google Scholar]
- Padalia, R.C.; Verma, R.S.; Chauhan, A.; Chanotiya, C.S.; Thul, S. Phytochemical diversity in essential oil of Vitex negundo L. populations from India. Rec. Nat. Prod. 2016, 10, 452–464. [Google Scholar]
- Khokra, S.; Prakash, O.; Jain, S.; Aneja, K.; Dhingra, Y. Essential oil composition and antibacterial studies of Vitex negundo Linn. extracts. Indian J. Pharm. Sci. 2008, 70, 522–526. [Google Scholar] [CrossRef] [Green Version]
- Gillies, M.T.; Coetzee, M. A Supplement to the Anophelinae of Africa South of the Sahara (Ethiopian Zoogeographical Region); Johannesburg Publications of the South African Institute for Medical Research: Johannesburg, South Africa, 1987; Volume 55. [Google Scholar]
- WHO. WHO|Vector Resistance to Pesticides; Technical Report Series N°818; World Health Organization: Geneve, Switzerland, 2016. [Google Scholar]
- Coetzee, M. Key to the females of Afrotropical Anopheles mosquitoes (Diptera: Culicidae). Malar. J. 2020, 19, 70. [Google Scholar] [CrossRef] [Green Version]
- Scott, J.A.; Brogdon, W.G.; Collins, F.H. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am. J. Trop. Med. Hyg. 1993, 49, 520–529. [Google Scholar] [CrossRef] [Green Version]
- Favia, G.; Lanfrancotti, A.; Spanos, L.; Sidén-Kiamos, I.; Louis, C. Molecular characterization of ribosomal DNA polymorphisms discriminating among chromosomal forms of Anopheles gambiae s.s. Insect Mol. Biol. 2001, 10, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Achee, D.N.L.; Grieco, J.P.; Sarah Moore, D.U.B. Guidelines for Efficacy Testing of Spatial Repellents; World Health Organization: Geneve, Switzerland, 2013; pp. 5–7, 14–15, 28–30, 41–48. [Google Scholar]
- Costantini, C.; Birkett, M.A.; Gibson, G.; Ziesmann, J.; Sagnon, N.; Mohammed, H.A.; Coluzzi, M.; Pickett, J.A. Electroantennogram and behavioural responses of the malaria vector Anopheles gambiae to human-specific sweat components. Med. Vet. Entomol. 2001, 15, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Badolo, A.; Ilboudo-Sanogo, E.; Ouédraogo, A.P.; Costantini, C. Evaluation of the sensitivity of Aedes aegypti and Anopheles gambiae complex mosquitoes to two insect repellents: DEET and KBR 3023. Trop. Med. Int. Health 2004, 9, 330–334. [Google Scholar] [CrossRef]
- Barasa, S.S.; Ndiege, I.O.; Lwande, W.; Hassanali, A. Repellent activities of stereoisomers of p-menthane-3,8-diols against Anopheles gambiae (Diptera: Culicidae). J. Med. Entomol. 2002, 39, 736–741. [Google Scholar] [CrossRef]
