Effect of Climate Change on Introduced and Native Agricultural Invasive Insect Pests in Europe
Abstract
:Simple Summary
Abstract
1. Introduction
2. Climate Change and Its Impact on Insect Pests
3. Invasive Insects
Case Studies
4. Phases of Biological Invasion by Alien Insect Pests
4.1. Transport and Introduction
4.2. Establishment
4.3. Dispersal
5. Invasion Management in Terms of Climate Change
- preventing the introduction and establishment of new alien species to minimise the possibility of their subsequent impacts;
- eradicating or controlling existing invasive pest species (including harmful native species) that have the potential to fundamentally alter ecosystem composition and services, thereby increasing ecosystem resilience;
5.1. Prevention
5.2. Eradication
5.3. Assessment of the Biological Invasion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ward, N.L.; Masters, G.J. Linking climate change and species invasion: An illustration using insect herbivores. Glob. Chang. Biol. 2007, 13, 1605–1615. [Google Scholar] [CrossRef]
- Florentine, S.; Chauhan, B.S.; Jabran, K. Agriculture and Crop Protection; Its Global Importance and Relationship with Climate Change. In Crop Protection Under Changing Climate; Jabran, K., Chauhan, B.S., Florentine, S., Eds.; Springer: Cham, Switzerland, 2020; pp. 1–16. [Google Scholar]
- Kurukulasuriya, P.; Rosenthal, S. Climate Change and Agriculture: A Review of Impacts and Adaptations; The World Bank: Washington, DC, USA, 2003. [Google Scholar]
- Prakash, A.; Rao, J.; Mukherjee, A.K.; Berliner, J.; Pokhare, S.S.; Adak, T.; Munda, S.; Shashank, P.R. Climate Change: Impact on Crop Pests; Applied Zoologists Research Association (AZRA), Central Rice Research Institute: Odisha, India, 2014; ISBN 81-900947-2-7. [Google Scholar]
- Beck, K.G.; Zimmerman, K.; Schardt, J.D.; Stone, J.; Lukens, R.R.; Reichard, S.; Randall, J.; Cangelosi, A.A.; Cooper, D.; Thompson, J.P. Invasive species defined in a policy context: Recommendations from the Federal Invasive Species Advisory Committee. Invasive Plant Sci. Manag. 2008, 1, 414–421. [Google Scholar] [CrossRef]
- Bale, J.S.; Masters, G.J.; Hodkinson, I.D.; Awmack, C.; Bezemer, T.B.; Brown, V.K.; Butterfield, J.; Buse, A.; Coulson, J.C.; Farrar, J.; et al. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Glob. Chang. Biol. 2002, 8, 1–16. [Google Scholar] [CrossRef]
- Kistner, E.J. Climate Change Impacts on the Potential Distribution and Abundance of the Brown Marmorated Stink Bug (Hemiptera: Pentatomidae) With Special Reference to North America and Europe. Environ. Entomol. 2017, 46, 1212–1224. [Google Scholar] [CrossRef] [PubMed]
- Tobin, P.C.; Gray, D.R.; Liebhold, A.M. Supraoptimal temperatures influence the range dynamics of a non-native insect. Divers. Distrib. 2014, 20, 813–823. [Google Scholar] [CrossRef]
- Harrington, R.; Fleming, R.A.; Woiwod, I.P. Climate change impacts on insect management and conservation in temperate regions: Can they be predicted? Agric. For. Entomol. 2001, 3, 233–240. [Google Scholar] [CrossRef]
- Parmesan, C.; Ryrholm, N.; Stefanescu, C.; Hill, J.K.; Thomas, C.D.; Descimon, H.; Huntley, B.; Kaila, L.; Kullberg, J.; Tammaru, T.; et al. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 1999, 399, 579–583. [Google Scholar] [CrossRef]
- Hill, J.K.; Thomas, C.D.; Huntley, B. Climate and recent range changes in butterflies. In “Fingerprints” of Climate Change; Walther, G.R., Burga, C.A., Edwards, P.J., Eds.; Springer: Boston, MA, USA, 2001; pp. 77–88. [Google Scholar]
- Walther, G.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.; Fromentin, J.M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Robinet, C.; Roques, A. Direct impacts of recent climate warming on insect populations. Integr. Zool. 2010, 5, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Wan, F.H.; Yang, N.W. Invasion and management of agricultural alien insects in China. Annu. Rev. Entomol. 2016, 61, 77–98. [Google Scholar] [CrossRef]
- Finch, D.M.; Butler, J.L.; Runyon, J.B.; Fettig, C.J.; Kilkenny, F.F.; Jose, S.; Frankel, S.J.; Cushman, A.; Cobb, R.C.; Dukes, J.S.; et al. Effects of climate change on invasive species. In Invasive Species in Forests and Rangelands of the United States: A Comprehensive Science Synthesis for the United States forest Sector; Poland, T.M., Patel-Weynand, T., Finch, D., Miniat, C.F., Lopez., V., Eds.; Springer: Berlin, Germany, 2021; pp. 57–85. [Google Scholar]
- Walther, G.R.; Roques, A.; Hulme, P.E.; Sykes, M.T.; Pyšek, P.; Kühn, I.; Zobel, M.; Bacher, S.; Botta-Dukát, Z.; Bugmann, H.; et al. Alien species in a warmer world: Risks and opportunities. Trends Ecol. Evol. 2009, 24, 686–693. [Google Scholar] [CrossRef] [Green Version]
- FAO. Climate Related Transboundary Pests and Diseases. Available online: http://www.fao.org/3/a-ai785e.pdf (accessed on 19 April 2021).
- FAO. Food and Agriculture Organization Plant Pests and Diseases in the Context of Climate Change and Climate Variability, Food Security and Biodiversity Risks. Available online: http://www.fao.org/3/nb088/nb088.pdf (accessed on 25 April 2021).