- Aguiar, R.W.S.; Dos Santos, S.F.; Da Silva Morgado, F.; Ascencio, S.D.; De Mendonça Lopes, M.; Viana, K.F.; Didonet, J.; Ribeiro, B.M. Insecticidal and repellent activity of Siparuna guianensis Aubl. (Negramina) against Aedes aegypti and Culex quinquefasciatus. PLoS ONE 2015, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Qiao, H.; Ling, Y.; Yang, S.; Rui, C.; Pelosi, P.; Yang, X. New analogues of (E)-β-farnesene with insecticidal activity and binding affinity to aphid odorant-binding proteins. J. Agric. Food Chem. 2011, 59, 2456–2461. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, R.C.S.; Milet-Pinheiro, P.; Da Silva, P.C.B.; Da Silva, A.G.; Da Silva, M.V.; Do Amaral Ferraz Navarro, D.M.; Da Silva, N.H. (E)-Caryophyllene and α-humulene: Aedes aegypti oviposition deterrents elucidated by gas chromatography-electrophysiological assay of commiphora leptophloeos leaf oil. PLoS ONE 2015, 10, e0144586. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Liu, X.C.; Dong, H.W.; Liu, Z.L.; Du, S.S.; Deng, Z.W. Chemical composition and insecticidal activity of the essential oil of illicium pachyphyllum fruits against two grain storage insects. Molecules 2012, 17, 14870–14881. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Carey, A.F.; Carlson, J.R.; Zwiebel, L.J. Molecular basis of odor coding in the malaria vector mosquito Anopheles gambiae. Proc. Natl. Acad. Sci. USA 2010, 107, 4418–4423. [Google Scholar] [CrossRef] [Green Version]
- Tsitoura, P.; Koussis, K.; Iatrou, K. Inhibition of Anopheles gambiae odorant receptor function by mosquito repellents. J. Biol. Chem. 2015, 290, 7961–7972. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Choo, Y.M.; De La Rosa, A.; Leal, W.S. Mosquito odorant receptor for DEET and methyl jasmonate. Proc. Natl. Acad. Sci. USA 2014, 111, 16592–16597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohbot, J.D.; Dickens, J.C. Odorant receptor modulation: Ternary paradigm for mode of action of insect repellents. Neuropharmacology 2012, 62, 2086–2095. [Google Scholar] [CrossRef]
- Reynolds, C.H.; Bembenek, S.D.; Tounge, B.A. The role of molecular size in ligand efficiency. Bioorg. Med. Chem. Lett. 2007, 17, 4258–4261. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, A.L.; Keserü, G.M.; Leeson, P.D.; Rees, D.C.; Reynolds, C.H. The role of ligand efficiency metrics in drug discovery. Nat. Rev. Drug Discov. 2014, 13, 105–121. [Google Scholar] [CrossRef]
- Hopkins, A.L.; Groom, C.R.; Alex, A. Ligand efficiency: A useful metric for lead selection. Drug Discov. Today 2004, 9, 430–431. [Google Scholar] [CrossRef]
- Edwards, M.P.; Price, D.A. Role of Physicochemical Properties and Ligand Lipophilicity Efficiency in Addressing Drug Safety Risks; Academic Press: Cambridge, MA, USA, 2010; Volume 45. [Google Scholar]
- Murray, C.W.; Erlanson, D.A.; Hopkins, A.L.; Keseru, G.M.; Leeson, P.D.; Rees, D.C.; Reynolds, C.H.; Richmond, N.J. Validity of Ligand Efficiency Metrics. ACS Med. Chem. Lett. 2014, 5, 616–618. [Google Scholar] [CrossRef] [Green Version]
- Lawal, B.; Lawal, A.; Noma, S.; Singh, A.; Adeboye, M.; Odofin, A. Properties, classification and agricultural potentials of the soils of lower Oshin river floodplains in Kwara State, Nigeria. Niger. J. Technol. Res. 2013, 7. [Google Scholar] [CrossRef]
- Akpan-Idiok, A.U.; Ukabiala, M.E.; Amhakhian, O.S. Characterization and classification of river Benue floodplain soils in Bassa Local Government Area of Kogi State, Nigeria. Int. J. Soil Sci. 2013, 8, 32–46. [Google Scholar] [CrossRef]
- Adaikwu, A.O.; Ali, A.; Agber, P. Characterization and Classification of Soils from Selected Areas in Benue State Southern Guinea Savanna of Nigeria. Asian J. Plant Soil Sci. 2017, 2, 17–24. [Google Scholar]
- Abubakar, M.A.; Zega, Z.M.; Jayeoba, O.J. Major characteristics and classification of soils in duduguru, obi lga of Nasarawa State, Nigeria. Agric. Res. J. 2019, 56, 417. [Google Scholar] [CrossRef]
- Idoga, S.; Azagaku, D.E. Characterization and classification of soils of Janta area, Plateau State of Nigeria. Niger. J. Soil Sci. 2006, 15, 116–122. [Google Scholar]
- Njinga, R.L.; Moyo, M.N.; Abdulmaliq, S.Y. Analysis of Essential Elements for Plants Growth Using Instrumental Neutron Activation Analysis. Int. J. Agron. 2013, 2013, 156520. [Google Scholar] [CrossRef]
- Tirillini, B.; Pellegrino, R.M.; Chessa, M.; Pintore, G. Chemical composition of Thymus serrulatus Hochst. ex Benth. essential oils from Ethiopia: A statistical approach. Nat. Prod. Commun. 2008, 3, 2069–2074. [Google Scholar] [CrossRef] [Green Version]
- Claridge, G.G.C. The Clay Mineralogy and Chemistry of Some Soils from the Ross Dependency, Antarctica. N. Z. J. Geol. Geophys. 1965, 8, 186–220. [Google Scholar] [CrossRef]
- Huang, H.C.; Chang, T.Y.; Chang, L.Z.; Wang, H.F.; Yih, K.H.; Hsieh, W.Y.; Chang, T.M. Inhibition of melanogenesis Versus antioxidant properties of essential oil extracted from leaves of Vitex negundo linn and chemical composition analysis by GC-MS. Molecules 2012, 17, 3902–3916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.V.; Kumar, R.A.; Mani, P.; Bastin, T.M.M.J.; Ravikumar, G. Mosquito larvicidal, oviposition deterrent and repellent properties of Vitex negundo L. extracts against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. J. Pharm. Res. 2011, 4, 2060–2063. [Google Scholar]
- Moghaddam, M.; Mehdizadeh, L. Chemistry of Essential Oils and Factors Influencing Their Constituents. In Soft Chemistry and Food Fermentation; Elsevier: Amsterdam, The Netherlands, 2017; pp. 379–419. [Google Scholar]
- Issa, M.; Chandel, S.; Pal Singh, H.; Rani Batish, D.; Kumar Kohli, R.; Singh Yadav, S.; Kumari, A. Appraisal of phytotoxic, cytotoxic and genotoxic potential of essential oil of a medicinal plant Vitex negundo. Ind. Crops Prod. 2020, 145, 112083. [Google Scholar] [CrossRef]