- Ziska, L.H.; Blumenthal, D.M.; Runion, G.B.; Hunt, E.R.; Diaz-Soltero, H. Invasive species and climate change: An agronomic perspective. Clim. Chang. 2011, 105, 13–42. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Casassa, G.; Karoly, D.J.; Imeson, A.; Liu, C.; Menzel, A.; Rawlins, S.; Root, T.L.; Seguin, B.; Tryjanowski, P. Assessment of observed changes and responses in natural and managed systems. In Climate Change 2007: Impacts, Adaptation and Vulnerability; Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 79–131. [Google Scholar]
- Shrestha, S. Effects of climate change in agricultural insect pest. Acta Sci. Agric. 2019, 3, 74–80. [Google Scholar] [CrossRef]
- Pachauari, R.K.; Reisinger, A. Climate Change 2007: Synthesis Report; Contribution of Working Groups I, II and III to the Fourth Assessment Report on Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2007; ISBN 92-9169-122-4. [Google Scholar]
- Rosenzweig, C. Global climate change: Predictions and observations. Am. J. Agric. Econ. 1989, 71, 1265–1271. [Google Scholar] [CrossRef]
- Prentice, I.C.; Farquhar, G.D.; Fasham, M.J.R.; Goulden, M.L.; Heimann, M.; Jaramillo, V.J.; Kheshgi, H.S.; Le Quéré, C.; Scholes, R.J.; Wallace, D.W.R. The carbon cycle and atmospheric carbon dioxide. In Climate Change 2001: The Scientific Basis; Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A., Eds.; Cambridge University Press: New York, NY, USA, 2001; pp. 185–237. ISBN 0521807670. [Google Scholar]
- Global Monitoring Division, Earth System Research Laboratory. Trends in Atmospheric Carbon Dioxide. Available online: http://www.esrl.noaa.gov/gmd/ccgg/trends/ (accessed on 1 July 2021).
- Shukla, P.; Skea, J.; Calvo Buendia, E.; Masson-Delmotte, V.; Pörtner, H.O.; Roberts, D.C.; Zhai, P.; Slade, R.; Connors, S.; Van Diemen, R.; et al. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2019. [Google Scholar]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Bale, J.S.; Hayward, S. Insect overwintering in a climate change. J. Exp. Biol. 2010, 213, 980–994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parry, M. The potential effect of climate changes on agriculture and land use. Adv. Ecol. Res. 1992, 22, 63–91. [Google Scholar]
- Rosenzweig, C.; Iglesias, A.; Yang, X.B.; Epstein, P.R.; Chivian, E. Climate change and extreme weather events—Implications for food production, plant diseases, and pests. Glob. Chang. Hum. Health 2001, 2, 90–104. [Google Scholar] [CrossRef]
- Petzoldt, C.; Seaman, A. Climate change effects on insects and pathogens. In Climate Change and Agriculture: Promoting Practical and Profitable Responses; OECD: Paris, France, 2012; pp. 1–16. Available online: http://www.climateandfarming.org/pdfs/FactSh (accessed on 29 January 2021).
- Yamamura, K.; Kiritani, K. A simple method to estimate the potential increase in the number of generations under global warming in temperate zones. Appl. Entomol. Zool. 1998, 33, 289–298. [Google Scholar] [CrossRef] [Green Version]
- Bergant, K.; Trdan, S.; Znidarcic, D.; Crepinsek, Z.; Kajfez-Bogataj, L. Impact of climate change on developmental dynamics of Thrips tabaci (Thysanoptera: Thripidae): Can it be quantified? Environ. Entomol. 2005, 34, 755–766. [Google Scholar] [CrossRef] [Green Version]
- Gregory, P.J.; Johnson, S.N.; Newton, A.C.; Ingram, J.S. Integrating pests and pathogens into the climate change/food security debate. J. Exp. Bot. 2009, 60, 2827–2838. [Google Scholar] [CrossRef]
- Drake, B.G.; Gonzàlez-Meler, M.A.; Long, S.P. More efficient plants: A consequence of rising atmospheric CO2? Annu Rev Plant Biol. 1997, 48, 609–639. [Google Scholar] [CrossRef] [Green Version]
- Lincoln, D.E. The influence of plant carbon dioxide and nutrient supply on susceptibility to insect herbivores. Vegetatio 1993, 104, 273–280. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Ineson, P.; Scott, A. Elevated CO2 reduces the nitrogen concentration of plant tissues. Glob. Chang. Biol. 1998, 4, 43–54. [Google Scholar] [CrossRef]
- Bezemer, T.M.; Jones, T.H.; Knight, K.J. Long-term effects of elevated CO2 and temperature on populations of the peach potato aphid Myzus persicae and its parasitoid. Aphidius Matricariae. Oecologia 1998, 116, 128–135. [Google Scholar] [CrossRef]
- Hamilton, J.G.; Dermody, O.; Aldea, M.; Zangerl, A.R.; Rogers, A.; Berenbaum, M.R.; DeLucia, E.H. Anthropogenic changes in tropospheric composition increase susceptibility of soybean to insect herbivory. Environ. Entomol. 2005, 34, 479–485. [Google Scholar] [CrossRef]
- Yihdego, Y.; Salem, H.S.; Muhammed, H.H. Agricultural pest management policies during drought: Case studies in Australia and the state of Palestine. Nat. Hazards Rev. 2019, 20, 05018010. [Google Scholar] [CrossRef]
- Hellmann, J.J.; Byers, J.E.; Bierwagen, B.G.; Dukes, J.S. Five potential consequences of climate change for invasive species. Conserv. Biol. 2008, 22, 534–543. [Google Scholar] [CrossRef]
- Burgiel, S.W.; Muir, A.A. Invasive Species, Climate Change and Ecosystem-Based Adaptation: Addressing Multiple Drivers of Global Change; Global Invasive Species Program (GISP): Washington, DC, USA, 2010; ISBN 9789290592877. [Google Scholar]
- CBD. The Convention on Biological Diversity. Available online: https://www.cbd.int/doc/reports/cbd-report-2010-en.pdf (accessed on 25 June 2021).
- Pimentel, D.; Zuniga, R.; Morrison, D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 2005, 52, 273–288. [Google Scholar] [CrossRef]
- Vilà, M.; Basnou, C.; Pyšek, P.; Josefsson, M.; Genovesi, P.; Gollasch, S.; Nentwig, W.; Olenin, S.; Roques, A.; Roy, D.; et al. How well do we understand the impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment. Front. Ecol. Environ. 2010, 8, 135–144. [Google Scholar] [CrossRef] [Green Version]
- Riera, M.; Pino, J.; Melero, Y. Impact of introduction pathways on the spread and geographical distribution of alien species: Implications for preventive management in mediterranean ecosystems. Divers. Distrib. 2021, 27, 1019–1034. [Google Scholar] [CrossRef]
- McNeely, J.A.; Mooney, H.A.; Neville, L.E.; Schei, P.J.; Waage, J.K. A Global Strategy on Invasive Alien Species; IUCN: Gland, Switzerland; Cambridge, UK, 2001; pp. 1–63. [Google Scholar]
- Dukes, J.S.; Mooney, H.A. Does global change increase the success of biological invaders? Trends Ecol. Evol. 1999, 14, 135–139. [Google Scholar] [CrossRef]
- Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 637–669. [Google Scholar] [CrossRef] [Green Version]
- Aluja, M.; Birke, A.; Ceymann, M.; Guillén, L.; Arrigoni, E.; Baumgartner, D.; Samietz, J. Agroecosystem resilience to an invasive insect species that could expand its geographical range in response to global climate change. Agric. Ecosyst. Environ. 2014, 186, 54–63. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, D. Non-native invasive species of arthropods and plant pathogens in the British Isles. In Biological Invasions. Economic and Environmental Costs of Alien Plant, Animal and Microbe Species; CRC Press: Boca Raton, FL, USA, 2002; pp. 151–155. [Google Scholar]
- Bacon, S.J.; Bacher, S.; Aebi, A. Gaps in border controls are related to quarantine alien insect invasions in Europe. PLoS ONE 2012, 7, e47689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EPPO (European and Mediterranean Plant Protection Organization) EPPO Activities on Plant Quarantine. Available online: https://www.eppo.int/ACTIVITIES/quarantine_activities (accessed on 15 March 2021).
- EU. Commission Delegated Regulation (EU) 2019/1702 of 1 August 2019 Supplementing Regulation (EU) 2016/2031 of the European Parliament and of the Council by Establishing the List of Priority Pests. (2019) OJ L 260, 8–10. Available online: http://data.europa.eu/eli/reg_del/2019/1702/oj (accessed on 27 June 2021).
- EPPO. Anastrepha ludens. EPPO Datasheets on Pests Recommended for Regulation. Available online: https://gd.eppo.int/taxon/ANSTLU (accessed on 26 June 2021).
- EPPO. Anthonomus eugenii. EPPO Datasheets on Pests Recommended for Regulation. Available online: https://gd.eppo.int/taxon/ANTHEU (accessed on 25 June 2021).
- Costello, R.; Gillespie, D. The pepper weevil, Anthonomus eugenii Cano as a greenhouse pest in Canada. Pepper Weevil 1993, 16, 31–34. [Google Scholar]
- EPPO. Bactericera cockerelli. EPPO Datasheets on Pests Recommended for Regulation. Available online: https://gd.eppo.int/taxon/PARZCO (accessed on 25 June 2021).
- Wallis, R.L. Ecological Studies on the Potato Psyllid as a Pest of Potatoes; USDA Technical Bulletin: Washington, DC, USA, 1955; p. 25. [Google Scholar]
- EPPO. Conotrachelus nenuphar. EPPO Datasheets on Pests Recommended for Regulation. Available online: https://gd.eppo.int/taxon/CONHNE (accessed on 25 June 2021).
- EPPO. Bactrocera dorsalis. EPPO Datasheets on Pests Recommended for Regulation. Available online: https://gd.eppo.int/taxon/DACUDO (accessed on 25 June 2021).
- Liquido, N.J.; McQuate, G.T.; Birnbaum, A.L.; Hanlin, M.A.; Nakamichi, K.A.; Inskeep, J.R.; Ching, A.J.F.; Marnell, S.A.; Kurashima, R.S. A Review of Recorded Host Plants of Oriental Fruit Fly, Bactrocera (Bactrocera) dorsalis (Hendel) (Diptera: Tephritidae), Version 3.1. Available online: https://www.ars.usda.gov/research/publications/publication/?seqNo115=347371 (accessed on 25 June 2021).
- Qin, Y.; Wang, C.; Zhao, Z.; Pan, X.; Li, Z. Climate change impacts on the global potential geographical distribution of the agricultural invasive pest, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Clim. Chang. 2019, 155, 145–156. [Google Scholar] [CrossRef]
- EPPO. Rhagoletis pomonella. EPPO Datasheets on Pests Recommended for Regulation. Available online: https://gd.eppo.int/taxon/RHAGPO/datasheet (accessed on 25 June 2021).
- Yee, W.L. Assessments of Rhagoletis pomonella (Diptera: Tephritidae) infestation of temperate, tropical, and subtropical fruit in the field and laboratory in Washington State, USA. J. Entomol. Soc. Br. Columbia. 2021, 116, 40–58. [Google Scholar]
- EPPO. Aromia bungii. EPPO Datasheets on Pests Recommended for Regulation. Available online: https://gd.eppo.int/taxon/AROMBU (accessed on 25 June 2021).
- EPPO. Spodoptera frugiperda. EPPO Datasheets on Pests Recommended for Regulation. Available online: https://gd.eppo.int/taxon/LAPHFR (accessed on 25 June 2021).
- Montezano, D.G.; Specht, A.; Sosa-Gómez, D.R.; Roque-Specht, V.F.; Sousa-Silva, J.C.; Paula-Moraes, S.V.; Peterson, J.A.; Hunt, T.E. Host Plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr. Entomol. 2018, 26, 286–300. [Google Scholar] [CrossRef] [Green Version]
- Johnson, S.J. Migration and the life history strategy of the fall armyworm, Spodoptera frugiperda in the western hemisphere. Int. J. Trop. Insect Sci. 1987, 8, 543–549. [Google Scholar] [CrossRef]
- Cock, M.J.W.; Beseh, P.K.; Buddie, A.G.; Cafá, G.; Crozier, J. Molecular methods to detect Spodoptera frugiperda in Ghana, and implications for monitoring the spread of invasive species in developing countries. Sci. Rep. 2017, 7, 4013. [Google Scholar] [CrossRef]
- Zacarias, D.A. Global bioclimatic suitability for the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), and potential co-occurrence with major host crops under climate change scenarios. Clim. Chang. 2020, 161, 555–566. [Google Scholar] [CrossRef]
- EPPO (European and Mediterranean Plant Protection Organisation). Pest Risk Analysis for Thaumatotibia leucotreta, Appendix 5; EPPO: Paris, France, 2013; Available online: http://www.epp.o.int/QUARANTINE/Pest_Risk_Analysis/PRA_intro.htm (accessed on 25 June 2021).