- Bonjardim, L.R.; Cunha, E.S.; Guimarães, A.G.; Santana, M.F.; Oliveira, M.G.B.; Serafini, M.R.; Araújo, A.A.S.; Antoniolli, Â.R.; Cavalcanti, S.C.H.; Santos, M.R.V.; et al. Evaluation of the anti-inflammatory and antinociceptive properties of p-Cymene in mice. Z. Naturforsch.-Sect. C J. Biosci. 2012, 67, 15–21. [Google Scholar] [CrossRef]
- Conti, B.; Benelli, G.; Flamini, G.; Cioni, P.L.; Profeti, R.; Ceccarini, L.; Macchia, M.; Canale, A. Larvicidal and repellent activity of Hyptis suaveolens (Lamiaceae) essential oil against the mosquito Aedes albopictus Skuse (Diptera: Culicidae). Parasitol. Res. 2012, 110, 2013–2021. [Google Scholar] [CrossRef]
- Kim, J.-K.; Kang, C.-S.; Lee, J.-K.; Kim, Y.-R.; Han, H.-Y.; Yun, H.K. Evaluation of Repellency Effect of Two Natural Aroma Mosquito Repellent Compounds, Citronella and Citronellal. Entomol. Res. 2005, 35, 117–120. [Google Scholar] [CrossRef]
- Cárdenas-Ortega, N.; González-Chávez, M.; Figueroa-Brito, R.; Flores-Macías, A.; Romo-Asunción, D.; Martínez-González, D.; Pérez-Moreno, V.; Ramos-López, M. Composition of the Essential Oil of Salvia ballotiflora (Lamiaceae) and Its Insecticidal Activity. Molecules 2015, 20, 8048–8059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senthil-Nathan, S. A Review of Resistance Mechanisms of Synthetic Insecticides and Botanicals, Phytochemicals, and Essential Oils as Alternative Larvicidal Agents against Mosquitoes. Front. Physiol. 2020, 10, 1591. [Google Scholar] [CrossRef]
- Castro, A.L.G.; Cruz, J.N.; Sodré, D.F.; Correa-Barbosa, J.; Azonsivo, R.; de Oliveira, M.S.; de Sousa Siqueira, J.E.; da Rocha Galucio, N.C.; de Oliveira Bahia, M.; Burbano, R.M.R.; et al. Evaluation of the genotoxicity and mutagenicity of isoeleutherin and eleutherin isolated from Eleutherine plicata herb. Using bioassays and in silico approaches. Arab. J. Chem. 2021, 14, 103084. [Google Scholar] [CrossRef]
- Araújo, P.H.F.; Ramos, R.S.; da Cruz, J.N.; Silva, S.G.; Ferreira, E.F.B.; de Lima, L.R.; Macêdo, W.J.C.; Espejo-Román, J.M.; Campos, J.M.; Santos, C.B.R. Identification of potential COX-2 inhibitors for the treatment of inflammatory diseases using molecular modeling approaches. Molecules 2020, 25, 4183. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.P.; Rees, S.S.; Kalindjian, S.B.; Philpott, K.L. Principles of early drug discovery. Br. J. Pharmacol. 2011, 162, 1239–1249. [Google Scholar] [CrossRef] [Green Version]
- Bohacek, R.S.; McMartin, C.; Guida, W.C. The art and practice of structure-based drug design: A molecular modeling perspective. Med. Res. Rev. 1996, 16, 3–50. [Google Scholar] [CrossRef]
- Degennaro, M.; McBride, C.S.; Seeholzer, L.; Nakagawa, T.; Dennis, E.J.; Goldman, C.; Jasinskiene, N.; James, A.A.; Vosshall, L.B. Orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET. Nature 2013, 498, 487–491. [Google Scholar] [CrossRef] [PubMed]
- Murphy, E.J.; Booth, J.C.; Davrazou, F.; Port, A.M.; Jones, D.N.M. Interactions of Anopheles gambiae odorant-binding proteins with a human-derived repellent: Implications for the mode of action of N,N-diethyl-3-methylbenzamide (DEET). J. Biol. Chem. 2013, 288, 4475–4485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.F.; de Biasio, F.; Qiao, H.L.; Iovinella, I.; Yang, S.X.; Ling, Y.; Riviello, L.; Battaglia, D.; Falabella, P.; Yang, X.L.; et al. Two odorant-binding proteins mediate the behavioural response of aphids to the alarm pheromone (e)-ß-farnesene and structural analogues. PLoS ONE 2012, 7, e32759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schultes, S.; De Graaf, C.; Haaksma, E.E.J.; De Esch, I.J.P.; Leurs, R.; Krämer, O. Ligand efficiency as a guide in fragment hit selection and optimization. Drug Discov. Today Technol. 2010, 7, e157–e162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keserü, G.M.; Makara, G.M. The influence of lead discovery strategies on the properties of drug candidates. Nat. Rev. Drug Discov. 2009, 8, 203–212. [Google Scholar] [CrossRef]
- Jones, K.C. International programme on chemical safety (IPCS) environmental health criteria. Environ. Pollut. 1994, 84, 203. [Google Scholar] [CrossRef]
- Rossi, S.E.; Erasmus, J.J.; McAdams, H.P.; Sporn, T.A.; Goodman, P.C. Pulmonary drug toxicity: Radiologic and pathologic manifestations. Radiographics 2000, 20, 1245–1259. [Google Scholar] [CrossRef] [PubMed]
- Pardridge, W.M. Drug transport across the blood-brain barrier. J. Cereb. Blood Flow Metab. 2012, 32, 1959–1972. [Google Scholar] [CrossRef] [PubMed]
- Esteves, F.; Rueff, J.; Kranendonk, M. The Central Role of Cytochrome P450 in Xenobiotic Metabolism—A Brief Review on a Fascinating Enzyme Family. J. Xenobiotics 2021, 11, 94–114. [Google Scholar] [CrossRef] [PubMed]
- Sohoni, P.; Tyler, C.R.; Hurd, K.; Gaunter, J.; Hetheridge, M.; Williams, T.; Woods, C.; Evans, M.; Toy, R.; Gargas, M.; et al. Reproductive effects of long-term exposure to Bisphenol A in the fathead minnow (Pimephales promelas). Environ. Sci. Technol. 2001, 35, 2917–2925. [Google Scholar] [CrossRef] [PubMed]
Centre | Dimension | |||||
---|---|---|---|---|---|---|
Proteins | Center_x | Center_y | Center_z | Size_x | Size_y | Size_z |
3N7H | 4.552872 | 15.28167 | −12.214 | 58.59585 | 78.51029 | 118.6278 |
3R1O | 4.1755 | −10.0047 | 18.80124 | 49.47825 | 50.92539 | 68.14412 |
3Q8I | 5.995551 | 1.440093 | 14.84848 | 49.47825 | 49.98114 | 46.37546 |
2ERB | 2.997585 | −0.91365 | −39.2475 | 42.39479 | 43.98579 | 64.02445 |
States | * Essential Oil Yield (%w/w) | Coordinate | Rainfall Range (mm) | Temp. Range (°C) | Major Soil Texture |
---|---|---|---|---|---|