- EPPO. Pest Risk Analysis for Thaumatotibia leucotreta. Available online: https://gd.eppo.int/taxon/ARGPLE/documents (accessed on 25 June 2021).
- EPPO. Bactrocera zonata. EPPO Datasheets on Pests Recommended for Regulation. Available online: https://gd.eppo.int/taxon/DACUZO (accessed on 25 June 2021).
- Allwood, A.J.; Chinajariyawong, A.; Drew, R.A.I.; Hamacek, E.L.; Hancock, D.L.; Hengsawad, C.; Jipanin, J.C.; Jirasurat, M.; Kong Krong, C.; Kritsaeneepaiboon, S.; et al. Host plant records for fruit flies (Diptera: Tephritidae) in Southeast Asia. Raffles Bull. Zool. 1999, 47, 1–92. [Google Scholar]
- EPPO. Anoplophora chinensis. EPPO Datasheets on Pests Recommended for Regulation. Available online: https://gd.eppo.int/taxon/ANOLCN (accessed on 25 June 2021).
- Van der Gaag, D.J.; Ciampitti, M.; Cavagna, B.; Maspero, M.; Hérard, F. Pest Risk Analysis: Anoplophora chinensis; Plant protection service: Wageningen, The Netherlands, 2018; p. 49. [Google Scholar]
- EPPO. Popillia japonica. EPPO Datasheets on Pests Recommended for Regulation. Available online: https://gd.eppo.int/taxon/POPIJA/datasheet (accessed on 25 June 2021).
- European and Mediterranean Plant Protection Organization. PM 9/21(1) Popillia japonica: Procedures for official control. EPPO Bull. 2016, 46, 543–555. [Google Scholar] [CrossRef] [Green Version]
- Desneux, N.; Wajnberg, E.; Wyckhuys, K.A.G.; Burgio, G.; Arpaia, S.; Narvaez-Vasquez, C.A.; Gonzalez-Cabrera, J.; Catalan Ruescas, D.C.; Tabone, E.; Frandon, J.; et al. Biological invasion of European tomato crops by Tuta absoluta: Ecology, geographic expansion and prospects for biological control. J. Pest Sci. 2010, 83, 197–215. [Google Scholar] [CrossRef]
- Santana, P.A.; Kumar, L.; Da Silva, R.S.; Picanço, M.C. Global geographic distribution of Tuta absoluta as affected by climate change. J. Pest. Sci. 2019, 92, 1373–1385. [Google Scholar] [CrossRef]
- Campos, M.R.; Biondi, A.; Adiga, A.; Guedes, R.N.C.; Desneux, N. From the western palaearctic region to beyond: Tuta absoluta 10 years after invading Europe. J. Pest Sci. 2017, 90, 787–796. [Google Scholar] [CrossRef]
- Hoebeke, E.R.; Carter, M.E. Halyomorpha halys (Stål) (Heteroptera: Pentatomidae): A polyphagous plant pest from Asia newly detected in North America. Proc. Entomol. Soc. Wash. 2003, 105, 225–237. [Google Scholar]
- Britt, K.E.; Pagani, M.K.; Kuhar, T.P. First report of brown marmorated stink bug (Hemiptera: Pentatomidae) associated with Cannabis sativa (Rosales: Cannabaceae) in the United States. J. Integr. Pest Manag. 2019, 10, 17. [Google Scholar] [CrossRef]
- Sparks, A.N. A review of the biology of the fall armyworm. Fla. Entomol. 1979, 62, 82–87. [Google Scholar] [CrossRef]
- FAO; PPD. Manual on Integrated Fall Armyworm Management; FAO: Yangon, Myanmar, 2020; Available online: http://www.fao.org/documents/card/en/c/ca9688en (accessed on 10 June 2021).
- Jeger, M.; Bragard, C.; Caffier, D.; Candresse, T.; Chatzivassiliou, E.; Dehnen-Schmutz, K.; Gilioli, G.; Gregoire, J.C.; Miret, J.A.J.; Navarro, M.N.; et al. Pest risk assessment of Spodoptera frugiperda for the European Union. EFSA J. 2018, 16, 5351. [Google Scholar]
- Blackburn, T.M.; Pyšek, P.; Bacher, S.; Carlton, J.T.; Duncan, R.P.; Jarošík, V.; Richardson, D.M. A proposed unified framework for biological invasions. Trends Ecol. Evol. 2011, 26, 333–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Essl, F.; Bacher, S.; Blackburn, T.M.; Booy, O.; Brundu, G.; Brunel, S. Crossing frontiers in tackling pathways of biological invasions. BioScience 2015, 65, 769–782. [Google Scholar] [CrossRef]
- Hulme, P.E. Trade, transport and trouble: Managing invasive species pathways in an era of globalization. J. Appl. Ecol. 2009, 46, 10–18. [Google Scholar] [CrossRef]
- Ricciardi, A. Invasive species. In Ecological Systems, 1st ed.; Leemans, R., Ed.; Springer: New York, NY, USA, 2013; pp. 161–178. [Google Scholar]
- Richardson, C.H.; Nemeth, D.J. Hurricane-borne African locusts (Schistocerca gregaria) on the Windward Islands. GeoJournal 1991, 23, 349–357. [Google Scholar] [CrossRef]
- Rosenberg, J.; Burt, P.J.A. Windborne displacements of Desert Locusts from Africa to the Caribbean and South America. Aerobiologia 1999, 15, 167–175. [Google Scholar] [CrossRef]
- Gutierrez, A.P.; Ponti, L. Analysis of invasive insects: Links to climate change. In Invasive Species and Global Climate Change; Ziska, L.H., Dukes, J.S., Eds.; CABI Publishing: Wallingford, UK, 2014; pp. 45–61. [Google Scholar]
- Vanhanen, H. Invasive insects in Europe—The role of climate change and global trade. Diss. For. 2008, 57, 33. [Google Scholar] [CrossRef] [Green Version]
- Kiritani, K.; Yamamura, K. Exotic insects and their pathways for invasion. In Invasive Species: Vectors and Management Strategies; Ruiz, G.M., Carlton, J.T., Eds.; Island Press: Washington, DC, USA, 2003; pp. 44–67. ISBN 1559639032. [Google Scholar]
- Lockwood, J.L.; Cassey, P.; Blackburn, T. The role of propagule pressure in explaining species invasions. Trends Ecol. Evol. 2005, 20, 223–228. [Google Scholar] [CrossRef]
- Mack, R.N. Understanding the processes of weed invasions: The influence of environmental stochasticity. In Weeds in a Changing World; Stirton, C., Ed.; British Crop Protection Council: Brighton, UK, 20 November 1995; pp. 65–74. [Google Scholar]