Kwara | 0.13 ± 0.01 | 8°30 N 5°00′ E | 50.8–2413.3 | 30–35 | Ferralsols and hydromorphic tropical soil |
Kogi | 0.03 ± 0.01 | 7°30 N 6°42′ E | 1200.0–1300.0 | 15–38 | Sandy loamy |
Benue | 0.29 ± 0.02 | 7°20 N 8°45′ E | 100.0–200.0 | 21–37 | Sandy loamy with sandy clay in the subsoil |
Nasarawa | 0.15 ± 0.04 | 8°32 N 8°18′ E | 100.1–308.9 | 14–38 | Sandy clay loam and clay loam to clay subsurface. |
Plateau | 0.18 ± 0.02 | 9°10 N 9°45′ E | 1317.5–1460 | 12–22 | Deep, poorly to very poorly drained sandy clay loam surfaces over clay subsurface |
Niger | 0.48 ± 0.10 | 10°00 N 6°00′ E | 59.9–274.2 | 14–38 | Loamy sand surface horizons over sandy clay to clay subsurface horizons |
Plateau | Nasarawa | Niger | Benue | Kwara | Kogi | ||||
---|---|---|---|---|---|---|---|---|---|
RT | % | % | % | % | % | % | Compounds | RIExp | RILit |
4.711 | 0.69 | α-thuiene | 928 | 924 | |||||
5.750 | 40.2 | 39.83 | 20.09 | 27.94 | 28.76 | 16.01 | α-pinene | 934 | 931 |
6.789 | 0.81 | camphene | 946 | 943 | |||||
7.271 | 1.68 | 1.28 | 1.43 | sulcatone | 965 | 960 | |||
7.800 | 12.21 | 11.31 | 5.99 | 8.38 | 4.72 | sabinene | 983 | 975 | |
8.255 | 0.89 | 1.21 | 7.94 | 42.04 | β·pinene | 988 | 988 | ||
8.289 | 16.78 | myrcene | 994 | 993 | |||||
8.296 | 34.65 | 20.27 | α-phellandrene | 1005 | 1002 | ||||
8.384 | 8.10 | 1.44 | α·3-carene | 1012 | 1010 | ||||
8.391 | 20.36 | α-terpinene | 1020 | 1017 | |||||
8.615 | 8.57 | 16.47 | p-cymene | 1023 | 1022 | ||||
8.744 | 0.69 | 0.68 | β-phellandrene | 1025 | 1025 | ||||
8.805 | 0.86 | 0.65 | (E)-β-ocimene | 1032 | 1029 | ||||
8.812 | 1.04 | y-terpinene | 1047 | 1041 | |||||
9.060 | 9.192 | trans-sabinene hydrate | 1054 | 1054 | |||||
9.192 | 9.11 | 8.09 | 4.75 | 6.72 | 4.78 | Cis-linalool oxide | 1088 | 1086 | |
9.633 | 0.94 | 0.92 | 0.88 | trans-linalool oxide | 1098 | 1092 | |||
9.708 | 1.2 | 0.82 | terpinolene | 1100 | 1100 | ||||
9.776 | 1.12 | 1.38 | 0.77 | 1.16 | 0.79 | 0.67 | linalool | 1105 | 1102 |
9.871 | 1.31 | 1.35 | 0.74 | 1.03 | 0.67 | 0.6 | cis-sabinene hydrate | 1178 | 1174 |
10.47 | 4.03 | 2.64 | pelargonaldehyde | 1193 | 1186 | ||||
10.76 | 1.81 | camphor | 1318 | 1316 | |||||
11.01 | 1.39 | 2.01 | 0.59 | 2.06 | 1.79 | 1.25 | citronellal | 1395 | 1389 |
11.61 | 2.04 | 2.42 | 5.2 | 2.41 | borneol | 1414 | 1409 | ||
11.79 | 0.64 | terpinen-4-ol | 1425 | 1417 | |||||
11.96 | 1.05 | α-terpineol | 1445 | 1437 | |||||
12.07 | 1.89 | 1.00 | 2.85 | 1.52 | 2.84 | 0.12 | verbenone | 1456 | 1452 |
12.52 | 0.67 | n-decanal | 1459 | 1454 | |||||
12.61 | 1.86 | 1.07 | 1.72 | citronellol | 1466 | 1460 | |||
12.61 | 1.79 | 1.03 | 2.87 | geraniol | 1491 | 1489 | |||
13.01 | 5.11 | 3.95 | linalyl acetate | 1494 | 1492 | ||||
13.47 | 5.65 | 1.62 | 2.06 | 1.94 | 2.12 | 1.04 | bornyl acetate | 1499 | 1498 |
13.86 | 3.47 | 3.71 | 4-terpinenyl acetate | 1526 | 1522 | ||||
14.24 | 1.19 | 0.92 | 1.16 | 1.2 | 0.73 | α-terplnyl acetate | 1552 | 1548 | |
14.62 | 0.65 | α-cubebene | 1561 | 1561 | |||||
14.93 | 3.8 | 0.67 | 0.97 | 0.6 | α-ylangene | 1574 | 1574 | ||
15.56 | 2.23 | 1.23 | 0.82 | α-copaene | 1578 | 1576 | |||
15.99 | 1.09 | 0.94 | 0.63 | β-bourbonene | 1589 | 1582 | |||
16.14 | 1.96 | 0.7 | 0.67 | β-elemene | 1599 | 1592 | |||
16.56 | 1.04 | 0.75 | 0.77 | α-gurjunene | 1610 | 1608 | |||
16.68 | 1.71 | 1.65 | 0.64 | β-caryophyllene | 1637 | 1638 | |||
17.10 | 1.83 | 0.68 | trans·α·bergamotene | 1643 | 1649 | ||||
17.19 | 1.63 | α-guaiene | 1657 | 1652 | |||||
17.20 | 1.76 | α-humulene | 1660 | 1658 | |||||
17.67 | 1.59 | germacrene D | 1871 | 1880 | |||||
18.12 | 1.8 | 1.92 | 0.82 | β-selinene | 1889 | 1889 | |||
18.59 | 1.97 | 1.83 | 0.67 | ledene | 1891 | 1890 | |||
1.53 | 1.06 | 1.44 | 1.33 | 1.14 | 0.34 | Unknown | |||
Monoterpenes | 76.5 | 74.65 | 90.04 | 80.16 | 94.08 | 96.232 | |||
Sesquiterpenes | 16.32 | 14.09 | 0.75 | 7.63 | 1.23 | 0 | |||
Others | 5.65 | 10.2 | 7.77 | 10.88 | 3.55 | 3.68 |
Essential Oil Location | Effective Dose (%v/v) | R-Square Values |
---|---|---|
Nasarawa State | 0.14 | 0.8976 |
Benue State | 0.48 | 0.8995 |
Kwara State | 0.08 | 0.8254 |
Plateau State | 0.14 | 0.9778 |
Niger State | 0.11 | 0.9415 |
Kogi State | 0.87 | 0.8268 |
DEET | 0.01 | 0.8942 |
Petrolatum (Negative control) | - | - |
OBP 1 | OBP 7 | OBP 4 | OBP | |||||
---|---|---|---|---|---|---|---|---|
Compounds | BE (kcal/mol) | Ki (mM) | BE (kcal/mol) | Ki (mM) | BE (kcal/mol) | Ki (mM) | BE (kcal/mol) | Ki (mM) |
α-pinene | −6.4 | 0.0201 | −6.7 | 0.0121 | −5.8 | 0.0554 | −6.2 | 0.0282 |
linalool | −6.9 | 0.0086 | −5.6 | 0.0777 | −5.4 | 0.1089 | −6.2 | 0.0282 |
cis-sabinene hydrate | −7.2 | 0.0052 | −6.1 | 0.0334 | - | - | −6.0 | 0.0395 |
citronellal | −6.5 | 0.0169 | −5.5 | 0.1528 | - | - | −6.1 | 0.0334 |
verbenone | −7.8 | 0.0019 | −7.1 | 0.0062 | −6.1 | 0.0334 | −6.3 | 0.0238 |
bornyl acetate | −7.5 | 0.0031 | −7.1 | 0.0062 | - | - | −6.6 | 0.0052 |
α-phellandrene | −7.3 | 0.0044 | −7.1 | 0.0062 | - | - | −6.8 | 0.0102 |
α-terpinene | −7.3 | 0.0044 | −7.1 | 0.0062 | - | - | −6.8 | 0.0102 |
sabinene | −6.7 | 0.0121 | −6.8 | 0.0102 | - | - | −6.9 | 0.0086 |
β-pinene | −6.7 | 0.0121 | −6.2 | 0.0062 | −5.9 | 0.0468 | −6.1 | 0.0334 |
myrcene | −6.4 | 0.0201 | −6.2 | 0.0062 | - | - | −5.8 | 0.0554 |
p-cymene | −7.1 | 0.0062 | −7.1 | 0.0062 | - | - | −6.7 | 0.0121 |
Proteins | Active Pockets |
---|---|
OBP 1 | ALA62, LEU73, LEU76, SER79, HIS85, ALA88, MET89, GLY92, LYS93, ARG94, TRP114, PHE123; |
OBP 7 | PRO13, LEU17, CYS35, ILE75, PHE120, LEU124 |
OBP 4 | THR2, GLN5, HIS29, LYS33, ALA52 |
OBP | GLU14, ALA18, LEU58, ALA62, SER79, MET84, ALA88, MET89, MET91, ARG94, GLN116, PHE123 |
Interacting Amino Acids in the Active Pockets | ||||