- Thomson, L.J.; Macfadyen, S.; Hoffmann, A.A. Predicting the effects of climate change on natural enemies of agricultural pests. Biol. Control 2010, 52, 296–306. [Google Scholar] [CrossRef]
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The Impact of Climate Change on Agricultural Insect Pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef] [PubMed]
- Bacon, S.J.; Aebi, A.; Calanca, P.; Bacher, S. Quarantine arthropod invasions in Europe: The role of climate, hosts and propagule pressure. Divers. Distrib. 2014, 20, 84–94. [Google Scholar] [CrossRef]
- Rota-Stabelli, O.; Blaxter, M.; Anfora, G. Drosophila suzukii. Curr. Biol. 2013, 23, R8–R9. [Google Scholar] [CrossRef] [Green Version]
- Cini, A.; Anfora, G.; Escudero-Colomar, L.A.; Grassi, A.; Santosuosso, U.; Seljak, G.; Papini, A. Tracking the invasion of the alien fruit pest Drosophila suzukii in Europe. J. Pest Sci. 2014, 87, 559–566. [Google Scholar] [CrossRef]
- Langille, A.B.; Arteca, E.M.; Newman, J.A. The impacts of climate change on the abundance and distribution of the Spotted Wing Drosophila (Drosophila suzukii) in the United States and Canada. Peer J. 2017, 5, e3192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vermeij, G.J. An agenda for invasion biology. Biol. Conserv. 1996, 78, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Cini, A.; Ioriatti, C.; Anfora, G. A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management. Bull. Insectol. 2012, 65, 149–160. [Google Scholar]
- Seebens, H.; Essl, F.; Dawson, W.; Fuentes, N.; Moser, D.; Pergl, J.; Pyšek, P.; van Kleunen, M.; Weber, E.; Winter, M.; et al. Global trade will accelerate plant invasions in emerging economies under climate change. Glob. Chang. Biol. 2015, 21, 4128–4140. [Google Scholar] [CrossRef] [Green Version]
- Early, R.; Bradley, B.A.; Dukes, J.S.; Lawler, J.J.; Olden, J.D.; Blumenthal, D.M.; Gonzalez, P.; Grosholz, E.D.; Ibañez, I.; Miller, L.P.; et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 2016, 7, 12485. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Leskey, T.C. Flight behavior of foraging and overwintering brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae). Bull. Entomol. Res. 2015, 105, 566–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakicenovic, N.; Alcamo, J.; Davis, G.; de Vries, B.; Fenhann, J.; Gaffin, S.; Gregory, K.; Grübler, A.; Jung, T.Y.; Kram, T.; et al. Special Report on Emissions Scenarios, Working Group III; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2000. [Google Scholar]
- Musolin, D.L. Insects in a warmer world: Ecological, physiological and life-history responses of truebugs (Heteroptera) to climate change. Glob. Chang. Biol. 2007, 13, 1565–1585. [Google Scholar] [CrossRef]
- Thomas, S.M.; Simmons, G.S.; Daugherty, M.P. Spatiotemporal distribution of an invasive insect in an urban landscape: Introduction, establishment and impact. Landsc. Ecol. 2017, 32, 2041–2057. [Google Scholar] [CrossRef]
- Lewis, M.A.; Kareiva, P. Allee dynamics and the spread of invading organisms. Theor. Popul. Biol. 1993, 43, 141–158. [Google Scholar] [CrossRef]
- Byers, J.E. Impact of non-indigenous species on natives enhanced by anthropogenic alteration of selection regimes. Oikos 2002, 97, 449–458. [Google Scholar] [CrossRef]
- Crooks, J.A.; Soulé, M.E. Lag Times in population explosions of invasive species: Causes and implications. In Invasive Species and Biodiversity Management; Terje Sandlund, O., Johan Schei, P., Viken, A., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999; Volume 24, pp. 103–125. [Google Scholar]
- Ehrlich, P.R. Which Animal Will Invade? In Ecology of Biological Invasions of North America and Hawaii. Ecological Studies (Analysis and Synthesis); Mooney, H.A., Drake, J.A., Eds.; Springer: New York, NY, USA, 1986. [Google Scholar] [CrossRef]
- Farrell, B.D.; Mitter, C.; Futuyma, D.J. Diversification at the insect-plant interface: Insights from phylogenetics. BioScience 1992, 42, 34–42. [Google Scholar] [CrossRef]
- Poyet, M.; Eslin, P.; Héraude, M.; Le Roux, V.; Prévost, G.; Gibert, P.; Chabrerie, O. Invasive host for invasive pest: When the Asiatic cherry fly (Drosophila suzukii) meets the American black cherry (Prunus serotina) in Europe. Agric. For. Entomol. 2014, 16, 251–259. [Google Scholar] [CrossRef]
- Kenis, M.; Tonina, L.; Eschen, R.; van der Sluis, B.; Sancassani, M.; Mori, N.; Haye, T.; Helsen, H. Non-crop plants used as hosts by Drosophila suzukii in Europe. J. Pest Sci. 2016, 89, 735–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Betzholtz, P.; Pettersson, L.B.; Ryrholm, N.; Franzén, M. With that diet, you will go far: Trait-based analysis reveals a link between rapid range expansion and a nitrogen-favoured diet. Proc. R. Soc. B Biol. Sci. 2013, 280, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Fitter, A.; Fitter, R. Rapid changes in flowering time in British plants. Science 2002, 296, 1689–1691. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.-J.; Ho, C.-H.; Gim, H.-J.; Brown, M.E. Phenology shifts at start vs. End of growing season in temperate vegetation over the northern hemisphere for the period 1982–2008. Glob. Chang. Biol. 2011, 17, 2385–2399. [Google Scholar] [CrossRef]