---|---|---|---|---|
Ligands | OBP 1 | OBP 7 | OBP | OBP 4 |
α-pinene | Leu76, Trp114, Phe123 | Phe120, Leu124 | Ala88, Met89 | Ala52 |
linalool | Leu73, Leu76, Ala88, Met89, Lys93, Trp114 | Cys35, Phe120 | Ala88, Met91, Met 89 | Ala52 |
cis-sabinene hydrate | Leu73, Ala88 | Phe120 | Phe123 | Nil |
citronellal | Leu73, Leu76, Ala88, Arg94, Trp114 | Leu17, Phe120, Leu124 | Ala88, Met91, Phe123 | Nil |
verbenone | Met89, Lys93, Arg94, | Phe120 | Phe123 | Ala52 |
bornyl acetate | Trp114, Phe123 | Cys35, Phe120 | Phe123 | Nil |
α-phellandrene | Leu73, Leu76, Met89, Lys93, Trp114 | Phe120 | Ala88 | Nil |
α-terpinene | Leu73, Met89, Lys93 | Phe120 | ALA88 | Nil |
sabinene | Leu73, Ala88, Trp114 | Cys35, Phe120 | Met89, Met91 | Nil |
β-pinene | Leu73, Ala88, Met89, Lys93 | Cys35 | Met91, PHE123 | Ala52 |
myrcene | Leu73, Leu76, Ala88, Met89, Lys93 | Cys35, Phe120, Leu124 | Ala88, Met91, Phe123 | Nil |
p-cymene | Leu73, Leu76,Ala88, Trp114 | Phe120 | Ala88, Met91 | Nil |
Ligands | BCF (L/kg) | IGC50 ((mg/L)/(1000 ∗ MW)) | LC50 ((mg/L)/(1000 ∗ MW)) | LC50DM ((mg/L)/(1000 ∗ MW)) |
---|---|---|---|---|
α-pinene | 2.986 | 4.327 | 5.287 | 5.948 |
linalool | 1.347 | 2.192 | 3.547 | 5.056 |
cis-sabinene hydrate | 2.745 | 3.547 | 3.657 | 4.233 |
citronellal | 1.233 | 3.174 | 4.168 | 5.454 |
verbenone | 0.553 | 3.166 | 3.989 | 4.187 |
bornyl acetate | 2.166 | 3.737 | 4.334 | 4.720 |
α-phellandrene | 2.360 | 3.080 | 3.674 | 4.176 |
α-terpinene | 2.246 | 3.064 | 4.331 | 4.538 |
sabinene | 2.874 | 3.776 | 4.337 | 4.400 |
β-pinene | 3.003 | 4.675 | 5.624 | 5.587 |
myrcene | 2.021 | 4.471 | 5.331 | 5.450 |
p-cymene | 2.874 | 3.776 | 4.337 | 4.400 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okoli, B.J.; Ladan, Z.; Mtunzi, F.; Hosea, Y.C. Vitex negundo L. Essential Oil: Odorant Binding Protein Efficiency Using Molecular Docking Approach and Studies of the Mosquito Repellent. Insects 2021, 12, 1061. https://doi.org/10.3390/insects12121061
Okoli BJ, Ladan Z, Mtunzi F, Hosea YC. Vitex negundo L. Essential Oil: Odorant Binding Protein Efficiency Using Molecular Docking Approach and Studies of the Mosquito Repellent. Insects. 2021; 12(12):1061. https://doi.org/10.3390/insects12121061
Chicago/Turabian StyleOkoli, Bamidele Joseph, Zakari Ladan, Fanyana Mtunzi, and Yayock Chigari Hosea. 2021. "Vitex negundo L. Essential Oil: Odorant Binding Protein Efficiency Using Molecular Docking Approach and Studies of the Mosquito Repellent" Insects 12, no. 12: 1061. https://doi.org/10.3390/insects12121061
APA StyleOkoli, B. J., Ladan, Z., Mtunzi, F., & Hosea, Y. C. (2021). Vitex negundo L. Essential Oil: Odorant Binding Protein Efficiency Using Molecular Docking Approach and Studies of the Mosquito Repellent. Insects, 12(12), 1061. https://doi.org/10.3390/insects12121061