- Block, S.; Alexander, J.M.; Levine, J.M. Phenological plasticity is a poor predictor of subalpine plant population performance following experimental climate change. Oikos 2020, 129, 184–193. [Google Scholar] [CrossRef]
- Stenseth, N.C.; Mysterud, A. Climate, changing phenology, and other life history traits: Nonlinearity and match-mismatch to the environment. Proc. Natl. Acad. Sci. USA 2002, 99, 13379–13381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forkner, R.E.; Marquis, R.J.; Lill, J.T.; Corff, J. Le Timing is everything? Phenological synchrony and population variability in leaf-chewing herbivores of Quercus. Ecol. Entomol. 2008, 33, 276–285. [Google Scholar] [CrossRef]
- Parry, D.; Spence, J.R.; Volney, W.J.A. Budbreak phenology and natural enemies mediate survival of first-instar forest tent caterpillar (Lepidoptera: Lasiocampidae). Environ. Entomol. 1998, 27, 1368–1374. [Google Scholar] [CrossRef]
- Hunter, A.F.; Elkinton, J.S. Effects of synchrony with host plant on populations of a spring-feeding Lepidopteran. Ecology 2000, 81, 1248–1261. [Google Scholar] [CrossRef]
- Jepsen, J.U.; Kapari, L.; Hagen, S.B.; Schott, T.; Vindstad, O.P.L.; Nilssen, A.C.; Ims, R.A. Rapid northwards expansion of a forest insect pest attributed to spring phenology matching with sub-Arctic birch. Glob. Chang. Biol. 2011, 17, 2071–2083. [Google Scholar] [CrossRef]
- Bale, J.S.; Walters, K.F.A. Overwintering biology as a guide to the establishment potential of non-native arthropods in the UK. In Environment and Animal Development: Genes, Life Histories and Plasticity; Atkinson, D., Thorndyke, M., Eds.; BIOS Scientific Publishers Ltd: Oxford, UK, 2001; pp. 343–354. [Google Scholar]
- Leather, S.R.; Walters, K.F.A.; Bale, J.S. The Ecology of Insect Overwintering; Cambridge University Press: Cambridge, UK, 1993; p. 255. [Google Scholar]
- Tauber, M.J.; Tauber, C.A. Insect seasonality: Diapause maintenance, termination, and post diapause development. Annu. Rev. Entomol. 1976, 21, 81–107. [Google Scholar] [CrossRef]
- Steinbauer, M.J.; Kriticos, D.J.; Lukacs, Z.; Clarke, A.R. Modelling a forest lepidopteran: Phenological plasticity determines voltinism which influences population dynamics. For. Ecol. Manag. 2004, 198, 117–1142. [Google Scholar] [CrossRef] [Green Version]
- Maynard-Smith, J. The Evolution of Sex; Cambridge University Press: Cambridge, UK, 1978. [Google Scholar]
- Garnas, J.R.; Auger-Rozenberg, M.-A.; Roques, A.; Bertelsmeier, C.; Wingfield, M.J.; Saccaggi, D.L.; Roy, H.E.; Slippers, B. Complex patterns of global spread in invasive insects: Eco-evolutionary and management consequences. Biol. Invasions 2016, 18, 935–952. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, T.H. Ecophysiological and genetic aspects of geographic variations of the Colorado potato beetle. In Proceedings of the symposium on the Colorado Potato Beetle, XVIIth International Congress of Entomology; Ferro, D.N., Voss, R.H., Eds.; University of Massachusetts at Amherst: Amherst, MA, USA, 1985; Available online: https://agris.fao.org/agris-search/search.do?recordID=US8633086 (accessed on 10 March 2021).
- Lehmann, P.; Lyytinen, A.; Piiroinen, S.; Lindström, L. Northward range expansion requires synchronization of both overwintering behaviour and physiology with photoperiod in the invasive Colorado potato beetle (Leptinotarsa decemlineata). Oecologia 2014, 176, 57–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danilevskii, A.S. Photoperiodism and Seasonal Development of Insects; Oliver and Boyd: Edinburgh, UK, 1965; pp. 283–285. [Google Scholar]
- Lehmann, P.; Ammunét, T.; Barton, M.; Battisti, A.; Eigenbrode, S.D.; Jepsen, J.U.; Kalinkat, G.; Neuvonen, S.; Niemelä, P.; Terblanche, J.S.; et al. Complex responses of global insect pests to climate warming. Front. Ecol. Environ. 2020, 18, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Jönsson, A.M.; Pulatov, B.; Linderson, M.L.; Hall, K. Modelling as a tool for analysing the temperature-dependent future of the Colorado potato beetle in Europe. Glob. Chang. Biol. 2013, 19, 1043–1055. [Google Scholar] [CrossRef] [PubMed]
- Kocmankova, E.; Trnka, M.; Eitzinger, J.; Formayer, H.; Dubrovsky, M.; Semeradova, D.; Zalud, Z.; Juroch, J.; Mozny, M. Estimating the impact of climate change on the occurrence of selected pests in Central European region. Clim. Res. 2010, 44, 95–105. [Google Scholar] [CrossRef]
- Kocmánková, E.; Trnka, M.; Eitzinger, J.; Dubrovský, M.; Štěpánek, P.; Semeradova, D.; Balek, J.; Skalak, P.; Farda, A.; Juroch, J.; et al. Estimating the impact of climate change on the occurrence of selected pests at a high spatial resolution: A novel approach. J. Agric. Sci. 2011, 149, 185–195. [Google Scholar] [CrossRef]
- Karieva, P.; Huey, R.B.; Kingsolver, J.G. (Eds.) Biotic Interactions and Global Change; Sinauer Associates Inc.: Sunderland, MA, USA, 1993; ISBN 0878934308. [Google Scholar]
- Sutherst, R.W. Climate change and invasive species: A conceptual framework. In Invasive Species in a Changing World; Mooney, H.A., Richard, J.H., Eds.; Island press: Washington, DC, USA, 2000; pp. 211–240. [Google Scholar]
- Liebhold, A.M.; Tobin, P.C. Growth of newly established alien populations: Comparison of North American gypsy moth colonies with invasion theory. Popul. Ecol. 2006, 48, 253–262. [Google Scholar] [CrossRef]
- Hill, M.P.; Bertelsmeier, C.; Clusella-Trullas, S.; Garnas, J.; Robertson, M.P.; Terblanche, J.S. Predicted decrease in global climate suitability masks regional complexity of invasive fruit fly species response to climate change. Biol. Invasions 2016, 18, 1105–1119. [Google Scholar] [CrossRef] [Green Version]
- Simberloff, D.; Rejmánek, M. (Eds.) Encyclopedia of Biological Invasions. In Encyclopedia of the Natural World; University of California Press: Berkeley, CA, USA, 2011. [Google Scholar]
- Logan, J.A.; Powell, J.A. Ghost forests, global warming, and the mountain pine beetle (Coleoptera: Scolytidae). Am. Entomol. 2001, 47, 160–173. [Google Scholar] [CrossRef]
- Gutiérrez, D.; Vila, R.; Wilson, R.J. Asymmetric constraints on limits to species ranges influence consumer-resource richness over an environmental gradient. Glob. Ecol. Biogeogr. 2016, 25, 1477–1488. [Google Scholar] [CrossRef] [Green Version]
- Pulatov, B.; Jönsson, A.M.; Wilcke, R.A.; Linderson, M.L.; Hall, K.; Bärring, L. Evaluation of the phenological synchrony between potato crop and Colorado potato beetle under future climate in Europe. Agric. Ecosyst. Environ. 2016, 224, 39–49. [Google Scholar] [CrossRef]
- Dirkse, G.M.; Holverda, W.J.; Hochstenbach, S.M.; Reijerse, F.A. Solanum carolinense L. en Pimpinella peregrina L. in Nederland. Gorteria: Tijdschrift voor de floristiek, de plantenoecologie en het vegetatie-onderzoek van Nederland. Gorteria 2007, 33, 21–27. [Google Scholar]
- Wang, C.; Hawthorne, D.; Qin, Y.; Pan, X.; Li, Z.; Zhu, S. Impact of climate and host availability on future distribution of Colorado potato beetle. Sci. Rep. 2017, 7, 4489. [Google Scholar] [CrossRef] [Green Version]
- Chapman, J.W.; Reynolds, D.R.; Mouritsen, H.; Hill, J.K.; Riley, J.R.; Sivell, D.; Smith, A.D.; Woiwod, I.P. Wind selection and drift compensation optimize migratory pathways in a high-flying moth. Curr. Biol. 2008, 18, 514–518. [Google Scholar] [CrossRef] [Green Version]
- Roslin, T.; Hardwick, B.; Novotny, V.; Petry, W.K.; Andrew, N.R.; Asmus, A.; Barrio, I.C.; Basset, Y.; Boesing, A.L.; Bonebrake, T.C.; et al. Higher predation risk for insect prey at low latitudes and elevations. Science 2017, 356, 742–744. [Google Scholar] [CrossRef] [Green Version]
- Wilson, R.J.; Fox, R. Insect responses to global change offer signposts for biodiversity and conservation. Ecol. Entomol. 2021, 46, 699–717. [Google Scholar] [CrossRef]
- Shah, A.A.; Dillon, M.E.; Hotaling, S.; Woods, H.A. High elevation insect communities face shifting ecological and evolutionary landscapes. Curr. Opin. Insect Sci. 2020, 41, 1–6. [Google Scholar] [CrossRef]
- Gunderson, L.H. Ecological resilience—in theory and application. Annu. Rev. Ecol. Syst. 2000, 31, 425–439. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.B. Resilience in Agriculture through Crop Diversification: Adaptive Management for Environmental Change. BioScience 2011, 61, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Barbet-Massin, M.; Rome, Q.; Muller, F.; Perrard, A.; Villemant, C.; Jiguet, F. Climate change increases the risk of invasion by the yellow-legged hornet. Biol. Conserv. 2013, 157, 4–10. [Google Scholar] [CrossRef]
- Hulme, P.E. Beyond control: Wider implications for the management of biological invasions. J. Appl. Ecol. 2006, 43, 835–847. [Google Scholar] [CrossRef]
- Sharov, A.A.; Leonard, D.; Liebhold, A.M.; Roberts, E.A.; Dickerson, W. “SLOW THE SPREAD” a national program to contain the gypsy moth. J. For. 2002, 100, 30–35. [Google Scholar]
- Myers, J.H.; Simberloff, D.; Kuris, A.M.; Carey, J.R. Eradication revisited: Dealing with exotic species. Trends Ecol. Evol. 2000, 15, 316–320. [Google Scholar] [CrossRef]
- Pitt, J.P. Modelling the Spread of Invasive Species across Heterogeneous Landscapes. Ph.D. Thesis, Lincoln University, Lincoln, New Zealand, 2008. [Google Scholar]
- Pyšek, P.; Richardson, D.M. Invasive species, environmental change and management, and health. Annu. Rev. Environ. Resour. 2010, 35, 25–55. [Google Scholar] [CrossRef] [Green Version]
- Barlow, N.D.; Goldson, S.L. Alien invertebrates in New Zealand. In Biological Invasions: Economic and Environmental Costs of Alien Plant, Animal, and Microbe Species; Pimentel, D., Ed.; CRC Press: Boca Raton, FL, USA, 2002; pp. 195–216. [Google Scholar]
- Liebhold, A.M.; Berec, L.; Brockerhoff, E.G.; Epanchin-Niell, R.S.; Hastings, A.; Herms, D.A.; Kean, J.M.; McCullough, D.G.; Suckling, D.M.; Tobin, P.C.; et al. Eradication of invading insect populations: From concepts to applications. Annu. Rev. Entomol. 2016, 61, 335–352. [Google Scholar] [CrossRef] [Green Version]
- Sutherst, R.W.; Maywald, G.F.; Yonow, T.; Stevens, P.M. CLIMEX. Predicting the Effects of Climate on Plants and Animals. CD-ROM and User Guide; CSIRO Publishing: Melbourne, Australia, 1999. [Google Scholar]
- Kearney, M.R.; Wintle, B.A.; Porter, W.P. Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conserv. Lett. 2010, 3, 203–213. [Google Scholar] [CrossRef]
- Grünig, M.; Calanca, P.; Mazzi, D.; Pellissier, L. Inflection point in climatic suitability of insect pest species in Europe suggests non-linear responses to climate change. Glob Chang Biol. 2020, 26, 6338–6349. [Google Scholar] [CrossRef]
- Leyequien, E.; Verrelst, J.; Slot, M.; Schaepman-Strub, G.; Heitkonig, I.; Skidmore, A.K. Applying remote sensing to terrestrial animal distribution and diversity. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 1–20. [Google Scholar] [CrossRef]
- Thapa, A.; Wu, R.; Hu, Y.; Nie, Y.; Singh, P.B.; Khatiwada, J.R.; Yan, L.; Gu, X.; Wei, F. Predicting the potential distribution of the endangered red panda across its entire range using MaxEnt modeling. Ecol. Evol. 2018, 8, 10542–10554. [Google Scholar] [CrossRef]
- Pearce, J.L.; Boyce, M.S. Modelling distribution and abundance with presence-only data. J. Appl. Ecol. 2006, 43, 405–412. [Google Scholar] [CrossRef]
- Lodge, D.M.; Simonin, P.W.; Burgiel, S.W.; Keller, R.P.; Bossenbroek, J.M.; Jerde, C.L.; Kramer, A.M.; Rutherford, E.S.; Barnes, M.A.; Wittmann, M.E.; et al. Risk Analysis and Bioeconomics of Invasive Species to Inform Policy and Management. Ann. Rev. Environ. Resour. 2016, 41, 453–488. [Google Scholar] [CrossRef] [Green Version]
- Hao, T.; Elith, J.; Guillera-Arroita, G.; Lahoz-Monfort, J.J. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers. Distrib. 2019, 25, 839–852. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudik, M.; Chee, Y.; Yates, C.A. Statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Clarke, A.R.; Armstrong, K.F.; Carmichael, A.E.; Milne, J.R.; Raghu, S.; Roderick, G.K.; Yeates, D.K. Invasive phytophagous pests arising through a recent tropical evolutionary radiation: The Bactrocera dorsalis complex of fruit flies. Annu. Rev. Entomol. 2005, 50, 293–319. [Google Scholar] [CrossRef] [Green Version]
Specie | EPPO Categorisation | Distribution in EPPO Region | Host Range | Factors Contributing to Its Invasive Potential |
---|---|---|---|---|
Anastrepha ludens | A1 list | Absent [55] | polyphagous (Citrus spp., Mangifera indica, Prunus persica, etc.) [55] | - high availability of host plants [55] - transport of fruit containing live eggs or larvae [55] - flight dispersal [55] |
Anthonomus eugenii | A1 list | Absent [56] | Solanaceae (Capsicum spp., etc.) [56] | - transported as immature stages in fresh fruits [57] - adults can survive prolonged cool conditions (2–5 °C) for over 3 weeks [57] |
Bactericera cockerelli | A1 list | Absent [58] | Solanaceae [58] | - trade of plants of Solanaceae family [58] - flight dispersal of adults [59] |
Conotrachelus nenuphar | A1 list | Absent [60] | Prunus spp. [60] | - human-assisted pathways: 1. as pupae in soil alone or in association with plants for planting 2. as overwintering adults in litter in association with plants 3. as adults in packaging material used to transport plants or fruits [60] |
Bactrocera dorsalis | A1 list | Absent [61] | highly polyphagous on fruit species [62] | - trade of infested fruit [61] - climate warming [63] |
Rhagoletis pomonella | A1 list | Absent [64] | Rosaceae (Malus spp., Prunus spp., etc.) [65] | - trade of infested fruit [64] - high availability of major host plants [64] |
Aromia bungii | A1 list | Germany, Italy, Russia (Far East) [66] | Prunus spp. [66] | - transport in wood packaging [66] - flight dispersal [66] |
Spodoptera frugiperda | A1 list | Israel, Jordan, Spain (Canarian Islands) [67] | highly polyphagous (Poaceae, Asteraceae, Fabaceae, etc.) [68] | - high reproductive potential [69] - strong flight capacity [69] - accidentally transported as contaminants of traded commodities [70] - highly adaptable to different environments [67] - climate warming [71] |
Thaumatotibia leucotreta | A1 list | Israel [72] | polyphagous (Capsicum spp., Citrus spp., Prunus spp., Gossypium hirsutum, etc.) [73] | - trade of agricultural products from Africa [72] |
Bactrocera zonata | A2 list | Israel [74] | polyphagous (Citrus spp., Mangifera indica, Prunus persica, etc.) [75] | - transport of infested fruits [74] |
Anoplophora chinensis | A2 list | Croatia, Italy (both under eradication) [76] | polyphagous on woody hosts [76] | - problematic detection due to infestation, which may remain undetected for many years [76] - high availability of host plants [77] |
Popillia japonica | A2 list | Italy, Portugal (Azores), Russia (Far East), Switzerland [78] | highly polyphagous [79] | - international trade [78] - flight dispersal [79] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skendžić, S.; Zovko, M.; Pajač Živković, I.; Lešić, V.; Lemić, D. Effect of Climate Change on Introduced and Native Agricultural Invasive Insect Pests in Europe. Insects 2021, 12, 985. https://doi.org/10.3390/insects12110985
Skendžić S, Zovko M, Pajač Živković I, Lešić V, Lemić D. Effect of Climate Change on Introduced and Native Agricultural Invasive Insect Pests in Europe. Insects. 2021; 12(11):985. https://doi.org/10.3390/insects12110985
Chicago/Turabian StyleSkendžić, Sandra, Monika Zovko, Ivana Pajač Živković, Vinko Lešić, and Darija Lemić. 2021. "Effect of Climate Change on Introduced and Native Agricultural Invasive Insect Pests in Europe" Insects 12, no. 11: 985. https://doi.org/10.3390/insects12110985
APA StyleSkendžić, S., Zovko, M., Pajač Živković, I., Lešić, V., & Lemić, D. (2021). Effect of Climate Change on Introduced and Native Agricultural Invasive Insect Pests in Europe. Insects, 12(11), 985. https://doi.org/10.3390/insects12110985